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Abstract In this paper, stability and bifurcations in a
simply supported rotating shaft are studied. The shaft
is modeled as an in-extensional spinning beam with
large amplitude, which includes the effects of nonlin-
ear curvature and inertia. To include the internal damp-
ing, it is assumed that the shaft is made of a viscoelas-
tic material. In addition, the torsional stiffness and ex-
ternal damping of the shaft are considered. To find the
boundaries of stability, the linearized shaft model is
used. The bifurcations considered here are Hopf and
double zero eigenvalues. Using center manifold the-
ory and the method of normal form, analytical expres-
sions are obtained, which describe the behavior of the
rotating shaft in the neighborhood of the bifurcations.

Keywords In-extensional rotating shaft · Internal
damping · Bifurcation · Stability · Center manifold
theory · Normal form method

1 Introduction

Rotating shafts are used for power transmission in
many modern machines. Accurate prediction of sta-
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bility and post-critical behavior of rotating shafts are
necessary for a successful design. Bolotin [1] analyzed
the vibration of a rotating shaft considering geomet-
ric stiffening effect. Yamamoto et al. [2] considered
the combination resonances in a symmetrical rotating
shaft system with nonlinear spring characteristics. The
theoretical results were validated with experiments.
Using the Hopf bifurcation theory, Kurnik [3] ana-
lyzed self-excited vibrations of a rotating geometri-
cally nonlinear shaft caused by internal friction. Shaw
and Shaw [4] analyzed stability and bifurcations of an
extensional rotating shaft made of a viscoelastic mate-
rial. They included the effects of large transverse dis-
placements and external sources of dissipations. In ad-
dition, they examined the forced vibration of a rotating
shaft with internal damping [5]. They used the center
manifold approach and showed that the resonance is
an example of a periodically perturbed Hopf bifurca-
tion. Dynamics and instability of an extensional rotat-
ing shaft-disk with large transverse displacement were
analyzed by Chang and Cheng [6]. They used the cen-
ter manifold theory to examine the bifurcation of the
double zero eigenvalue point on the stability bound-
aries. Ishida and Yamamoto [7] considered the forced
vibrations of a rotating shaft with nonlinear restoring
force and internal damping. They examined the 1/2
order subharmonic oscillations of forward and back-
ward whirling modes. They showed that a self-excited
oscillation occurs in a wide range above the major
critical speeds. To validate the theoretical results, they
carried out experiments using an elastic rotating shaft
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with a disc. Noah and Sundararajan [8] considered the
works about nonlinear rotor dynamics up to 1995 and
their relevance to the design, analysis, and monitor-
ing of rotating machinery. They discussed available
analytical/computational methods and various reduc-
tion techniques. Ishida et al. [9] discussed the non-
linear forced oscillations of a rotor with distributed
mass. The geometric nonlinearity in the rotor was due
to the extension of the rotor center-line. They showed
that the primary resonances curve is of a hard spring
type and only some kinds of combination resonances
may occur. Kurnik [10] analyzed the stability and self-
excited postcritical whirling of a rotating shaft with
the aid of bifurcation theory. The shaft was made of
a material with elastic and viscous nonlinearities. He
derived the equations of motion by neglecting rotary
inertia, gyroscopic forces and effects of Von-Karman
nonlinearity, but he considered the geometric curva-
ture nonlinearity. The vibrations of the spinning rotor
with nonlinear elastic and geometric properties were
considered by Cveticanin [11]. The method of multi-
ple scales was applied to analyze the free and forced
vibration of nonlinear rotor-bearing systems by Ji and
Zu [12]. The rotating shaft was described by the Tim-
oshenko beam theory. They used a nonlinear spring
and linear damping to model the nonlinear bearing
pedestal. A geometrically nonlinear model of a rotat-
ing shaft was introduced by Luczko [13]. The model
included Von-Karman nonlinearity, nonlinear curva-
ture effects, large displacements and rotations as well
as gyroscopic and shear effects. To solve the system,
he used Galerkin and continuation methods and ana-
lyzed the internal resonances by this model. The dy-
namic analysis of a rotor shaft system with nonlinear
elastic bearings mounted on a viscoelastic suspension
was analyzed by Shabaneh and Zu [14]. Ji and Le-
ung [15] examined the superharmonic resonances of
a rotating shaft with nonlinear magnetic forces. It was
shown that the stability of superharmonic periodic so-
lutions was lost by saddle-node or Hopf bifurcations.
Ishida and Inoue [16] used a Jeffcott rotor to exam-
ine nonlinear phenomena and internal resonances in
one, two, and three times of the major critical speed.
They showed theoretically and experimentally that the
almost periodic motions could occur. They concluded
that the use of the Jeffcott model in nonlinear analysis
of rotor systems might lead to incorrect results. Non-
linear bearing pedestal was modeled by a cubic non-
linear spring and linear damper. The viscoelastic sup-
ports were modeled by the Kelvin–Voigt model. Viana

Serra Villa et al. [17] used the invariant manifold ap-
proach to explore the dynamics of a nonlinear rotor.
They constructed a reduced order model with the aid
of nonlinear normal modes and evaluated its perfor-
mance. Cveticanin [18] considered the free vibration
of a Jeffcott rotor with cubic nonlinear elastic property.
He applied the Krylov–Bogolubov method to solve the
nonlinear equations of motion. Wang and Wang [19]
studied the nonlinear vibration and bifurcation of a
rigid rotor supported by relative short aerodynamic
journal bearings. They showed that the response of a
rotor was composed of periodic and subharmonic mo-
tions. Dimentberg [20] investigated the random vibra-
tion of a simple Jeffcott rotor with both external and
internal damping. He assumed that the coefficient of
internal damping had temporal random variations. The
Krylov–Bogoliubov averaging method was applied to
the complex equation of motion. Shahgholi and Kha-
dem [21] studied the nonlinear vibrations of an asym-
metrical rotating shaft with unequal mass moments of
inertia. They considered both harmonic and parametric
resonances. Wang and Wang [22] studied the bifurca-
tion and nonlinear dynamic behaviors of a rigid rotor
supported by a noncircular aerodynamic journal bear-
ing system. They used a hybrid numerical method to
calculate pressure distribution of the bearing and rotor
orbits. Han and Chu [23] investigated the parametric
instability of a Jeffcott rotor with asymmetric disk and
open transverse crack using a four degrees-of-freedom
system.

We considered the dynamic behavior of an in-
extensional rotating shaft with nonlinear curvature and
inertia in the following papers: free vibrations [24],
primary resonances [25], and combination resonances
[26, 27]. Perturbation methods were applied to ana-
lyze the system and only external damping was con-
sidered as a dissipating mechanism.

The present paper is continuation of our previous
works [24–27]. The effect of internal damping was
neglected in the above articles and the shaft was al-
ways stable. The instability and post-critical behav-
ior of a nonlinear in-extensional viscoelastic rotat-
ing shaft have yet not been considered in the litera-
tures and in this article we will study this problem.
Here, stability and bifurcations in a simply supported
rotating shaft are investigated. The shaft is modeled
as an in-extensional spinning beam with large ampli-
tude, which includes the effects of nonlinear curva-
ture and inertia. To include the internal damping, it is
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assumed that the shaft is made of a viscoelastic ma-
terial modeled as the Kelvin–Voigt model. In addi-
tion, the torsional stiffness and external damping of the
shaft are considered. Using these assumptions, with
the aid of Hamilton principle, the equations of motion
are derived. Applying single-mode Galerkin method,
two coupled differential equations of motion in two
transverse planes are obtained. To find the bound-
aries of stability, the linearized equations of motion
are used. Following Shaw and Shaw [4], the bifurca-
tions considered here are Hopf and double zero eigen-
values. Using center manifold theory and the method
of normal form, analytical expressions are obtained,
which describe the behavior of the rotating shaft in the
neighborhood of the bifurcations; and consequently,
the post-critical behavior of the shaft is clarified. It is
shown that depending on the system parameters, the
synchronous and nonsynchronous whirling of the ro-
tating shaft are expectable.

2 Equations of motion

The schematic of a continuous rotating shaft has been
shown in Fig. 1. The length of the undeformed shaft
centerline is l and X0–Y0–Z0 axes constitute an in-
ertial frame. Displacement of any particle of a shaft
is described in floating frame X–Y –Z, which follows
the rigid body motion of the shaft, i.e., it rotates about
X0 axis with a constant speed Ω . Therefore, the equa-
tions of motion of the rotating shaft are described in
the floating frame X–Y –Z. The x–y–z constitutes a
local coordinate which are principal axes of the beam
cross section at position s (Fig. 1). Here, s is the axial

coordinate along the shaft centerline before deforma-
tion. Displacements of a particle in arbitrary location s

along X, Y , and Z axes are u(s, t), v(s, t), and w(s, t),
respectively, and torsional angle is φ(s, t).

The following assumptions are employed: (1) the
shaft has uniform circular cross section, and it spins
about longitudinal axis X with a constant speed Ω ;
(2) the effect of gravity is neglected; (3) the shaft is
slender, and consequently, shear deformation and ro-
tary inertia effects are neglected; (4) the shaft is sim-
ply supported; (5) support O is fixed but support O ′
is free to move along the X axis (Fig. 1). This as-
sumption implies that the stretching effect is negligi-
ble. This situation is more realistic than some previous
works in which nonlinearity was due to the stretch-
ing of the shaft centerline [4, 6, 9], i.e., both supports
to be fixed in the longitudinal direction; (6) external
damping force is linearly proportional to the absolute
velocity of any shaft particle and it is uniformly dis-
tributed along the shaft axis; (7) to model the inter-
nal damping, it is assumed that the shaft is made of
a Kelvin–Voigt viscoelastic material; (8) vibrations of
the rotating shaft are of large amplitude and the short-
ening effect due to in-extensibility assumption is con-
sidered [26, 28]. Therefore, only nonlinear effects of
curvature and inertia are studied here.

2.1 Kinetic and potential energy

The relation between the original frame X–Y –Z and
the deformed frame x–y–z can be described by three
successive Euler-angle rotations [29]. Here, we use a
3–2–1 body rotation with angles of rotation ψ(s, t),
θ(s, t) and φ(s, t) as shown in Fig. 2.

Fig. 1 Schematic of the
rotating shaft and related
coordinates
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Fig. 2 Schematic of the 3–2–1 Euler angles

Position and velocity of a particle on the deformed
shaft are

R = (s + u)ex + vey + wez (1)

Ṙ = u̇eX + (v̇ − wΩ)eY + (ẇ + vΩ)eZ (2)

Neglecting rotary inertia effect, kinetic energy may be
computed as

T = 1

2

∫ l

0

∫
A

ρṘ.Ṙ dAds (3)

where ρ is mass density. Defining m = ∫
A

ρ dA,
Eqs. (2) and (3) give

T = 1

2

∫ l

0
m

[
u̇2 + (v̇ − wΩ)2 + (ẇ + vΩ)2]ds (4)

Because the shaft is circular, it is better to use polar
coordinates (r,α) in which y = r cosα, z = r sinα. If
shear deformation is neglected, strains εxx , εxα , and
εxr at a point with coordinates (x, r,α) are

εxx = e − r cosαρ3 + r sinαρ2, εxα = rρ1,

εxr = 0
(5)

where the strain along the shaft centerline is

e =
√(

1 + u′)2 + v′2 + w′2 − 1 (6)

and ρi (i = 1–3) is curvatures of the shaft. Prime de-
notes the derivative with respect to variable s. The
variation of strain energy is

δΠ =
∫ l

0

∫
A

(σxxδεxx + σxαδεxα) dAds (7)

Using Eq. (5), the strain energy is computed as

δΠ =
∫ l

0

∫
A

[
(σxx(δe − r cosαδρ3 + r sinαδρ2)

+ σxα(−rδρ1)
]
dAds (8)

We assumed that the shaft is made of a Voigt viscoelas-
tic material; therefore, the stress in an element is linear
function of strain as well as the time rate of the strain,
i.e.,

σxx = E(εxx + μinε̇xx),

σxα = G(εxα + μis ε̇xα)
(9)

In the above equations, E and G are elasticity and
shear modulus, respectively, and μij (j = n, s) is in-
ternal damping coefficient. Here, the internal damp-
ing coefficient associated with normal and shear defor-
mations are assumed equal, i.e., μin = μis = μi [30].
Using Eqs. (8) and (9), after some algebraic simplifi-
cations, one can obtain strain energy for an isotropic
viscoelastic circular shaft as

δΠ =
∫ l

0

[
A11(e + μiė)δe + D11(ρ1 + μiρ̇1)δρ1

+ D22(ρ2 + μiρ̇2)δρ2

+ D22(ρ3 + μiρ̇3)δρ3
]
ds (10)

where

A11 =
∫

A

E dA, D11 =
∫

A

Gr2 dA,

D22 =
∫

A

Er2 sin2 α dA =
∫

A

Er2 cos2 α dA

(11)

Using Euler angles, the shaft curvature ρi (i = 1–3)
can be computed as [26]

ρ = ρ1e1 + ρ2e2 + ρ3e3

= (
φ′ − ψ ′ sin θ

)
e1 + (

ψ ′ sinφ cos θ + θ ′ cosφ
)
e2

+ (
ψ ′ cosφ cos θ − θ ′ sinφ

)
e3 (12)

Because the shear deformation is negligible, angles ψ

and θ can be related to the displacements (Fig. 2) [26]

ψ = sin−1 v′√
(1 + u′)2 + v′2 ,

θ = sin−1 −w′√
(1 + u′)2 + v′2 + w′2

(13)

Using Eq. (2), the virtual work due to the external
damping force is computed as
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δW =
∫ l

0
−μeṘ.δR ds

= −
∫ l

0
μe

[
(v̇ − Ωw)δv + (ẇ + Ωv)δw

]
ds (14)

where μe is external damping coefficient. It is noted
that the external damping arising from longitudinal
and torsional motion have been neglected.

2.2 In-extensionality assumption

Equations (4) and (10) are expressions for kinetic and
strain energy of an isotropic viscoelastic rotating shaft.
It was noted earlier that support O′ in Fig. 1 is mov-
able in X direction. So, the in-extensionality assump-
tion can be employed, which implies that the strain
along the shaft centroid is zero [28, 29]. Equation (6)
gives

e = 0 �⇒ (
1 + u′)2 + v′2 + w′2 = 1 (15)

Expanding Eq. (15) into a Taylor series

u′ =
√

1 − v′2 − w′2 − 1

� −1

2

(
v′2 + w′2) + · · · (16)

Therefore, if v = O(ε̂) and w = O(ε̂), then u =
O(ε̂2), where ε̂ � 1 is a bookkeeping parameter.
Substituting Eq. (13) into Eq. (12), expanding the
outcomes in Taylor series and retaining terms up to
O(ε̂3), one can compute curvatures up to O(ε̂3). Sub-
stituting these curvatures into Eqs. (10), and using
Eqs. (4), the final form of kinetic and strain ener-
gies is obtained. Applying extended Hamilton prin-
cipal to these kinetic and strain energies, and us-
ing Eqs. (14) and (16), one may obtain differential
equations of motion governing the nonlinear bending-
bending-torsional vibration of a viscoelastic rotating
shaft. These differential equations can be simplified
using following assumption: the shaft is circular; so,
its fundamental torsional frequency is much higher
than the frequency of flexural modes [29], i.e., in the
torsional motion only the effect of stiffness is signif-
icant. Consequently, the time dependent terms in the
differential equations corresponding to torsional mo-
tion can be neglected [29], which gives

φ = −
∫ s

0
v′′w′ ds + · · · (17)

Substituting Eq. (17) into the other differential equa-
tions corresponding to bending–bending motion and
using the following nondimensional quantities:

s∗ = s/ l, v∗ = v/l, w∗ = w/l,

t∗ =
√

D22

ml4
t ≡ χt,

Ω∗ = Ω/χ, μ∗
i = χμi, μ∗

e = μel
2

√
mD22

(18)

one may obtain the following equations of motion gov-
erning the flexural–flexural nonlinear vibrations of an
in-extensional viscoelastic rotating shaft:

v̈ + v(IV ) + Ω(−2ẇ − Ωv) + μe(v̇ − Ωw)

+ v′
∫ s

0

(
v̇′2 + v̈′v′ + ẇ′2 + ẅ′2w′)ds

+ v′′
∫ s

l

∫ s

0

(
v̇′2 + v̈′v′ + ẇ′2 + ẅ′w′)ds ds

+ v′2v(IV ) + v′w(IV )w′ + 3w′′′w′′v′

+ v′′w′′2 + v′′3 + w′′′v′′w′ + 4v′v′′v′′′

+ μi

[
v̇(IV ) − w(IV )

∫ s

0

(
v̇′′w′ + v′′ẇ′)ds

− v̇′′′w′w′′ − v̇′′w′w′′′ + v̇′w′w(IV ) + 3v̇′′v′′2

+ 3w′′′w′′v̇′ + v̇(IV )v′2 + 3v′v̇′′v′′′ + 4v̇′′′v′v′′

+ 3v′ẇ′′w′′′ + 3w′′ẇ′′v′′ + 2v′′w′ẇ′′′ + v′′′w′ẇ′′

+ v′v̇′v(IV ) + v′w′ẇ(IV ) + 3v′′v̇′v′′′ + 3v′w′′ẇ′′′

+ v′ẇ′w(IV )

]
= 0, (19)

ẅ + w(IV ) + Ω(2v̇ − Ωw) + μe(ẇ + Ωv)

+ w′
∫ s

0

(
v̇′2 + v̈′v′ + ẇ′2 + ẅ′w′)ds

+ w′′
∫ s

l

∫ s

0

(
v̇′2 + v̈′v′ + ẇ′2 + ẅ′w′)ds ds

+ w′′v′′2 + v′v′′′w′′ + 3w′v′′v′′′ + w′v′v(IV )

+ w′2w(IV ) + w′′3 + 4w′w′′w′′′

+ μi

[
ẇ(IV ) + v(IV )

∫ s

0

(
v̇′′w′ + v′′ẇ′)ds

+ 3w′′ẇ′w′′′ + ẇ(IV )w′2 + 3v′′ẇ′v′′′ + 3v̇′′′w′v′′

+ 4ẇ′′′w′′w′ + 3v̇′′v′′′w′ + v′′2ẇ′′ + w′ẇ′w(IV )

+ w′′v̇′′′v′ + 2v̇′′v′′w′′ + w′v̇(IV )v′

+ 3w′′2ẇ′′ + 3w′ẇ′′w′′′
]

= 0 (20)

The boundary conditions are
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v = 0, v′′ = 0, w = 0, w′′ = 0

at s = 0 and s = 1 (21)

For ease of notation, the asterisks in the above equa-
tions have been dropped. It is noted that if Eqs. (19)–
(20) are transformed to the inertial frame X0–Y0–Z0,
and internal damping coefficient μi are set to zero, the
resulting differential equations reduce to Eq. (13) of
our previous paper [26].

To analyze the dynamical behavior of the rotat-
ing shaft, the partial differential equation of motion
is discretized. We assume that only one mode to be
excited and this mode does not attend any internal
resonances. Therefore, one may use the single mode
Galerkin method

v(s, t) = φn(s)Vn(t), w(s, t) = φn(s)Wn(t) (22)

where n is the mode number and φn(s) is the linear
mode shape of the shaft

φn(s) = √
2 sinnπs (23)

Substituting Eq. (22) into Eqs. (19)–(20), taking the
inner product of each equation with its correspond-
ing mode shape, and using the orthogonality proper-

ties of the mode shapes; one can obtain the following
discretized equations of motion:

V̈n + π4n4μiV̇n − 2ΩẆn + (
π4n4 − Ω2)Vn

+ μe(V̇n − ΩWn) + n2π2
(

1

3
π2n2 − 3

8

)

× (
VnẆ

2
n + VnWnẄn + V̈nV

2
n + VnV̇

2
n

)

+ π6n6Vn

(
W 2

n + V 2
n

) + 1

4
π6n6μi

(
7WnVnẆn

+ 7W 2
n V̇n + 6V 2

n V̇n

) = 0 (24)

Ẅn + π4n4μiẆn + 2ΩV̇n + (
π4n4 − Ω2)Wn

+ μe(Ẇn + ΩVn) + n2π2
(

1

3
π2n2 − 3

8

)

× (
WnV̇

2
n + WnẆ

2
n + W 2

n Ẅn + VnWnV̈n

)

+ n6π6Wn

(
V 2

n + W 2
n

) + 1

4
n6π6μi

(
VnWnV̇n

− 3V 2
n Ẇn + 6ẆnW

2
n

) = 0 (25)

Equations (24)–(25) may be written in the form of
first-order differential equations as

Ȧ = CA + N(A, Ȧ), A = (V ,W,Q,R)T (26)

where

C =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1

−n4π4 + Ω2 μeΩ −μe − n4π4μi 2Ω

−μeΩ −n4π4 + Ω2 −2Ω −μe − n4π4μi

⎤
⎥⎥⎦

N(A, Ȧ) = (0,0,N3,N4)
T

(27)

and

N3 = −n2π2
(

m2π2

3
− 3

8

)
V

(
R2 + Q2 + V Q̇

+ WṘ
) − 7

4
n6π6μiW(V R + WQ)

− n6π6V
(
V 2 + W 2) − 3

2
n6π6μiQV 2

(28)

N4 = −n2π2
(

m2π2

3
− 3

8

)
W

(
R2 + Q2 + V Q̇

+ WṘ
) + 1

4
n6π6μiV (3V R − WQ)

− n6π6W
(
V 2 + W 2) − 3

2
n6π6μiRW 2

3 Stability and bifurcation analysis—linear case

It is clear that (Vn,Wn) = (0,0) is a trivial solution of
the system, which is corresponding to the undeformed
rotation of the shaft. Linearization of Eqs. (24)–(25)
about this trivial solution gives

V̈n + (
π4n4μi + μe

)
V̇n − 2ΩẆn

+ (
π4n4 − Ω2

)
Vn − ΩμeWn = 0

Ẅn + (
π4n4μi + μe

)
Ẇn + 2ΩV̇n

+ (
π4n4 − Ω2

)
Wn + ΩμeVn = 0

(29)

To study the solution of the above equations, substi-
tuting Vn = A1e

λt , Wn = A2e
λt into Eq. (29), which

gives the characteristic equation as
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λ4 + 2
(
n4π4μi + μe

)
λ3 + (

n8π8μ2
i + 2n4π4

+ 2n4π4μeμi + μ2
e + 2Ω2)λ2 + (

2n8π8μi

+ 2n4π4μe − 2n4π4Ω2μi + 2μeΩ
2)λ

+ n8π8 − 2n4π4Ω2 + Ω4 + μ2
eΩ

2 = 0 (30)

The roots of characteristic equation are the eigenvalues
of the matrix C in Eq. (27). Now we can determine
the stability of the solution using the Routh criteria.
According to this criteria, the system is stable if

4n4π4(μe + n2π2μiΩ + n4π4μi

)
× (

μe − n2π2μiΩ + n4π4μi

)
× (

μ2
e + n8π8μ2

i + 4Ω2 + 2n4π4μiμe

) ≥ 0 (31)

After simplification, we obtain

Ω ≤ n2π2 + μe

n2π2μi

≡ Ωn (32)

Therefore, if the spinning speed of the shaft exceeds
Ωn ≡ n2π2 +μe/(n

2π2μi), the shaft motion becomes
unstable. It is seen that the external damping delays
the instability and internal damping speeds up the oc-
currence of instability. If internal damping approaches
zero, the right hand side of Eq. (32) approaches infin-
ity. It means that in the absence of internal damping
the system is stable; Ehrich [31] has presented a com-
plete explanation about this topic.

If Ω = n2π2 + μe/(n
2π2μi), the eigenvalues of

Eq. (29) become

λ1,2 = ± μei

n2π2μi

,

λ3,4 = −(
n4π4μi + μe

) ±
(

2n2π2 + μe

n2π2μi

)
i

(33)

It is seen that in the boundary of stability, there exists
one pair of pure imaginary eigenvalues, while the other
two eigenvalues have negative real parts. Therefore, a
Hopf bifurcation is expected to occur, when spinning
speed exceeds critical value Ω = Ωn, i.e., in all re-
gions which the relation Ω = n2π2 + μe/(n

2π2μi) is
satisfied. In addition, Eq. (33) shows that when exter-
nal damping vanishes, μe = 0, Eq. (29) has two zero
eigenvalues as well as two complex eigenvalues with
negative real parts as

λ1,2 = 0, λ3,4 = −(
n4π4μi

) ± (
2n2π2)i (34)

Hence, a double zero eigenvalue bifurcation is ex-
pected to occur at points with μe = 0,Ω = n2π2. It
is noted that for certain values of spinning speed and

external damping, i.e., Ω = (n + 1)π2,μe = n2(n +
1)2π4μi , a double Hopf bifurcation may occur [4],
which is not considered here. In the next section, we
use nonlinear analysis to study double zero eigenvalue
and Hopf bifurcation in the rotating shaft.

4 Stability and bifurcation analysis—nonlinear
case

In this section, we use nonlinear analysis to study the
bifurcation and stability of the rotating shaft. This in-
vestigation will be in the neighborhood of the double
zero eigenvalues and Hopf bifurcations. We use the
center manifold theory and the method of normal form
to study the post critical behavior of the rotating shaft.

The existence of nontrivial steady state solutions
may be examined by considering the equilibrium
points of the shaft in the floating frame X–Y –Z. First,
the time dependent terms of Eq. (29) are set to zero(
n4π4 − Ω2

)
Vn − μeΩWn + n6π6Vn

(
W 2

n + V 2
n

)
= 0(

n4π4 − Ω2
)
Wn + μeΩVn + n6π6Wn

(
W 2

n + V 2
n

)
= 0

(35)

Using relation R2
n = W 2

n + V 2
n , the above equations

may be written as(
n4π4 − Ω2

)
Vn − μeΩWn + n6π6VnR

2
n = 0(

n4π4 − Ω2
)
Wn + μeΩVn + n6π6WnR

2
n = 0

(36)

Equation (36) has a nontrivial steady state solution if
μe = 0. Therefore, if external damping in Eq. (36) is
set to zero, the following expression is obtained:

R2
n = V 2

n + W 2
n = (Ω2 − n4π4)

n6π6
(37)

Equation (37) has a solution if Ω ≥ n2π2. So, the ro-
tating shaft may whirl at nth mode, where the corre-

sponding radius of whirling is R2
n = (Ω2−n4π4)

n6π6 .

4.1 Double zero eigenvalue bifurcation

In this section, we use the center manifold theory in
the neighborhood of a double zero eigenvalue bifurca-
tion to reduce the original full nonlinear equations to a
set of differential equations in center manifold, which
captures the essential parts of the system dynamics. It
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will be shown that the results are in the standard nor-
mal form for the related bifurcation and consequent
analysis may be easily done.

As explained earlier for μe = 0, Ω = m2π2, the
linear system (29) has a double zero eigenvalues, in
which a codimension two bifurcation may occur. So,
we need two parameters to fully describe the bifur-
cation. We use ε = (ε1, ε2) as a vector of unfolding
parameters which is defined

ε1 = Ω − n2π2, ε2 = μe (38)

In fact, theses parameters are a measure of deviation of
the spinning speed and external damping in the neigh-
borhood of bifurcation point. Using unfolding param-
eters ε1, ε2, Eq. (26) may be written as

Ȧ = (C0 + Cε)A + N
(
A, Ȧ

)
(39)

where

C0 =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1
0 0 −n4π4μi 2n2π2

0 0 −2n2π2 −n4π4μi

⎤
⎥⎥⎦

Cε =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0

ε2
1 + 2n2π2ε1 (ε1 + n2π2)ε2 −ε2 2ε1

−(ε1 + n2π2)ε2 ε2
1 + 2n2π2ε1 −2ε1 −ε2

⎤
⎥⎥⎦

(40)

It is noted that the C0 has two zero and a pair of com-
plex conjugate eigenvalues with negative real parts
(Eq. (34)). Using similarity transformation A = PZ,
the Jordan form of Eq. (39) becomes

Ż = P−1(C0 + Cε)PZ + P−1N
(
Z, Ż

)
(41)

where

P =

⎡
⎢⎢⎢⎣

1 0 1
2n2π2i−n4π4μi

−i

2n2π2i+n4π4μi

0 1 i

2n2π2i−n4π4μi

−1
2n2π2i+n4π4μi

0 0 1 i

0 0 i 1

⎤
⎥⎥⎥⎦

Z = (Z1,Z2,Z3,Z4)
T

(42)

Columns of P are eigenvectors of the matrix C0.
Rewriting Eq. (41) in form of
[

Ṡ
Ṫ

]
=

[
D11 D12

D21 D22

][
S
T

]
+

[
n1(S,T, Ṡ, Ṫ)

n2(S,T, Ṡ, Ṫ)

]
(43)

where[
S
T

]
= (Z1,Z2,Z3,Z4)

T

[
D11 D12

D21 D22

]
= P−1(C0 + Cε)P

{
n1(S,T, Ṡ, Ṫ)

n2(S,T, Ṡ, Ṫ)

}
= P−1N(Z, Ż)

(44)

Considering ε as a new dependent variable and sep-
arating dynamics in the center manifold from the dy-
namics in the stable manifold, one may obtain

Ṡ = D11S + D12T + n1
(
S,T, Ṡ, Ṫ

)
(45)

Ṫ = D21S + D22T + n2
(
S,T, Ṡ, Ṫ

)
(46)

According to the center manifold theory, there is an
invariant manifold in the neighborhood of (S,T,ε) =
(0,0,0), which can locally be presented as

T = h(S,ε), |S1| < δ, |ε| < δ (47)

for sufficiently small δ.
Substitution of Eq. (47) into Eq. (46) gives

∂

∂S
h(S,ε)Ṡ + ∂

∂ε
h(S,ε)ε̇ = D21S + D22h(S,ε)

+ n2
(
ε,S, Ṡ

)
(48)

Using Eq. (45), one may write Eq. (48) in form of

∂

∂S
h(S,ε)

[
D11S + D12h(S,ε)

] + n1
(
ε,S, Ṡ

) − D21S

− D22h(S,ε) − n2
(
ε,S, Ṡ

) = 0 (49)

Since the above partial differential equation can not be
solved explicitly, h(S,ε)is usually approximated with
polynomials [32]. Here, we use quadratic polynomial
to approximate the h(S,ε) as

T = h(S,ε) = h2(S,ε) + O
(|S,ε|3) (50)

It should be noted that the center manifold is tangent to
the center subspace of the corresponding linear equa-
tion at point (S,T,ε) = (0,0,0). Therefore, the as-
sumed quadratic polynomial h2(S,ε) does not contain
constant and linear terms. Substituting Eq. (50) into
Eq. (49) and equating coefficients of quadratic terms,
one may obtain h2(S,ε) as follows:

h2(S,ε) = (Ξ, iΞ̄),

Ξ = n2π2(Z1i + Z2)(ε2 − 2iε1)

2(2n2π2i − n4π4μi)
(51)
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where Ξ̄ is the complex conjugate of Ξ . Substitution
of Eqs. (50)–(51) in Eq. (45) gives the dynamics of the

nonlinear system in the center manifold as

[
Ż1

Ż2

]
=

⎡
⎣

2n2π2μiε1−2ε2

n4π4μ2
i +4

+ g1(ε1, ε2)
n2π2μiε2+4ε1

n4π4μ2
i +4

+ g2(ε1, ε2)

−n2π2μiε2−4ε1

n4π4μ2
i +4

− g2(ε1, ε2)
2n2π2μiε1−2ε2

n4π4μ2
i +4

+ g1(ε1, ε2)

⎤
⎦

[
Z1

Z2

]

+
⎡
⎢⎣

−n6π6μiZ1(Z
2
1+Z2

2)+2n4π4Z2(Z
2
1+Z2

2)

n4π4μ2
i +4

−n6π6μiZ2(Z
2
1+Z2

2)−2n4π4Z1(Z
2
1+Z2

2)

n4π4μ2
i +4

⎤
⎥⎦ + O

(|A,ε|4) (52)

where gj (ε1, ε2), j = 1,2 is nonlinear function of
ε1, ε2. Using polar coordinates Z1 = R cos(θ),Z2 =
R sin(θ), and neglecting gj (ε1, ε2), j = 1,2, the above
equation becomes

Ṙ = −2ε2 + 2n2π2μiε1

n4π4μ2
i + 4

R − n6π6μi

n4π4μ2
i + 4

R3 (53)

θ̇ = −4ε1 + n2π2μiε2

n4π4μ2
i + 4

+ 2n4π4

n4π4μ2
i + 4

R2 (54)

This equation describes the double zero eigenvalue bi-
furcation of Eq. (26) with unfolding parameters ε1, ε2.
It is obvious that Eqs. (53)–(54) are on the standard
normal form for this bifurcation. These equations were
derived for arbitrary mode n, but for modes of higher
than one, the results are valid in the center manifold,
which is not useful for our object [4]. Therefore, we
present the results only for the first mode: n = 1. In
Eqs. (53)–(54), variable R presents the amplitude of
the shaft and θ is the phase difference between the
shaft and floating frame X–Y –Z. Two cases ε2 = 0
and ε2 > 0 are studied here in the following [4]:

1. Case ε2 = 0. Equation (53) shows that for this
case (no external damping), the trivial solution is
asymptotically stable if ε1 < 0, and it is unstable if
ε1 > 0. The synchronous whirling of the shaft occurs
when θ̇ = 0 and R is a constant. Such solutions ap-
pear as a circle of equilibria [4]. If ε2 = 0, a nontrivial
circle of equilibria bifurcates from the zero solution at
ε1 = 0. This solution is stable for ε1 > 0, and it may be

presented as R2 = 2ε1
π4 = 2(Ω−π2)

π4 , θ̇ = 0, i.e., the shaft
is whirling synchronously. It is interesting to compare
the recent result with the one obtained in Eq. (37). This
equation gave the radius of the synchronous first-mode
whirling as

R2
1 = (Ω2 − π4)

π6
= (Ω − π2)(Ω + π2)

π6

� 2(Ω − π2)

π4
(55)

Since ε1 is very small, i.e., Ω � π2, the above approx-
imation is valid. It is seen that in this case the result
of center manifold is the same as the one obtained in
Eq. (37).

2. Case ε2 > 0. In this case, Eqs. (53)–(54) are
in standard normal form for a Hopf bifurcation. It
is clear that the Hopf bifurcation occurs at boundary
ε1 = ε2/(π

2μi).
The sign of R3 determines the type of bifurcation.

Because the coefficient of R3 is always negative, the
resulting Hopf bifurcation is supercritical. Therefore,
the trivial solution becomes unstable and a limit cycle
appears for ε1 > ε2

π2μi
. Figure 3 shows the correspond-

ing phase portraits. The radius of the limit cycle is

R2 = 2ε1

π4
− 2ε2

π6μi

(56)

It is seen that R2 (square of the limit cycle radius)
is linearly dependent on spinning speed and the ra-
tio of external damping to internal damping, μe/μi .
The increase of spinning speed and internal damping
increases the radius of limit cycle and the increase of
external damping decreases it. Substitution of Eq. (56)
into Eq. (54) yields

θ̇ = − ε2

π2μi

(57)

Equation (57) shows that the whirling motion of the
shaft is nonsynchronous. Precession rate θ̇ of the shaft
is proportional to the ratio of external damping to in-
ternal damping, μe/μi and is independent of the spin-
ning speed.

4.2 The Hopf bifurcation

As mentioned in Sect. 3 that if Ω = n2π2 + μe/

(n2π2μi), μe �= 0, linear system, Eq. (29), has one
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Fig. 3 Phase portraits of
Eqs. (53)–(54)

pair of pure imaginary eigenvalues (Eq. (33)). There-
fore, bifurcation of a limit cycle from the trivial solu-
tion is expected for mode n. Again, we use the cen-
ter manifold theory and method of normal form in the
neighborhood of the Hopf bifurcation to reduce the
original full nonlinear Eq. (26) to a set of differen-
tial equations in center manifold, which captures the
essential parts of the system dynamics. Since a codi-
mension one bifurcation may occur, only one param-
eter is required. We use the spinning speed parameter

and define

ε = Ω − n2π2 − μe/
(
n2π2μi

)
as an unfolding parameter for the bifurcation. Indeed,
this parameter is a measure of deviation of the spin-
ning speed in the neighborhood of the bifurcation. Us-
ing parameter ε, Eq. (26) may be written as

Ȧ = (D0 + Dε)A + N
(
A, Ȧ

)
(58)

where

D0 =

⎡
⎢⎢⎢⎢⎣

0 0 1 0
0 0 0 1

μ2
e

μ2
i n

4π4 + 2μe

μi

μe(μe+n4π4μi)

n2π2μi
−μe − n4π4μi

2(μe+n4π4μi)

n2π2μi

−μe(μe+n4π4μi)

n2π2μi

μ2
e

μ2
i n

4π4 + 2μe

μi
− 2(μe+n4π4μi)

n2π2μi
−μe − n4π4μi

⎤
⎥⎥⎥⎥⎦ ,

Dε =

⎡
⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0

ε(n2π2μiε+2μe+2n4π4μi)

n2π2μi
μeε 0 2ε

−μeε
ε(n2π2μiε+2μe+2n4π4μi)

n2π2μi
−2ε 0

⎤
⎥⎥⎥⎥⎦

(59)

The matrix D0 has a pair of imaginary eigenvalues and
a pair of complex eigenvalues with negative real part,
i.e., Eq. (33). Equation (58) may be written in the Jor-
dan form using transformation A = QZ as

Ż = Q−1(D0 + Dε)QZ + Q−1N
(
Z, Ż

)
(60)

where

Q =

⎡
⎢⎢⎢⎣

−1 0 − �2�1
� 2

2 +� 2
3

− �3�1
� 2

2 +� 2
3

0 1 − �3�1
� 2

2 +� 2
3

�2�1
� 2

2 +� 2
3

0 �1 0 �1

�1 0 �1 0

⎤
⎥⎥⎥⎦

Z = (Z1,Z2,Z3,Z4)
T

(61)

and

�1 = μe

n2π2μi

, �2 = μe

n2π2μi

+ 2n2π2

�3 = n4π4μi + μe

(62)

Again columns of Q are eigenvectors of the matrix D0.
Using the same procedure described earlier, the fol-
lowing equations are obtained in analogy to Eqs. (45)
and (49):

Ṡ = E11S + E12T + m1
(
S,T, Ṡ, Ṫ

)
(63)

∂

∂S
h(S,ε)

[
E11S + E12h(S,ε)

] + m1(ε,S, Ṡ) − E21S
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− E22h(S,ε) − m2
(
ε,S, Ṡ

) = 0 (64)

where[
E11 E12

E21 E22

]
= Q−1(D0 + Dε)Q

[
m1(S,T, Ṡ, Ṫ)

m2(S,T, Ṡ, Ṫ)

]
= Q−1N

(
Z, Ż

) (65)

Other symbols are the same as the ones used in
Sect. 4.1. Again, the above partial differential equa-
tion can not be solved explicitly. Therefore, h(S,ε)

is approximated by a quadratic polynomial similar
to Eq. (50). Substituting Eq. (50) into Eq. (64), and
equating coefficients of quadratic terms, one may de-
termine h2(S,ε). Substitution of this h2(S,ε) into
Eq. (63) gives the dynamics of the nonlinear system
in the center manifold as[
Ż1

Ż2

]
=

[
Λ1ε + Λ2ε

2 −(ω + Λ3ε + Λ4ε
2)

ω + Λ3ε + Λ4ε
2 Λ1ε + Λ2ε

2

]

×
[
Z1

Z2

]

+
[
�1Z

3
1 + �2Z

3
2 + �3Z1Z

2
2 + �4Z

2
1Z2

�5Z
3
1 + �6Z

3
2 + �7Z1Z

2
2 + �8Z

2
1Z2

]

+
[
(Θ1Z1 + Θ2Z2)(Z1Ż2 − Z2Ż1)

(Θ1Z2 − Θ2Z2)(Z1Ż2 − Z2Ż1)

]

+ O
(|A,ε|4) (66)

where ω, Λj (j = 1–4), �j (j = 1–8) and Θj (j =
1,2) are defined in Appendix A. It is seen that Eq. (66)
is not in a standard form for the Hopf bifurcation. So,
the method of normal form is applied to Eq. (66), to
transform it to a standard form [33]. Using relations
ζ = Z1 + iZ2, ζ̄ = Z1 − iZ2, Eq. (66) is written in
complex form as

ζ̇ = Ψ5iζ + ε̂
[
Ψ1

(
ζ 2 ˙̄ζ − ζ ζ̄ ζ̇

) + Ψ2ζ
3 + Ψ3ζ̄ ζ 2

+ Ψ4ζ ζ̄ 2 + Ψ6ζ + Ψ7ζ̄
3] (67)

where Ψj (j = 1–7) is defined in Appendix B, and ε̂

is a small nondimensional bookkeeping parameter. To
apply the normal form method, a near-identity trans-
formation is defined as [33]

ζ = η + ε̂H(η, η̄), ζ̄ = η̄ + ε̂H̄ (η, η̄) (68)

Substitution of Eq. (68) into Eq. (67) gives

η̇ = ε̂Ψ1
(
η + ε̂H(η, η̄)

)(
η + ε̂H(η, η̄)

)

× ∂

∂t

(
η̄ + ε̂H̄ (η, η̄)

) − ε̂Ψ1
(
η + ε̂H(η, η̄)

)

× (
η̄ + ε̂H̄ (η, η̄)

) ∂

∂t

(
η + ε̂H(η, η̄)

)

+ ε̂Ψ2
(
η + ε̂H(η, η̄)

)3 + ε̂Ψ3
(
η̄ + ε̂H̄ (η, η̄)

)
× (

η + ε̂H(η, η̄)
)2 + ε̂Ψ4

(
η + ε̂H(η, η̄)

)
× (

η̄ + ε̂H̄ (η, η̄)
)2 + (ε̂Ψ6 + Ψ5i)

× (
η + ε̂H(η, η̄)

) + ε̂Ψ7
(
η̄ + ε̂H̄ (η, η̄)

)3 (69)

Because the perturbation in Eq. (69) contains linear
and third-order terms, H(η, η̄) are expressed as

H(η, η̄) = κ0η + κ1η
3 + κ2η̄

3 + κ3η̄η2 + κ4ηη̄2 (70)

In addition to the first approximation, we have

η̇ = Ψ5iη, ˙̄η = −Ψ5iη̄ (71)

Substituting Eqs. (70)–(71) into the right-hand side of
Eq. (69) and retaining terms up to O(ε̂), one may ob-
tain

η̇ = (−2iκ1Ψ5 + Ψ2)η
3 + (Ψ3 − 2Ψ1Ψ5i)η̄η2

+ (Ψ6 + Ψ5i)η + (Ψ4 + 2iκ4Ψ5)ηη̄2

+ (Ψ7 + 4iκ2Ψ5)η̄
3 (72)

Now, one can choose κj (j = 1,2,4), so that Eq. (72)
takes the simplest form

κ1 = −iΨ2

2Ψ5
, κ2 = iΨ7

4Ψ5
, κ4 = iΨ4

2Ψ5
(73)

with this choice, the normal form of Eq. (72) becomes

η̇ = (Ψ3 − 2Ψ1Ψ5i)η̄η2 + (Ψ6 + Ψ5i)η (74)

It is clear that the parameters κj (j = 0,3) do not ap-
pear in Eq. (72), and hence they are arbitrary. These
parameters are related to the resonance terms. Finally,
transforming Eq. (74) to the polar coordinates (η =
Reiθ ), and using Appendices A and B, the normal form
of the Hopf bifurcation in terms of the system param-
eters becomes

Ṙ = [
n8π8μ2

i

(
n4π4μi + μe

)(
ϑ − 16n4π4)ε2/ϑ3

+ 2n6π6μi/ϑε
]
r + n10π10μi/ϑr3 (75)

θ̇ = (
μ3

e + 2n4π4μiμ
2
e + n8π8μeμ

2
i

+ 4n4π4μe

)/(
ϑn2π2μi

)
+ (

n4π4μeμi + 4n4π4 + μ2
e

)
/ϑε

+ 2n10π10μ2
i

/
ϑ3(−4n4π4 + 3μ2

e

+ 3n8π8μ2
i + 6n4π4μeμi

)
ε2

− 1/
(
2ϑn2π2μi

)(
n6π6μiμ

2
e + n10π10μeμ

2
i

+ 4n10π10μi

)
r2 (76)
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Fig. 4 Diagram of the Hopf bifurcation

Now, we can use Eqs. (75)–(76) to analyze the dynam-
ical behavior of the rotating shaft near the Hopf bifur-
cation. Equation (75) shows that the trivial solution is
stable if ε < 0 and it is unstable for ε > 0. Since the
coefficient of R3 in Eq. (75) is always negative, the
resulting Hopf bifurcation is supercritical. Therefore,
the trivial solution becomes unstable and a limit cy-
cle creates for ε > 0. A scenario of the bifurcation is
shown in Fig. 4. The corresponding phase portraits are
similar to Fig. 3. Neglecting the ε2 term, the radius of
the limit cycle becomes

R2 = 2ε

n4π4
(77)

Equation (77) shows that the R2 (square of the limit
cycle radius) is linearly dependent on spinning speed
and the ratio of external damping to internal damping,
μe/μi . Again, the increase of spinning speed and in-
ternal damping increase the radius of limit cycle. To
find the precession rate θ̇ , one may substitute Eq. (77)
into Eq. (76) to obtain

θ̇ = μe/
(
n2π2μi

) − 1/
(
2ϑ2)(μ3

e + 2n4π4μiμ
2
e

+ n8π8μeμ
2
i − 12n4π4μe − 8n8π8μi

)
× n2π2μiε

2 (78)

Equation (78) shows that the whirling motion of the
shaft is nonsynchronous. The increase of external
damping increases the precession rate θ̇ and the in-
crease of internal damping decreases it. An interesting
result is that the precession rate θ̇ is independent of

ε and it just is a function of ε2. Since ε is a small
parameter, the term ε2 is very small. Hence,

θ̇ � μe/
(
n2π2μi

)
(79)

The whirling speed ΩW of the shaft may be written as

ΩW = Ω + θ̇ (80)

In the neighborhood of the bifurcation,

Ω � n2π2 + μe

n2π2μi

(81)

Equations (79)–(81) give

ΩW � n2π2 (82)

It may be concluded that in the neighborhood of
the Hopf bifurcation, the shaft centerline will whirl
at a rate approximately equal to the nth critical
speed [4, 31].

5 Conclusions

Bifurcations in a simply supported rotating shaft were
studied. The shaft was modeled as an in-extensional
viscoelastic spinning beam with large amplitudes,
which includes the effects of nonlinear curvature and
inertia. Torsional stiffness and external damping of
the shaft were considered, but shear deformation and
rotary inertia were neglected. To find the boundaries
of stability, the linearized shaft model was used. Us-
ing center manifold theory and the method of normal
form, analytical expressions were obtained, which de-
scribe the behavior of the rotating shaft in the neigh-
borhood of the double zero eigenvalues and Hopf bi-
furcations. It was shown that dependent on the sys-
tem parameters, the synchronous and nonsynchronous
whirling of the rotating shaft are possible. The most
important results of the paper are as follows:

• For case μe = 0, the trivial solution is asymptoti-
cally stable if spinning speed does not exceed the
critical speeds. In this case, a nontrivial circle of
equilibria bifurcates from the zero solution as the
spinning speed exceeds the critical speeds. In this
case, the shaft whirls synchronously.

• For case μe > 0, a Hopf bifurcation occurs at
boundary ε1 = ε2/(π

2μi). Therefore, the trivial so-
lution becomes unstable and a limit cycle appears
for ε1 > ε2/(π

2μi). In this case, R2 (square of the
limit cycle radius) is linearly dependent on spinning
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speed and the ratio of external damping to internal
damping, μe/μi . Precession rate θ̇ of the shaft is
proportional to the ratio of external damping to in-
ternal damping, μe/μi and is independent of the
spinning speed.

• As spinning speed exceeds the boundaries n2π2 +
μe/(n

2π2μi), a Hopf bifurcation occurs and a cre-
ation of a limit cycle from the trivial solution is ex-
pected for mode n. In this case, the square of the
limit cycle radius is linearly dependent on spinning
speed and the ratio of external damping to inter-
nal damping, μe/μi . In addition, increase of ex-
ternal damping increases the precession rate θ̇ and
the increase of internal damping decreases it. In the
neighborhood of the Hopf bifurcation, the shaft cen-
terline will whirl at a rate approximately equal to the
nth critical speed.

Appendix A

Parameters ω, Λj (j = 1–4), �j (j = 1–8) and Θj

(j = 1,2) presented in Sect. 4 are defined as

ω = μe/
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n2π2μi

)
Λ1 = 2n6π6μi/ϑ
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(
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where

ϑ = μ2
e + 2n4π4μeμi + n8π8μ2
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Appendix B

Parameter Ψj (j = 1–7) presented in Sect. 4 is defined
as

Ψ1 = 1/2(Θ2 + iΘ1)

Ψ2 = 1/8
[
(−�7 + �2 + �5 − �4)i + �1 − �3

− �6 + �8
]

Ψ3 = 1/8
[
(−3�2 + 3�5 + �7 − �4)i + �3 + 3�6

+ 3�1 + �8
]

Ψ4 = 1/8
[
(3�2 + 3�5 + �7 + �4)i + �3 − 3�6

+ 3�1 − �8
]

Ψ5 = 8
(
Ω1 + Λ3ε + Λ4ε

2)
Ψ6 = 8

(
Λ1ε + Λ2ε

2)
Ψ7 = 1/8

[
(−�7 − �2 + �5 + �4)i + �1 − �3

+ �6 − �8
]
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