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Abstract This paper presents a study of the effect of
a time-delayed feedback controller on the dynamics of
a Microelectromechanical systems (MEMS) capacitor
actuated as a resonator by DC and AC voltage loads.
A linearization analysis is conducted to determine the
stability chart of the linearized system equations as a
function of the time delay period and the controller
gain. Then the method of multiple-scales is applied
to determine the response and stability of the system
for small vibration amplitude and voltage loads. It is
shown that negative time-delay feedback control gain
can lead to unstable responses, even if AC voltage
is relatively small compared to the DC voltage. On
the other hand, positive time delay can considerably
strengthen the system stability even in fractal domains.
We also show how the controller can be used to control
damping in MEMS, increasing or decreasing, by tun-
ing the gain amplitude and delay period. Agreements
among the results of a shooting technique, long-time
integration, basin of attraction analysis with the per-
turbation method are achieved.
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1 Introduction

Delay in MEMS devices is a very common phe-
nomenon, which can be introduced into the system
unavoidably or by design. In electrostatic MEMS res-
onators, many inherent system delays can be intro-
duced through actuators, filters, processor dynamics,
and feedback measurements. The desire for improved
device features, such as low-cost, low-voltage, high
quality factor, and improved reliability have motivated
great interest to understand the impact of delays on
MEMS. On the other hand, feedback controllers have
been deliberately used to stabilize the response, com-
pensate for system parameter changes, and generally
to enhance the resonator performance [1–5]. Another
challenge is to drive electrostatic MEMS resonators at
a sharp response while preventing them from collapse
due to pull-in.

Several works have been presented recently on time
delay feedback controllers. Pyragas [6] presented a
delayed feedback controller to stabilize the unstable
periodic orbits of a chaotic system. In another work
[7], the improved Pyragas controller was shown to
stabilize a torsion-free unstable periodic orbit, which
conventional methods cannot do. Masoud et al. [8]
demonstrated a delayed controller to reduce pendula-
tion on small ship-mounted telescopic cranes. Nayfeh
and Nayfeh [9] utilized time-delay acceleration feed-
back to enhance stability for controlling machine-tool
chatter.
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The delayed time in the Pyragas method [6] has
been investigated in the case of half of the period of
the unstable periodic orbit [10]. Generally, the delayed
signal can be displacement, velocity [11], and accel-
eration [9]. With proper designed time delay, a de-
layed feedback controller has been proven to stabilize
systems including Atomic Force Microscopes (AFM)
[12] and magneto-elastic beam systems [13].

Hu et al. [14] studied the dynamics of a controlled
Duffing oscillator with delayed feedback with respect
to the time delay. Wang and Hu [15] showed that the
trivial equilibrium undergoes stability switches as de-
lay time varies. Global stability of displacement feed-
back [16] and local stability for velocity feedback
[17] were studied by using the method of multiple
scales and the shooting technique. Also, the analy-
sis on a Single Degree-Of-Freedom (SDOF) system
with negative velocity feedback near trivial equilib-
rium was presented [17], considering quadratic and
cubic nonlinearity [18]. It was found that delayed ve-
locity feedback can extend significantly the working
frequency ranges of the system compared to with de-
layed displacement feedback [19]. Delayed feedback
of such type was applied to the linear dynamical sys-
tems showing that the controller cannot stabilize the
unstable motion under some conditions [20].

There are other methods for solving nonlinear dy-
namic problems with delays, such as energy analysis,
which is a combination of the method of Lyapunov’s
function and the averaging technique, and pseudo-
oscillator analysis, which is based on the idea of an
oscillator slightly perturbed. Both of them are limited
to undamped oscillators, meaning the damping factor
is just perturbed into the system [21].

El-Bassiouny [22, 23] presented the analysis of
primary and subharmonic resonances of a cantilever
beam under time-delay feedback control using aver-
aging and multiple scales methods. A number of im-
portant analytical conclusions were reached on the ef-
fect of feedback gains, the time-delay, the coefficient
of cubic terms, and external excitations [24].

Qaroush and Daqaq [25] utilized a delayed feed-
back controller to reduce the vibrations of a macro-
cantilever beam and a microcantilever sensor. A modi-
fied multiple scales perturbation approach demonstrat-
ing large time-delay feedback gain was presented. This
approach could lead to output peak frequencies not
necessarily close to the natural frequency of the sys-
tem [26]. Erneux [27] investigated strongly nonlin-

ear crane oscillations and lasers subject to optoelec-
tronic feedback by the method of averaging, consider-
ing weak damping and weak feedback. Rand et al. [28]
utilized a two-variable expansion perturbation scheme
to analyze Van der Pol–Hopf bifurcation with delayed
feedback. Hamdi and Belhaq [29] investigated non-
trivial solutions and bistability in the Duffing oscillator
with a delayed displacement feedback via the pertur-
bation method. Nayfeh et al. [30] discussed dynam-
ics of machining using quadratic and cubic stiffness
of machine tools, which accounts for the regenerative
effects.

In previous works, Younis and Nayfeh [31] used a
perturbation method to analytically describe dynam-
ics of a resonant microbeam excited electrically. Al-
saleem and Younis [32] investigated theoretically the
dynamics of delayed feedback MEMS resonators us-
ing a shooting technique and basin-of-attraction anal-
ysis and verified their results experimentally [33–35].

In this paper, we use a SDOF model to investigate
the dynamics of electrostatic MEMS resonators with
the delayed feedback controller of Pyragas [1]. A per-
turbation method, the method of multiple scales, is
used to present analytically the impact on the dynam-
ics of the system by the control gain and delay. The
results are then verified using long-time integration,
shooting techniques, and basin-of-attraction analysis.

2 Problem formulations

We consider a nonlinear single degree-of-freedom
model (Fig. 1) actuated by an electric load composed
of a DC component VDC and an AC harmonic com-
ponent VAC subjected to a viscous damping of coeffi-
cient c. The equation of motion governing the behavior
of the resonator under a delay feedback controller can
be expressed as

m
d2x̂

dt̂2
+ c

dx̂

dt̂
+ kx̂

= ε0A[VDC + VAC cos(Ω̂ t̂) + G( ˙̂xd − ˙̂x)]2

2(d − x̂)2
(1)

In Eq. (1), ε0 is the dielectric constant of air, A is
the electrode area, Ω̂ is the AC excitation frequency,
˙̂xd = ˙̂x(t̂ − τ̂ ), where τ̂ is the time delay, and G is the
amplitude of the velocity feedback controller with unit
V s/m (Fig. 2).
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Fig. 1 A single
degree-of-freedom model of
an electrically actuated
resonator

Fig. 2 Schematic for the delayed feedback controller

Next, we normalize Eq. (1) by introducing the
nondimensional variables

t = t̂

T ∗ , τ = τ̂

T ∗ , x = x̂

d
, xd = x̂d

d
(2)

where T ∗ = √
m/k.

Substituting Eq. (2) into Eq. (1) yields

ẍ +2ζ ẋ +x = P
[VDC + VAC cosΩt + GV (ẋd − ẋ)]2

(1 − x)2

(3)

where ζ = c

2
√

mk
; Ω = Ω̂T ∗; P = ε0A

2kd3 ; GV = G d
T ∗ .

The nondimensional deflection x can be decom-
posed as

x = δ + u (4)

where δ is the equilibrium position of the oscillator
normalized to d , due to VDC and u is the dynamic am-
plitude of the motion. Substituting Eq. (4) into Eq. (3)
yields the governing equation of motion

ü + 2ζ u̇ + u + δ

= P
[VDC + VAC cosΩt + GV (u̇d − u̇)]2

(1 − δ − u)2
(5)

3 Linearization analysis

Next, we present the linear stability analysis show-
ing vibration characteristics in the neighborhood of
the equilibrium position. First, we derive the equilib-
rium equation of the system in Eq. (5). We set all time-
dependent terms equal to zero including the dynamic
amplitude u, which leads to

δ = PV 2
DC

(1 − δ)2
(6)

Equation (6) gives the upper mass position under VDC

only. Then we set VAC = 0 in Eq. (5). Assuming GV

is small compared to VDC, 1
(1−δ−u)2 in the right-hand

side of Eq. (5) can be expanded using a Taylor’s series
up to the third-order term as

1

(1 − δ − u)2
= 1

(1 − δ)2
+ 2

(1 − δ)3
u + 3

(1 − δ)4
u2

+ 4

(1 − δ)5
u3 + · · · (7)

Also, [VDC + GV (u̇d − u̇)]2 can be expanded as

[
VDC +GV (u̇d − u̇)

]2 = V 2
DC +2VDCGV (u̇d − u̇)+· · ·

(8)

Plugging the linear terms of the right-hand side of
Eqs. (7) and (8) into Eq. (5), we obtain

ü + 2ζ u̇ + u + δ

= PV 2
DC

(1 − δ)2
+ 2PV 2

DC

(1 − δ)3
u + 2VDCGV

(1 − δ)2
u̇d

− 2VDCGV

(1 − δ)2
u̇ + · · · (9)

Dropping the equilibrium equation (6) from Eq. (9)
and rearranging yield

ü + 2ζ0u̇ − 2gu̇d + ω2u = 0 (10)

where

ζ0 = ζ +g; g = PVDCGV

(1 − δ)2
; ω2 = 1− 2PV 2

DC

(1 − δ)3

(11)

One can see that ω is the nondimensional natural fre-
quency of the parallel-plate resonator after applying
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VDC. The parameter g can be viewed as the nondimen-
sional controller gain.

We should mention that ζ0 in Eq. (10) cannot be
considered as an effective damping ratio. Instead, the
term 2ζ0u̇− 2gu̇d in Eq. (10) is the complete damping
term, because the time delay here is taken into consid-
eration. We need further analysis to uncover the effec-
tive damping ratio, which will be presented in Sect. 4.

To study the stability of Eq. (10) we assume the
candidate solution to be of the form [36]

u = u0e
λt (12)

where u0 is the amplitude of the solution and λ is the
eigenvalue. Note that the delay term is ud = u0e

λ(t−τ).
Plugging Eq. (12) into Eq. (10) yields the following
characteristic equation:

λ2 + (
2ζ0 − 2ge−λτ

)
λ + ω2 = 0 (13)

Given λ is complex of the form λ = χ + iρ, where χ

is the growth or decay rate and ρ is the frequency of
oscillations, we split the characteristic equation into
real and imaginary parts as

χ2 − ρ2 + 2ζ0χ − 2gχe−χτ cos(ρτ)

− 2gρe−χτ sin(ρτ) + ω2 = 0 (14)

2χρ + 2ζ0ρ + 2gχe−χτ sin(ρτ)

− 2gρe−χτ cos(ρτ) = 0 (15)

If the real part of the eigenvalue χ is negative, the so-
lution is bounded (stable response) as time increases.
On the other hand, a positive real part of the eigen-
value leads to unbounded solution (unstable response).
Thus, a zero real part of the eigenvalue, or pure imag-
inary eigenvalue, defines the linear stability boundary.
To solve for this boundary condition, we set χ = 0 in
Eq. (14) and Eq. (15) and obtain

−ρ2 − 2gρ sin(ρτ) + ω2 = 0 (16)

ζ + g
[
1 − cos(ρτ)

] = 0 (17)

Canceling g, we obtain

−ρ2 − 2
ζ sin(ρτ)

1 − cos(ρτ)
ρ + ω2 = 0 (18)

We can use Eq. (18) to find the system’s free oscil-
lation frequency ρ for a specific time delay τ . After

Table 1 The parameters of a parallel-plate capacitor [32, 33]

Parameter Values

Stiffness k (N m−1) 320

Electrode separation d (µm) 38

Natural frequency ω̂ (Hz) 193.5

Linear damping coefficient ζ 0.0027

Pull-in voltage (V) 122

Area A (mm2) 39.6

Effective mass m (g) 0.21

Damping coefficient c (N s m−1) 0.0014

Fig. 3 Stability chart within four periods (T = 2π/ω) for
VAC = 1 V, VDC = 40.2 V

obtaining the frequency ρ, we use Eq. (17) to find the
effective boundary gain g.

A case study of the capacitive device of [32, 33]
of properties of Table 1 is considered. Figure 3 shows
the stability chart of this system as a function of the
nondimensional effective gain g and time delay τ . In
Fig. 3, we obviously can see the periodicity. In one
period, for example, the interval between 0 and T , the
boundary gain g tends toward negative infinity when
τ goes to 0 or T , which can also be seen analytically.
When τ = 0 or T , Eq. (16) yields the unique solution
ρ = ω, which leads to g having no bounded solution
in Eq. (17) because 1 − cos(ρτ) is zero.

Also, in Fig. 3, we can see the least possible neg-
ative gain to perturb the system into an unstable state
is g = −0.0013 at τ = 0.5T . In fact, for τ = 0.5T ,
we have the solutions of Eq. (16) and Eq. (17) as
ρ = ω, ζ + 2g = 0. It indicates that the system needs

ζ + 2g > 0 (19)

to reach the stable state.
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4 Perturbation analysis

In this section, we use a perturbation method, the
method of multiple scales [37], to investigate analyt-
ically the response of the resonator for a small mo-
tion around the equilibrium position. Therefore, we
consider the system is perturbed generating small re-
sponse u = O(ε). Considering the terms VDC = O(1),
VAC = O(ε3), GV = O(ε2) and expanding the elec-
trodynamic term on the right-hand side of Eq. (5) up
to the third order, we obtain
[
VDC + VAC cosΩt + GV (u̇d − u̇)

]2

= V 2
DC + 2VDCVAC cosΩt

+ 2VDCGV (u̇d − u̇) + O
(
ε4) (20)

Substituting Eqs. (20) and (7) into Eq. (5) yields

ü + 2ζ u̇ + u + δ

= P
[
V 2

DC + ε32VDCVAC cosΩt

+ ε32VDCGV (u̇d − u̇)
]

×
[

1

(1 − δ)2
+ 2

(1 − δ)3
εu + 3

(1 − δ)4
ε2u2

+ 4

(1 − δ)5
ε3u3

]
(21)

Scaling the damping and dropping the higher order
terms beyond the third order in Eq. (21) and the equi-
librium terms of Eq. (6) yields the nondimensional
equation of motion below

ü + 2ε2ζ0u̇ + ω2u + αqu2 + αcu
3

= 2ε3f cosΩt + 2ε2gu̇d (22)

where

αq = − 3PV 2
DC

(1 − δ)4

αc = − 4PV 2
DC

(1 − δ)5

f = PVDCVAC

(1 − δ)2

(23)

and the rest of parameters are as defined in Eq. (11).
Since the primary resonance is investigated here,

we describe the nearness of the excitation frequency
Ω to the natural frequency ω by introducing detuning

parameter σ defined by

Ω = ω + ε2σ (24)

Substituting Eq. (24) into Eq. (22), we obtain

ü + 2ε2ζ0u̇ + ω2u + αqu2 + αcu
3

= ε32f cos
[(

ω + ε2σ
)
t
] + ε22gu̇d (25)

The equation above is based on considering the system
with small damping, weak quadratic and cubic nonlin-
earities, weak feedback and soft excitation.

Assuming u is a function of ε and time t , we expand
u as

u(t; ε) = εu1(T0, T1, T2) + ε2u2(T0, T1, T2)

+ ε3u3(T0, T1, T2) + · · · (26)

where T0 = t , T1 = εt , T2 = ε2t .
As will be proven latter, u is independent of T1.

Therefore the delay term can be written as [36]

ud = u(t − τ ; ε)
= εu1

(
T0 − τ, T2 − ε2τ

) + ε2u2
(
T0 − τ, T2 − ε2τ

)

+ ε3u3
(
T0 − τ, T2 − ε2τ

) + · · · (27)

which upon expansion for small ε2τ near T2 becomes

u(t − τ ; ε) = εu1(T0 − τ, T2) + ε2u2(T0 − τ, T2)

+ ε3u3(T0 − τ, T2)

− ε3τD2u1(T0 − τ, T2) + · · · (28)

Next, we use the following differentiation notations:

d

dt

.= D0 + εD1 + ε2D2 + · · ·
d2

dt2
.= D2

0 + 2εD0D1 + ε2(D2
1 + 2D0D2

) + · · ·
(29)

Plugging Eqs. (26)–(29) into Eq. (25) yields
[
D2

0 + 2εD0D1 + ε2(D2
1 + 2D0D2

)](
εu1 + ε2u2

+ ε3u3
) + 2ε2ζ0

(
D0 + εD1 + ε2D2

)(
εu1

+ ε2u2 + ε3u3
) + ω2(εu1 + ε2u2 + ε3u3

)

+ αq

(
εu1 + ε2u2 + ε3u3

)2

+ αc

(
εu1 + ε2u2 + ε3u3

)3
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= ε32f cos(ωT0 + σT2) + ε22g
(
D0 + εD1

+ ε2D2
)[

εu1(T0 − τ, T2) + ε2u2(T0 − τ, T2)

+ ε3u3(T0 − τ, T2) − ε3τD2u1(T0 − τ, T2)
]

(30)

Spiriting terms of equal power in ε up to the third order
gives

O(ε) : D2
0u1 + ω2u1 = 0 (31)

O
(
ε2) : D2

0u2 + ω2u2 = −2D0D1u1 − αqu2
1 (32)

O
(
ε3) : D2

0u3 + ω2u3

= −2D0D1u2 − 2D0D2u1 − D2
1u1

− 2ζ0D0u1 − 2αqu1u2

− αcu
3
1 + 2f cos(ωT0 + σT2)

+ 2gD0u1(T0 − τ) (33)

The solution of Eq. (31) is written as

u1(T0, T1, T2) = A(T1, T2)e
iωT0 + Ā(T1, T2)e

−iωT0

(34)

Note that |A| is the amplitude of u1. Substituting
Eq. (34) into Eq. (32), we obtain

D2
0u2 + ω2u2

= −2iω
∂A

∂T1
eiωT0 − αq

(
A2e2iωT0 + AĀ

) + cc

(35)

where cc represents the complex conjugate terms.
To eliminate the secular term in Eq. (35), we need

−2iω
∂A

∂T1
= 0 (36)

which indicates that A is the function of T2 only, A =
A(T2).

Thus, Eq. (35) becomes

D2
0u2 + ω2u2 = −αq

(
A2ei2ωT0 + AĀ

) + cc (37)

Solving the differential equation above with respect to
u2 yields

u2(T0, T2) = αqA2

3ω2
ei2ωT0 − αqAĀ

ω2
+ cc (38)

Plugging Eqs. (34) and (38) into Eq. (33) yields

D2
0u3 + ω2u3

= −2iω
∂A

∂T2
eiωT0 − 2ζ0iωAeiωT0 − 2αq

×
(

αqA3

3ω2
ei3ωT0 + αqA2Ā

3ω2
eiωT0

− 2αqA2Ā

ω2
eiωT0

)
− αc

(
A3ei3ωT0 + 3A2ĀeiωT0

)

+ f eiσT2eiωT0 + 2giωAe−iωτ eiωT0 + cc (39)

To eliminate secular terms in Eq. (39), we set

2iω
∂A

∂T2
+ 2ζ0iωA − 10α2

qA2Ā

3ω2

+ 3αcA
2Ā − f eiσT2 − 2giωAe−iωτ = 0 (40)

Writing A in the polar form [37] in terms of amplitude
a and phase β , A ≡ 1

2a(T2)e
iβ(T2), yields

iω
(
a′ + aiβ ′) + ζ0iωa −

(
5α2

q

12ω2
− 3

8
αc

)
a3

− f ei(σT2−β) − giωae−iωτ = 0 (41)

Separating the imaginary and real terms gives

ωa′ + ζ0ωa − f sin(σT2 − β)

− gωa cos(ωτ) = 0 (42)

ωaβ ′ +
(

5α2
q

12ω2
− 3

8
αc

)
a3 + f cos(σT2 − β)

+ gωa sin(ωτ) = 0 (43)

Next, we introduce a new dependent variable ϕ =
σT2 − β in order to transform Eqs. (42) and (43) into
an autonomous system of equations as below

a′ = −ζ0a + f

ω
sinϕ + ga cos(ωτ) (44)

aϕ′ = aσ +
(

5α2
q

12ω3
− 3

8ω
αc

)
a3

+ f

ω
cosϕ + ga sin(ωτ) (45)

Note that a′, ϕ′ are derivatives with respect to T2.
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For steady-state response, a′ = 0, ϕ′ = 0, which
yields the following modulation equations governing
the amplitude a and phase ϕ of the dynamic response:

−ζ0a + f

ω
sinϕ + ga cos(ωτ) = 0 (46)

aσ +
(

5α2
q

12ω3
− 3

8ω
αc

)
a3

+ f

ω
cosϕ + ga sin(ωτ) = 0 (47)

After eliminating variable ϕ, the steady-state fre-
quency response equation can be expressed as

a2
{[

σ + g sin(ωτ) +
(

5α2
q

12ω3
− 3αc

8ω

)
a2

]2

+ [
g cos(ωτ) − g − ζ

]2
}

=
(

f

ω

)2

(48)

For each σ representing the deviation from natural
frequency of the excitation frequency, we can ob-
tain the resonance amplitude a by solving Eq. (48).
There is possibility that a has three nontrivial so-
lutions, corresponding to the softening or hardening
nonlinear behavior. From Eq. (48), we can also no-
tice that g sin(ωτ) accompanies σ , and plays the role
of changing the effective excitation frequency. Simi-
larly, −g + g cos(ωτ) plays the role of changing the
damping ratio, since it accompanies ζ . Accordingly,
an effective damping ratio ζe can be defined as shown
below:

ζe = ζ + g − g cos(ωτ) (49)

Commonly, τ = Tr

2 = π
ω

is considered [10] (Tr is the
period of the response signal), which according to
Eq. (49) gives ζe = |2g + ζ |.

In addition, the solution for u can be expressed as

u = a cos(ωt + β) − αq

2ω2
a2

×
[

1 − 1

3
cos(2ωt + 2β)

]
+ · · ·

= a cos(Ωt − ϕ) − αq

2ω2
a2

×
[

1 − 1

3
cos(2Ωt − 2ϕ)

]
+ · · · (50)

Note that a and ϕ are both constant for steady-state
response.

5 Small vibrations and the effective damping ratio

Next, we present stability analysis based on the de-
rived equations from the perturbation analysis of
Sect. 4. For convenience, we introduce F1(a,ϕ) and
F2(a,ϕ) to be the right-hand side of Eqs. (44) and (45),
respectively. Therefore, Eqs. (44) and (45) are rewrit-
ten as

a′ = F1(a,ϕ) (51)

aϕ′ = F2(a,ϕ) (52)

For periodic solutions, a and phase ϕ need to be con-
stants, (a0, ϕ0). To determine the stability of the pe-
riodic solution, we evaluate the Jacobian matrix of
Eqs. (51) and (52) at (a0, ϕ0) as

J (a0, ϕ0) =
∣∣∣∣∣∣

∂F1
∂a

∣
∣
(a0,ϕ0)

∂F1
∂ϕ

∣
∣
(a0,ϕ0)

1
a0

∂F2
∂a

∣∣
(a0,ϕ0)

1
a0

∂F2
∂ϕ

∣∣
(a0,ϕ0)

∣∣∣∣∣∣
(53)

To obtain the eigenvalues, the determinant is set
equal to zero

∣∣λI − J (a0, ϕ0)
∣∣ = 0 (54)

where λ is the eigenvalue and I is the identity matrix.
Solving Eq. (54) yields

λ2 + Rλ + S = 0 (55)

where

R = 2
[
g − g cos(ωτ) + ζ

]
(56)

S = [
g − g cos(ωτ) + ζ

]2

+
[
σ + g sin(ωτ) +

(
5α2

q

4ω3
− 9αc

8ω

)
a2

0

]

×
[
σ + g sin(ωτ) +

(
5α2

q

12ω3
− 3αc

8ω

)
a2

0

]
(57)

We recall that the coefficient of λ in Eq. (55) is equal
to the negative sum of the roots, as R = −(λ1 + λ2);
and the constant term is equal to the multiplication of
the roots, as S = λ1 × λ2. Therefore, the stability con-
dition requires that the real parts of the roots to be neg-
ative. Thus, the stability conditions are

R = g − g cos(ωτ) + ζ > 0 (58)
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S = [
g − g cos(ωτ) + ζ

]2

+
[
σ + g sin(ωτ) +

(
5α2

q

4ω3
− 9αc

8ω

)
a2

0

]

×
[
σ + g sin(ωτ) +

(
5α2

q

12ω3
− 3αc

8ω

)
a2

0

]
> 0

(59)

These conditions should be satisfied in order to yield
periodic solutions.

Note that the stability condition of Eq. (58) is the
same as requiring positive effective damping for the
system (see Eq. (49)).

When substituting the values of Table 1 into Eq. (59)
we find that αc < 0, α2

q > 0 and terms including a2
0

dominate over σ + g sin(ωτ). Thus, S is actually al-
ways positive. Hence, one concludes that Eq. (58)
determines the system’s stability status alone. For
τ = Tr

2 ≈ π
ω

, Eq. (58) becomes

ζ + 2g > 0 (60)

or ζe > 0. It is worth to note that Eq. (60) is the same
as Eq. (19).

Next, we prove that ζe represents the effective
damping of the system. Toward this, the frequency
responses of two different systems with the same ζe

are shown; one is controlled and the other is uncon-
trolled (Fig. 4). It turns out that they display the same
frequency responses. Note that direct long-time inte-
gration (LTI) of Eq. (1) is shown as discrete points in
Fig. 4, compared to the analytical solution from the
method of multiple scales (MMS). One can see they
have good agreement. Furthermore, if we generate the
time responses at a certain frequency, they appear the
same as well (Fig. 5). One can see in Fig. 5 that the
two resonators, one controlled and the other uncon-
trolled, with the same effective damping ratio under
the excitation frequency 183 Hz yield the same time
responses.

Practically, one can utilize the controller gain g and
time delay τ to control the system damping ratio as
needed. For a specified τ , g relates to ζe linearly. Fig-
ure 6 shows the relation for a system with ζ = 0.0103.

Fig. 4 Frequency response
curves for τ = T/2 and
VAC = 3.8 V.
(a) ζ = ζe = 0.0103, g = 0;
(b) ζ = 0.0027,
ζe = 0.0103, g = 0.0038
(triangles: LTI; solid line:
MMS)

Fig. 5 Time response via
LTI at f = 183 Hz for
(a) G = 0, ζ = ζe = 0.0103
and (b) G = 200 V s/m,
ζ = 0.0027, ζe = 0.0103



The effect of time-delayed feedback controller on an electrically actuated resonator 265

Fig. 6 The effective damping ratio versus the controller gain
for τ = T/2

Fig. 7 A 3-D plot for the effective damping ratio versus the
controller gain g and the time delay ratio τ/T

In Fig. 7, we show a 3-D plot for the variation of ζe

as a function of g and τ . One we can see that the varia-
tion of ζe versus g becomes most significant when the
time delay is half the period (τ/T = 1/2) or odd times
the period (such as τ/T = 1.5).

6 Moderate and relatively large vibrations

In this section, we investigate the effect of the posi-
tive gain on the oscillation response of the capacitive
resonator of Table 1. The focus here is on moderate-
large response, such that the theories of perturbation
and shooting apply. First, we show results for an un-
controlled case with two AC voltage loads. Figure 8
compares the frequency response curve (normalized
response versus frequency) obtained by MMS to that
of LTI of Eq. (1). For the long-time integration, we
use the solution from the previous step as the initial

Fig. 8 Frequency-response curves obtained using LTI and
MMS for G = 0 and VDC = 40.2 V for various values of VAC
in V

Fig. 9 Frequency-response curves obtained using LTI and
MMS for VAC = 3.8 V, VDC = 40.2 V, and τ = T/2. The unit
of G is V s/m

condition to the next frequency step in the frequency
sweeping. As shown, the agreement is good among the
results of the two approaches.

Figure 9 demonstrates the effect of applying a con-
trol gain via both LTI and MMS. It shows that apply-
ing a positive control gain instead of lowering the ex-
citation voltage keeps the bandwidth barely changed,
while reducing the response amplitude. Therefore, one
can use this feature to enlarge the response bandwidth
as shown in Fig. 10. This figure compares the uncon-
trolled response of the resonator to the controlled re-
sponse using higher values of VAC such that both ac-
tuation methods yield the same maximum response
amplitude. Clearly, the controlled response has much
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larger bandwidth. This remarkable result can be of
great advantage in MEMS for sensing and energy-
harvesting applications, where both sharp response
and wide bandwidth are desirable.

Figure 11 shows the positive gain effect on the time
response of the resonator in Fig. 11. The output sig-
nal has much smaller overshoot and needs less settling
time, although rising time increases under the positive
gain controller. From perspective of effective damping
ratio, positive gain increases the damping ratio, since
ζe = ζ + 2g. Thus, ζe is the analytical explanation for
the velocity time-delay feedback controller’s effects
on capacitive resonators.

Next, we investigate the influence of applying a
negative gain on the velocity time-delayed feedback
controller. Figure 12 shows both numerical LTI re-
sults and MMS analytical solution of the frequency
response curves for various negative gains from 0–
50 V s/m. This range is equivalent to g from 0 to

Fig. 10 Frequency-response curves obtained using LTI and
MMS for VDC = 40.2 V, and τ = T/2. The unit of VAC is V
and the unit of G is V s/m

−0.0001, which lies inside the stability regime accord-
ing to Fig. 3. One can see good agreement among all
the results. Generally, for a specified excitation fre-
quency, increasing the amplitude of the negative gain
G causes the displacement x to increase. In addition,
the frequency response curve exhibits nonlinear soft-
ening behavior, (Fig. 12), if the negative gain is large
enough, such as G = −50 V s/m. Therefore, it can
be viewed as an alternative way to generate large re-
sponse signal instead of simply applying larger har-
monic load VAC. From the perspective of damping,
these dynamic performances can also be explained by
recalling that the time-delay feedback controller with
negative gain decreases the effective damping ratio
ζe = ζ + 2g.

Figure 13 shows the response amplitude at a fixed
excitation frequency f = 189.5 Hz while changing the
value of the negative gain. The figure shows changes
of stability occurring approximately within the inter-

Fig. 12 Frequency response curves obtained using LTI and
MMS for various values of negative gain for VAC = 1 V,
VDC = 40.2 V and τ = T/2. The unit is of G is V s/m

Fig. 11 Time responses of
(a) uncontrolled system and
(b) controlled system, both
of which with positive gain
G = 35 V s/m and τ = T/2
(excitation frequency
f = 188.9 Hz, VAC = 5 V,
VDC = 40.2 V)
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val G = −40–70 V s/m. Some of these instabilities
are illustrated in Fig. 14, which shows frequency re-
sponse curves with different values of relatively large
negative gains. Note that when G < −71 V s/m, g <

−1.34 × 10−3, which means that the system is oper-
ated outside the linearized stability boundaries and in-
side the instability regime of Fig. 3.

The curves of Fig. 14 are obtained using MMS, LTI
(when possible), in addition to the shooting technique
to find periodic motions combined with the Floquet
theory [38]. The shooting technique has the capabil-
ity of predicting periodic solutions regardless of initial
conditions, which is especially advantageous for very
weak stability scenarios as in this case. According to
the shooting technique, the upper stable branches lose
stability through a Hopf bifurcation with one or more
Floquet multipliers exiting in the unit circle through
complex numbers.

In Fig. 13, if we consider the case of G =
−20 V s/m, the response curve has a linear shape with

Fig. 13 Gain sweeping response of the MMS solution at
f = 189.5 Hz, VAC = 1 V and VDC = 40.2 V (solid line: sta-
ble; dashed line: unstable)

no hysteresis. Thus, at f = 189.5 Hz, it has one single
value of a stable response. When increasing the gain to
G = −50 V s/m in Fig. 13, the response exhibits soft-
ening behavior with hysteresis. Thus, at f = 189.5 Hz,
the response can be stable of low value, unstable, or
stable at higher value. Increasing the gain further to
G = −80 V s/m (Fig. 14a), according to the perturba-
tion results, the frequency-response curve entirely be-
comes unstable. The results of longtime integration in-
dicate no stable state between 189–191 Hz, which can
be due to not finding the proper initial conditions (due
to the very weak basin of attraction in this case). How-
ever, it is still able to catch periodic solutions where
f is slightly away from natural frequency, shown as
diamonds in the plots. The shooting technique, on
the other hand, does not suffer from such a problem.
Results of the shooting technique in Fig. 14 predict
instabilities for specific frequency bands around the
primary resonance. One should note that these insta-
bilities refer to the loss of stability of the original peri-
odic (period one) solution. The system loses stability
through a Hopf bifurcation, which can be supercriti-
cal resulting into two new stable periodic solutions of
a frequency that is either commensurate with the ex-
citation frequency or incommensurate with it leading
to quasiperiodic motion [39]. These post bifurcation
scenarios require further bifurcation analysis, which is
outside the scope of this work using, for example, the
methods of harmonic balance [39], shooting, or finite
difference techniques.

It is worth to mention that this loss of stability of the
periodic motion is similar in some sense to the bifur-
cation reported in [40] in the case of large excitation of
electrically actuated microbeams in the softening be-
havior case. It was reported there that the system loses

Fig. 14 Frequency
response curves compared
among LTI, MMS and
shooting techniques for the
resonator with negative
controller gains for
VAC = 1 V, VDC = 40.2 V
and τ = T/2
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Fig. 15 Time history
responses of the
uncontrolled system (a) and
the controlled system (b)
with negative gain
G = −50 V s/m (excitation
frequency f = 191 Hz,
VAC = 1 V)

Fig. 16 The
basin-of-attraction of the
resonator when it is
actuated with VDC = 40.2 V
and VAC = 1 V with
τ = T/2 at f = 189.5 Hz
under various values of
negative gain

stability through small cascade of period doubling bi-
furcations, which have very small basins of attractions.
The cascade ends with a crisis and vanishes due to the
collide with the unstable saddle.

Next, we show examples of the time history re-
sponse (Fig. 15), which indicates that with a lower ef-
fective damping ratio ζe , the resonator will have higher
overshoot and larger settling time.

The final analysis of this paper is concerned with
studying the basin of attraction of the solution [35].
The basin-of-attraction results are obtained by inte-
grating the equation of motion, Eq. (1), in time for var-
ious initial conditions using a grid of 500 × 500 initial

velocity and displacement. The effect of delayed feed-
back negative gain on resonator stability is shown in
Fig. 16. Figure 16a shows the basin-of-attraction be-
fore applying the delayed feedback controller, where
it is clear that the resonator is stable and has a big safe
area. After applying the negative delayed controller
gain, the system starts to lose its stability. The safe
area decreases when G = −60 V s/m and decreases
more with G = −70 V s/m. Finally, the safe area al-
most vanishes at G = −80 V s/m and the system be-
comes practically unstable. This fractal behavior is an
outcome of the global bifurcation the system experi-
ences as a result of the collide of the stable periodic
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orbit with the unstable manifold of the saddle, which
results in a multitude of complex dynamical behaviors
and the escape from potential well (dynamic pull-in)
phenomenon [41, 42].

7 Summary and conclusions

This paper presented analytical solution for a single
degree-freedom resonator model actuated by VDC and
VAC with a delay feedback controller. The method of
multiple scales is used to obtain analytical explana-
tions for the effect of the control gain and delay. We
found that positive control gain can enlarge the re-
sponse bandwidth of the resonator. Another attractive
feature in the case of positive gains is achieving the
sharp response of resonators while maintaining large
bandwidth. This could be very attractive for a variety
of sensing and actuation application in MEMS. Neg-
ative control gain can bring the resonator nonlinear
behavior or make it stronger so that the system may
reach an unstable state when the negative gain is large
enough, even though the harmonic load VAC is rela-
tively small (for example, VAC = 1 V, VDC = 40.2 V).
This could lead to attractive applications, such as low-
actuation voltage MEMS switches.

We compared the results of the perturbation method
to the shooting technique and the basin-of-attraction
analysis. The shooting technique performs well in
predicting the global stability for the resonator un-
der negative gain control. The basin-of-attraction in-
dicated that, while shooting predicts stable regime in
the frequency-response curves for large values of neg-
ative gain, the basin-of-attraction of these states are ex-
tremely small and fragile. Interestingly, the frequency-
response curves agreed with the analytical results from
MMS, except that MMS predicts unstable solutions
everywhere. The various methods used in this paper
shed light on the dynamics of delayed-feedback con-
trolled MEMS resonators.
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