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Abstract Considering a good pest control program
should reduce the pest to levels acceptable to the pub-
lic, we investigate the threshold harvesting policy on
pests in two predator–prey models. Both models are
nonsmooth and the aim of this paper is to provide how
threshold harvesting affects the dynamics of the two
systems. When the harvesting threshold is larger than
some positive level, the harvesting does not affect the
ecosystem; when the harvesting threshold is less than
the level, the model has complex dynamics with mul-
tiple coexistence equilibria, limit cycle, bistability, ho-
moclinic orbit, saddle-node bifurcation, transcritical
bifurcation, subcritical and supercritical Hopf bifur-
cation, Bogdanov–Takens bifurcation, and discontinu-
ous Hopf bifurcation. Firstly, we provide the complete
stability analysis and bifurcation analysis for the two
models. Furthermore, some numerical simulations are
given to illustrate our results. Finally, it is found that
harvesting lowers the level of both species for natu-
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ral enemy–pest system while raises the densities of
both species for the pest–crop system. It is seen that
the threshold harvesting policy of the enemy system is
more effective than the crop system.
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Nonsmooth · Bistability · Bogdanov–Takens
bifurcation

1 Introduction

Pest is an important constraint to crop production
worldwide, such as codling moth on apples, or boll
weevil on cotton, and cause serious losses in yield and
quality of cultivated plants. Therefore, farmers have
been evolving a wide range of strategies for combat-
ing the various pests suffered by crops, and growing
understanding of the interactions between the pest and
crops or the pest natural enemy has enabled us to de-
velop a wide array of measures for the control of pests.
Such experiences have led to the development of effec-
tive and economical pest management programs [1–6].
Headley [6] has defined the term economic Threshold
(T ) as measuring the pest population levels at which
pest control strategies should be initiated. More gen-
erally, T is usually interpreted as the number of insect
pests in field when control actions must be taken to
prevent the economic injury level from being reached
and exceeded, where the level is the lowest pest popu-
lation density that will cause economic damage [7–9].
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Harvest management, including caching, the mix-
ture of sugar–acetic acid–ethanol, sticky insect glue,
frequency vibrational lamp, which may trap and kill
many kinds of pest, is a traditional no pollution
method of pest control. Most research has focused at-
tention on the analysis and modeling of biological sys-
tems with harvesting. A classical predator–prey model
with harvest management is as follows:
⎧
⎪⎪⎨

⎪⎪⎩

dx

dt
= rx

(

1 − x

k

)

− βxy

α + x
,

dy

dt
= β1xy

α + x
− dy − H(y),

(1.1)

where x, y denote the density of prey population and
predator population, respectively. The parameter r is
the intrinsic growth rate and k is the environmen-
tal carrying capacity of prey population. The constant
β(> 0) is the maximum uptake rate for prey species,
β1(> 0) denotes the ratio of biomass conversion (sat-
isfying the obvious restriction 0 < β1 < β) and d(> 0)

is the natural death rate of prey species. The term
βxy
α+x

represents the functional response for the eating
of prey by predator and α is the half saturation con-
stant for a Holling type II functional response [10, 11],
which contributes toward the growth of prey species.
H(y) is the harvesting function. Some authors [12–14]
have studied the predator–prey model with nonzero
constant harvesting, H(y) = h, while others [15–17]
have discussed a class of predator–prey models under
constant proportion harvesting function, H(y) = hy.
From these literatures, we note that over exploitation
would result in the extinction of the predator pop-
ulation. However, complete eradication of the pest
species is generally not possible, nor is it biologically
or economically desirable. Therefore, a good pest con-
trol program should reduce the size of the pest popu-
lation to levels acceptable to the public. This implies
that there is an economic threshold T above, which
the financial damage is sufficient to justify using such
harvesting measures [18, 19]. Besides, we also need
to point out that the harvesting starts at t = 0, inde-
pendence of the population size, is not realistic either.
For practical reasons, threshold harvesting policy con-
siders starting harvesting only when a population has
reached threshold T .

In this paper, we consider continuous threshold har-
vesting policy for two predator–prey models. It works
as follows: When a population is above a certain level
or threshold T , harvesting occurs; when the popula-
tion falls below that level, harvesting stops. The policy

was first studied by Collie and Spencer [20], and ad-
ditional analysis has been done since then by [21–24]
and referenced therein. In this regard, threshold har-
vesting policy considers starting harvesting only when
the pest population has reached a certain threshold
level T . Classically, such harvesting function is de-
fined as

H(y) =
{

0, if y ≤ T ,
h(y−T )
c+y−T

, if y > T . (1.2)

In this way, once the pest population passes the size
T , then harvesting starts and increases smoothly to a
limit value h. We believe that this harvesting function
is more sound from the biological viewpoint. Thus, the
threshold harvesting policy is acceptable in economic
terms to people while keeping the pest species which
is harvested from extinction.

In this paper, we shall consider two predator–prey
systems. For the first system, prey (pest) is harvested
while predator (natural enemy )is protected. In prac-
tice, we control the pest population size by harvesting
when the amount of the prey (pest) reaches a thresh-
old. We implement the harvesting threshold T and the
harvesting function (1.2) on the following model:
⎧
⎪⎪⎨

⎪⎪⎩

dx

dt
= rx

(

1 − x

k

)

− βxy

α + x
− H(x),

dy

dt
= β1xy

α + x
− dy,

where H(x) =
{

0 if x ≤ T ,
h(x−T )
c+x−T

, if x > T . (1.3)

In the second system, predator (pest) is harvested
while prey (crop) is protected.

⎧
⎪⎪⎨

⎪⎪⎩

dx

dt
= rx

(

1 − x

k

)

− βxy

α + x
,

dy

dt
= β1xy

α + x
− dy − H(y),

where H(y) =
{

0 if y ≤ T ,
h(y−T )
c+y−T

, if y > T . (1.4)

Here, we observe that the second Eqs. (1.3) and (1.4)
are always negative if β1 < d . So, we assume that β1 −
d > 0.

The aim of this paper is to provide how harvest-
ing threshold affect the dynamics of the ecosystem.
When the harvesting threshold is larger than some pos-
itive level, the harvesting policy does not affect the
ecosystem; when the harvesting threshold is less than
the level, the model has far richer dynamics. We will
show that model (1.4) has at most three equilibria and
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model (1.4) has at most four equilibria in R2+, and
can exhibit numerous kinds of bifurcation phenom-
ena, including the bifurcation of cusp type of codimen-
sion 2 (i.e., Bogdanov–Takens bifurcation), the sub-
critical and supercritical Hopf bifurcations [25, 26]. In
particular, prey and predator species in model cannot
become extinct simultaneously (mutual extinction) for
all values of parameters and initial values, i.e., positive
harvesting rate h can prevent mutual extinction. Prey
and predator species can coexist in a positive equilib-
rium (or a stable limit cycle, or a unstable homoclinic
loop) for some values of parameters and initial values,
respectively. These results reveal far richer dynamics
compared to the model (1.1) with no harvesting.

The organization of this paper is as follows. Firstly,
we give and briefly describe our models. Then we pro-
vide the complete stability analysis both from local
and global point of view, a rigorous bifurcation analy-
sis including discontinuous Hopf bifurcation and some
numerical analysis (in order to illustrate our results)
for the two models in the next two sections, respec-
tively. Lastly, we end the paper with a conclusion in
Sect. 4.

2 Stability analysis

In this section, we give a qualitative analysis of system
(1.3). From the standpoint of biology, we are only in-
terested in the dynamics of model (1.3) in the closed
first quadrant R2+. Thus, we consider the biologically
meaningful initial condition x(0) = x0 > 0, y(0) =
y0 > 0. Regarding the boundedness of the solution for
the model system (1.3), we state the following theo-
rem.

Theorem 2.1 All the solutions of system (1.3) with
the positive initial conditions (x0, y0) are uniformly
bounded.

Proof Since T > 0, it follows that the positive x-axis
and y-axis are both invariant. Let M(t) = x + βy/β1.
Using the relations, derivative of M with respect to
(1.3) takes the form,

dM(t)

dt
= dx

dt
+ β

β1

dy

dt

= rx

(

1 − x

k

)

− βdy

β1
− H(x).

Since 0 ≤ H(x) ≤ h for x ≥ 0, there exists L such that

dM(t)

dt
+ dM ≤ (r + d)x − rx2

k
≤ k(r + d)2

4r
=: L.

The right side of the above inequality is bounded for
all (x, y) ∈ R2+. By using the differential inequality, it
follows that

M(x,y) <
L

d

(
1 − e−dt

) + M
(
x(0), y(0)

)
e−dt ,

thus as t → +∞, 0 < M < L/d . That is, solutions
stay in

B1 =
{

(x, y) ∈ R2+ : 0 ≤ x + βy

β1
≤ L

d

}

. (2.1)

By the definition of M(t), it is known that there exists
a constant M1 > 0 such that x(t) ≤ M1 and y(t) ≤ M1

for t large enough. The proof is completed. �

Next, we discuss steady states of system (1.3).
Since the threshold T > 0, the extinction equilibria
E0(0,0) always exists for any parametric value. For
the purpose of avoiding total population declines to
zero as time goes to infinity, the stability of the ex-
tinction equilibrium is firstly investigated, which is de-
termined by the nature of eigenvalues of the Jacobian
matrix

J =
(

r − 2rx
k

− βαy

(α+x)2 − dH(x)
dx

−βx
α+x

β1αy

(α+x)2
β1x
α+x

− d

)

. (2.2)

Clearly, the eigenvalues are r , −d . The extinction
equilibrium E0 is a saddle point with unstable man-
ifold in x-direction and stable manifold in y-axis.

Theorem 2.2 The extinction equilibrium E0 is saddle
with unstable manifold in x-direction and stable man-
ifold in y-direction.

Remark 2.1 As we know, over exploitation would re-
sult in the extinction of the population. However, since
threshold harvesting policy is starting only when the
prey population reaches the threshold T , the extinc-
tion equilibrium is always unstable. That is at least one
of the two populations persists and is not extinct for
sufficiently large time. So, threshold harvesting policy
should ensure the sustainability of system (1.3).
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Fig. 1 The existence of the free-predator equilibrium

In the following sections, we only discussed the two
cases of boundary equilibrium and coexistence equi-
librium. We now examine the nullclines of the system:

(a)

⎧
⎨

⎩

rx

(

1 − x

k

)

− H(x) = 0,

y = 0,

(b)

⎧
⎪⎪⎨

⎪⎪⎩

x = dα

β1 − d
,

y = r

β

(

1 − x

k

)

(α + x) − H(x)(α + x)

βx
.

(2.3)

By the properties of the function H(x), the system
(1.3) has only one predator-free equilibrium E0(k,0)

when T ≥ k while it is intricate when T < k. Let

f (x) := rx

(

1 − x

k

)

, and

F(x) := f (x) − H(x).

When T < x < k, the predator-free equilibrium (x,0)

satisfies the equation

F(x) = f (x) − H(x)

= rx

(

1 − x

k

)

− h(x − T )

h + x − T

= 0, x > T .

So, there are at most three predator-free equilibria:
E0

1(x1,0), E0
2(x2,0), and E0

3(x3,0) where x1, x2, x3

are larger than T . In fact, we show this case in Fig. 1.
Suppose that x1 > x2 > x3 > T . Derivative of F(x)

with respect to x takes the form

F ′(x) = f ′(x) − H ′(x) = r − 2rx

k
− h2

(h + x − T )2
.

So, we have F ′(x1) < 0, F ′(x2) > 0 and F ′(x3) < 0.
If there are only two predator-free equilibria E0

1(x1,0)

and E0
2(x2,0), then F ′(x1) < 0 and F ′(x2) = 0. If

Fig. 2 The nullclines and equilibria for 0 < T ≤ dα/(β1 − d)

there is only one predator-free equilibrium E0
1(x1,0),

then F ′(x1) < 0.
For the coexistence equilibrium E∗ = (x∗, y∗), it

follows that x∗ = dα/(β1 − d) and y∗ is always nega-
tive if x∗ > k, and the system (1.3) doesn’t exist coex-
istence equilibrium. So, we will consider two cases as
below: dα/(β1 − d) < k and dα/(β1 − d) ≥ k.

2.1 The case dα/(β1 − d) < k

For dα/(β1 − d) < k, system (1.3) has one extinction
equilibrium E0 = (0,0) and one coexistence equilib-
rium E∗ = (x∗, y∗), and has at most three predator-
free equilibria E0

i = (xi,0), i = 1,2,3 or has at least
one predator-free equilibrium E0

1 = (x1,0). Next, we
examine the stability of equilibria for three cases of
the threshold T .

2.1.1 0 < T ≤ dα/(β1 − d)

Some basic facts are given for the case which is simply
showed in Fig. 2.

1. xi satisfies the following equation:

rxi

(

1 − xi

k

)

− h(xi − T )

h + xi − T
= 0,

and T < xi < k. (2.4)

2. x∗ = dα/(β1 − d) and y∗ satisfies

y∗ = r

β

(

1 − x∗

k

)
(
α + x∗) − h(x∗ − T )(α + x∗)

(h + x∗ − T )βx∗
with T < x∗ < x1.

For the boundary equilibria E0
i , the characteristic

equation is
∣
∣
∣
∣
∣

r − 2rxi
k

− h2

(h+xi−T )2 − λ = F ′(xi) − λ
−βxi

α+xi

0 β1xi

α+xi
− d − λ

∣
∣
∣
∣
∣

= 0. (2.5)
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(a) If the system has only one predator-free equilib-
rium E0

1 , then one of the eigenvalues F ′(x1) < 0 and
the other eigenvalues is positive if x1 > dα/(β1 − d).
Thus, E0

1 is saddle with stable manifold in x-axis and
unstable manifold in

y = −(α + x1)

βx1

(
β1x1

α + x1
− d

−
(

r − 2rx1

k
− h2

(h + x1 − T )2

))

(x − x1).

If x1 < dα/(β1 − d), then both the eigenvalues are
negative, hence E0

1 is asymptotically stable (A.S.). In
fact, it is also globally asymptotically stable (G.A.S.).
Otherwise, system (1.3) exists a closed orbit in B1

from Theorem 2.1. Then there must exist an equilib-
rium in the closed orbit. This is impossible, since the
coexistence equilibrium E∗ does not exist (y∗ < 0).
Therefore, system (1.3) does not exist limit cycle. Cer-
tainly, if the coexistence equilibrium E∗ exists, then
the predator-free equilibrium E0

1 is saddle.
For the coexistence equilibrium E∗ = (x∗, y∗)

where x∗ > T , the Jacobian matrix takes the form

J (E∗)

=
(

r − 2rx∗
k

− βαy∗
(α+x∗)2 − h2

(h+x∗−T )2
−βx∗
α+x∗

β1αy∗
(α+x∗)2 0

)

.

Its determinant and trace are respectively

DetJ (E∗) = β1βαy∗x∗

(α + x∗)3
> 0,

TrJ (E∗) = r − 2rx∗

k
− βαy∗

(α + x∗)2
− h2

(h + x∗ − T )2
.

If TrJ (E∗) > 0, then the eigenvalues of J (E∗) have
positive real parts. Hence, E∗ is unstable, and the exis-
tence of the limit cycle is guaranteed by the Poincaré–
Bendixson theorem and Theorem 2.1.

If TrJ (E∗) < 0, then all the eigenvalues of J (E∗)
have negative real parts, hence the equilibrium E∗ is
A.S. Further, if (TrJ (E∗))2 − 4 DetJ (E∗) ≥ 0 then
the equilibrium E∗ is stable node; if (TrJ (E∗))2 −
4 DetJ (E∗) < 0, then the equilibrium E∗ is stable fo-
cal point. Next, we can use the Lyapunov–LaSalle the-
orem to give a sufficient condition under which it is
G.A.S. Consider

V (x, y) = x − x∗ − x ln
x

x∗

+ β(α + x∗)
β1α

(

y − y∗ − y ln
y

y∗

)

.

Its derivative along the solutions of (1.3) is

dV

dt
= (

x − x∗)2
(

βy∗

(α + x)(α + x∗)
− r

k

)

+ (
x − x∗)

(
H(x∗)

x∗ − H(x)

x

)

.

It follows for x ≤ T that

dV

dt
= (

x − x∗)2
(

βy∗

(α + x)(α + x∗)
− r

k

)

≤ (
x − x∗)2

(
βy∗

α(α + x∗)
− r

k

)

.

Clearly, if βy∗/(α2 +αx∗)−r/k < 0 then dV/dt < 0.
Further, if x > T , then

dV

dt
= (

x − x∗)2
(

βy∗

(α + x)(α + x∗)
− r

k

)

− hT (x − x∗)2

xx∗(h + x − T )

+ h(x∗ − T )(x − x∗)2

x∗(h + x∗ − T )(h + x − T )

<
(
x − x∗)2

(
βy∗

α(α + x∗)
+ 1

h + x∗ − T
− r

k

)

.

So, it follows that dV/dt < 0 if βy∗/(α(α + x∗)) +
1/(h + x∗ − T ) − r/k < 0. In summary, the inequal-
ities βy∗/(α(α + x∗)) + 1/(h + x∗ − T ) − r/k < 0,
βy∗/(α(α + x∗)) − r/k < 0 and TrJ (E∗) < 0 are
equivalent to

βy∗

α(α + x∗)
+ 1

h + x∗ − T
<

r

k
. (2.6)

Hence, the Lyapunov–LaSalle theorem implies that all
solutions ultimately approach the equilibrium E∗ if
(2.6) holds.

If TrJ (E∗) = 0, then the Jacobian matrix J (E∗)
has a pair of pure imaginary eigenvalues and the co-
existence equilibrium E∗ is a center-type equilibrium.
Further, we consider k as bifurcation parameter, i.e.,
TrJ (E∗) = 0 when k = k∗. In this case, Hopf bifurca-
tion occurs. In fact, the two pure imaginary eigenval-
ues are

λ = ±β1αβx∗y∗

(α + x∗)3
i, and

d

dk
[TrJ ]k=k∗ = r(α + 2x∗)

(α + x∗)(k∗)2
	= 0.

Hence, all the conditions for Hopf-bifurcations are sat-
isfied. Thus, there exist small amplitude periodic solu-
tions near E∗.
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Fig. 3 The dynamical
properties of (1.3) at the
coexistence equilibrium E∗
when T = x∗

If x∗ = x1, i.e., dα
β1−d

= x1, transcritical bifurcation
appears. When x∗ < x1 and TrJ (E∗) < 0, from the
above analysis we node that the interior equilibrium
E∗ is A.S. Besides, we had shown that E0

1 is a saddle
when x∗ < x1. As x∗ increases, it satisfies (2.6), then
E∗ is G.A.S. If x∗ tends to x1 from the left side, then
E∗ toward to E0

1 , and x1 = x∗ i.e., E∗ collides E0
1 .

Thus, E0
1 is saddle-node, and transcritical bifurcation

appears. Interestingly, all orbits tends to E0
1 because

the unstable manifold direction does not belong to B1.
Also, we can obtain that y′ < 0 in B1 and there are
only two boundary equilibria where E0 is saddle with
unstable manifold in x-direction and stable manifold
in y-direction.

Summarizing the above discussions, we obtain the
following theorem.

Theorem 2.3 If x1 < x∗, the predator-free equilib-

rium E0
1 is saddle with stable manifold in x-direction;

if x1 > x∗, E0
1 is G.A.S.; if x∗ = x1, transcritical

bifurcation appears and all orbits tends to E0
1 . If

TrJ (E∗) < 0, the coexistence equilibrium E∗ is A.S.;
further, if the inequality (2.6) holds E∗ is G.A.S.; if

TrJ (E∗) > 0, E∗ is unstable and system (1.3) has at

least one limit cycle; if TrJ (E∗) = 0, Hopf bifurcation

occurs.

(b) If the system has three predator-free equilib-
ria E0

i , i = 1,2,3, then F ′(x1) < 0, F ′(x2) > 0 and
F ′(x3) < 0.

If x∗ < x3, at least one eigenvalues of J (E0
i ) is al-

ways positive, thus E0
i , i = 1,3 is saddle, E0

2 is an un-
stable node. In addition, since TrJ (E∗) < 0 always
holds, the coexistence equilibrium E∗ is A.S.

If x3 < x∗ < x2, the eigenvalues of J (E0
3) are neg-

ative and system (1.3) has no coexistence equilibrium.
So, it is impossible that system exists a closed orbit in
B1. Hence, the stable node E0

3 is G.A.S., E0
1 is saddles,

E0
2 is unstable node.
If x2 < x∗ < x1, the eigenvalues of J (E0

3) are neg-
ative and one eigenvalues of J (E0

i ), i = 2,3 is posi-
tive, thus the stable node E0

3 is G.A.S., E0
1 is saddles

with the stable manifold in x-direction, E0
2 is saddle

with the unstable manifold in x-direction. In addition,
the stability of E∗ is completely same as in above dis-
cussion of (a).

If x1 < x∗ < k, the coexistence equilibrium does
not exist; the eigenvalues of J (E0

i ) (i = 1,3) are nega-
tive, one eigenvalue of J (E0

2) is positive, and the other
is negative. Thus, E0

i (i = 1,3) are a stable node and
E0

2 is saddle with the stable manifold in x-direction.
Besides, the first quadrant R2+ is divided into two re-
gions by the stable manifold of E0

2 : in the first region,
E0

1 is G.A.S and in the second region E0
3 is G.A.S

(bistability).
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If x∗ = xi (i = 1,2,3), transcritical bifurcation ap-
pears.

(c) If the system have only two predator-free equi-
libria E0

i , i = 1,2, i.e., F ′(x1) < 0 and F ′(x2) = 0,
then saddle-node bifurcation appears. When F ′(x2) >

0, there are three predator-free equilibria E0
2 , E0

3 , and
E0

1 . As the value of F ′(x2) decreases, the equilibrium
E0

3 tends to the equilibrium E0
2 . It is equal to zero, i.e.,

F ′(x2) = 0 implies that E0
3 collides E0

2 . In particular,
system (1.3) has only one predator-free equilibrium
E0

1 for F ′(x) < 0. Therefore, the system undergoes a
saddle-node bifurcation.

Finally, we discuss stability of the coexistence equi-
librium E∗ for the case T = dα/(β1 − d) = x∗. For
convenience, we give the following two systems with
harvesting and without harvesting, respectively,

(a)

⎧
⎪⎨

⎪⎩

dx

dt
= rx(1 − x

k
) − βxy

α + x
,

dy

dt
= β1xy

α + x
− dy,

(b)

⎧
⎪⎨

⎪⎩

dx

dt
= rx(1 − x

k
) − βxy

α + x
− h(x − T )

h + x − T
,

dy

dt
= β1xy

α + x
− dy.

(2.7)

When T = dα/(β1 − d) = x∗, then the coexistence
equilibrium E∗

a of (2.7(a)), is equal to the coexistence
equilibrium E∗

b of (2.7(b)), E∗
a = E∗

b . Accordingly, the
determinant and trace of the Jacobian matrix J (E∗

i )

are Tri and Deti (i = a, b), respectively. Based on the
above analysis, we can obtain

Tra −Trb = h2/
(
h + x∗ − T

)2
> 0,

Deta = Detb > 0.

We summarize the dynamical behavior of system (1.3)
at the coexistence equilibrium E∗ when T = x∗ as fol-
lows, which is shown in Fig. 3.

(1) If Trb > 0, then Tra > 0, E∗
a and E∗

b are unsta-
ble. Furthermore,

(i) if Tr2
b − 4Detb ≥ 0, then both E∗

a and E∗
b are

unstable node; hence, E∗ is unstable node and the ex-
istence of the limit cycle is guaranteed by Poincaré–
Bendixson theorem (see Fig. 3(a)).

(ii) if Tr2
b − 4Detb < 0 and Tr2

a − 4Deta ≥ 0, then
E∗

a is an unstable node and E∗
b is unstable focus;

hence, E∗ is unstable and the existence of the limit cy-
cle is guaranteed by the Poincaré–Bendixson theorem
(see Fig. 3(b)).

(iii) if Tr2
a − 4Deta < 0, then both E∗

a and E∗
b are

unstable focus; in this case, it is intricate, that is, the

stability of E∗ may be stable or unstable or system
(1.3) has periodic solutions (see Fig. 3(c)).

(2) If Trb < 0 and Tra > 0, then E∗
a is unstable and

E∗
b is stable. Furthermore,
(i) if Tr2

b − 4Detb ≥ 0 and Tr2
a − 4Deta ≥ 0, then

E∗
a is an unstable node and E∗

b is a stable node, system
(1.3) has homoclinic loops (see Fig. 3(d)).

(ii) if Tr2
b − 4Detb ≥ 0 and Tr2

a − 4Deta < 0, then
E∗

a is unstable focus and E∗
b is a stable node; hence,

E∗ is unstable and the existence of the limit cycle is
guaranteed by the Poincaré–Bendixson theorem.

(iii) if Tr2
b − 4Detb < 0 and Tr2

a − 4Deta ≥ 0, then
E∗

a is an unstable node and E∗
b is stable focus; hence,

E∗ is stable.
(iv) if Tr2

b − 4Detb < 0 and Tr2
a − 4Deta < 0, then

E∗
a is unstable focus and E∗

b is stable focus. In this
case, it is intricate, that is, the stability of E∗ may be
stable or unstable or system (1.3) has periodic solu-
tions.

(3) If Tra < 0, then E∗
a and E∗

b are stable equilibria.
Furthermore,

(i) if Tr2
a − 4Deta ≥ 0, then both E∗

a and E∗
b are

stable node; hence, E∗ is stable node (see Fig. 3(e)).
(ii) if Tr2

a − 4Deta < 0 and Tr2
b − 4Detb ≥ 0, then

E∗
a is stable focus and E∗

b is stable node, hence, E∗ is
stable (see Fig. 3(f)).

(iii) if Tr2
b − 4Detb < 0, then both E∗

a and E∗
b are

stable focus; in this case, it is intricate, that is, the sta-
bility of E∗ may be stable or unstable or system (1.3)
has periodic solutions.

Furthermore, we assume one of the coexistence
equilibria E∗

a and E∗
b is stable focus and the other is

unstable focus, that is the case of (2.(iv)). Let J−(E∗)
and J+(E∗) denote the left and right Jacobian ma-
trix of system (1.3) at the coexistence equilibrium E∗
when T = x∗, respectively,

J∓(E∗)=
(

r− 2rx
k

− βαy

(α+x)2 −H ′∓(x)
−βx
α+x

β1αy

(α+x)2
β1x
α+x

− d

)

,

(2.8)

where H ′+(x) is the right derivative and H ′−(x) is the
left derivative, and H ′∓(x) denotes H ′+(x) or H ′−(x). It
is obvious that H ′−(x) = H ′+(x) when x∗ 	= T . With-
out loss of generality, the real parts of eigenvalues of
J−(E∗) are all negative and there exists at least one
eigenvalue λ of J+(E∗) such that the real part of λ

is positive. Then there exists a jump from J−(E∗) to
J+(E∗). Therefore, it is difficult to study the stability
of equilibrium E∗ when T = x∗. Here, we introduce
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Fig. 4 The nullclines and equilibria for dα/(β1 − d) < T < k

the generalized Jacobian matrix of Clarke [27–29].
In our case, the generalized Jacobian matrix J at E∗
when T = x∗ is

J := co
{
J−

(
E∗), J+

(
E∗)}

= {
(1 − q)J−

(
E∗) + qJ+

(
E∗) : q ∈ [0,1]}.

Let J (q) = (1 − q)J−(E∗) + qJ+(E∗) and suppose
the characteristic equation of J (q) is as follows:

λ2 + a1(q)λ + a0(q) = 0. (2.9)

When q = 0, the real parts of roots of (2.9) are nega-
tive, and when q = 1 there exists a negative real parts
root and a positive real parts root. Directive computing
shows that a0(q) 	= 0 which implies 0 is not the root of
(2.9). Hence, there is a 0 < q∗ < 1 such that Eq. (2.9)
has a pair of conjugate eigenvalues ±ωi where ω > 0
when q = q∗. Therefore, the discontinuous bifurcation
[28] occurs; this implies there exists an asymptotically
stable limit cycle.

In the following subsections, similarly discussion
will be done for the case T = x∗. So, we shall omit it.

2.1.2 dα/(β1 − d) < T < k

Some basic facts are given for this case which is sim-
ply showed in Fig. 4.

1. xi, i = 1,2,3 satisfies the following equation:

rxi

(

1 − xi

k

)

− h(xi − T )

h + xi − T
= 0, and T < xi < k.

2. y∗ = r
β
(1 − x∗

k
)(α + x∗), and x∗ = dα

β1−d
< T .

(a) If there is only one the predator-free equilib-
rium E0

1 , the stability of which is completely same as
in Sect. 2.1.1; we omit the details.

For the coexistence equilibrium E∗ = (x∗, y∗)
where x∗ > T , the determinant and trace of the Ja-
cobian matrix J (E∗) are respectively

DetJ (E∗) = β1βαy∗x∗

(α + x∗)3
> 0,

TrJ (E∗) = rx∗

k(α + x∗)
(
k − 2x∗ − α

)
.

If k > 2x∗ − α, then the equilibrium E∗ is unstable.
The existence of the limit cycle is guaranteed by the
Poincaré–Bendixson theorem and Theorem 2.1.

If k < 2x∗ + α, then the equilibrium E∗ is A.S. It
is easy to compute that

(TrJ (E∗))2 − 4 DetJ (E∗)

= rx∗

k(α + x∗)2

(
r

k

(
k − 2x∗ − α

)2 − 4β1α
(
k − x∗)

)

.

Further, if (TrJ (E∗))2 − 4 DetJ (E∗) ≥ 0, then the
equilibrium E∗ is a stable node; if (TrJ (E∗))2 −
4 DetJ (E∗) < 0 then the equilibrium E∗ is stable fo-
cal point. Next, we can use the Lyapunov–LaSalle the-
orem to give a sufficient condition under which it is
G.A.S. Consider

V (x, y) = x − x∗ − x ln
x

x∗

+ β(α + x∗)
β1α

(

y − y∗ − y ln
y

y∗

)

.

Its derivative along the solutions of (1.3) is

dV

dt
= r

k

(
x − x∗)2

(
k − x∗

α + x
− 1

)

− (
x − x∗)H(x)

x
.

For the two cases of x ≤ T and x > T > x∗, it follows
that

dV

dt
≤ r(k − x∗ − α)

kα

(
x − x∗)2

.

Since the inequalities k < 2x∗ + α and k < x∗ + α

are equivalent to k < x∗ + α. Hence, the Lyapunov–
LaSalle theorem implies that E∗ is G.A.S. if k <

x∗ + α.
If k = 2x∗ +α, then the Jacobian matrix J (E∗) has

a pair of pure imaginary eigenvalues λ = ±β1αβx∗y∗
(α+x∗)3 i,

and the coexistence equilibrium E∗ is a center-type
equilibrium. Further, we have

d

dk
[TrJ ]k=k∗ = r(α + 2x∗)

(α + x∗)(k∗)2
	= 0.

Hence, Hopf bifurcation occurs, that is, there exist
small amplitude periodic solutions near E∗. We will
summarize the discussions as the following theorem.

Theorem 2.4 The predator-free equilibrium E0
1 is

saddle with stable manifold in x-direction. If k <
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Fig. 5 The nullclines and equilibria for dα/(β1 − d) < k ≤ T

2x∗ + α, the coexistence equilibrium E∗ is A.S; fur-
ther, if k < x∗ + α, E∗ is G.A.S. If k > 2x∗ + α, E∗ is
unstable and system (1.3) has at least one limit cycle.
If TrJ (E∗) = 0, Hopf bifurcation occurs.

(b) If the system has three predator-free equilib-
ria E0

i , i = 1,2,3, then F ′(x1) < 0, F ′(x2) > 0, and
F ′(x3) < 0. It follows from x∗ < x3 that one eigenval-
ues of J (E0

i ) is always positive, thus E0
i , i = 1,3 is

saddle, E0
2 is unstable node. In addition, the stability

of E∗ is completely same as the above discussion, we
omit the details.

(c) If the system has only two predator-free equilib-
ria E0

i , i = 1,2, i.e., F ′(x1) < 0 and F ′(x2) = 0, then
saddle-node bifurcation appears. When F ′(x2) > 0,
there are three predator-free equilibria E0

1 , E0
2 , and

E0
3 . As the value of F ′(x1) decreases, the equilibrium

E0
3 tends to the equilibrium E0

2 , and it is equal to zero,
i.e., F ′(x2) = 0 implies that E0

1 collides E0
2 . In par-

ticular, system (1.3) has only one equilibrium E0
1 for

F ′(x2) < 0. Therefore, the system undergoes a saddle-
node bifurcation.

2.1.3 dα/(β1 − d) < k ≤ T

Some basic facts are given for this case, which are sim-
ply shown in Fig. 5.

1. There is only one predator-free equilibrium
E0(k,0).

2. y∗ = r
β
(1 − x∗

k
)(α + x∗), and x∗ = dα

β1−d
< k.

By Theorem 2.1, we proved that any solution of
system (1.3) starting outside B1 either enters into B1

at some finite time, say t0 > 0, and then it remains in
its interior B1 for all t > t0 or tends to the boundary

equilibrium E0 ∈ ∂Ω . According to the theory of a
classical predator–prey system
⎧
⎪⎪⎨

⎪⎪⎩

dx

dt
= rx(1 − x

k
) − βxy

α + x
,

dZ

dt
= β1xy

α + x
− dy,

(2.10)

we arrive at the following result.

Theorem 2.5 The two boundary equilibria E0, E0 are
saddles. If k < 2x∗ + α, the coexistence equilibrium
E∗ is G.A.S. If k > 2x∗ +α, E∗ is unstable and system
(1.3) has at least one limit cycle. If k = 2x∗ + α, Hopf
bifurcation occurs.

A detailed analysis in this direction can be found
in [30]. If k > 2x∗ + α, the coexistence equilibrium
E∗ is unstable and system has at least one limit cycle.
Indeed, one can show that this limit cycle is unique
and G.A.S.

Theorem 2.6 For x 	= dα/(β1 − d), system (1.3) has
a unique globally asymptotically stable limit cycle on
the positive quadrant if k > 2x∗ + α.

Proof Let g(x) = r(1 − x/k), p(x) = βx/(α + x),
q(x) = β1x/(α + x). Then

d

dx

(
xg′(x) + g(x) − xg(x)

p′(x)
p(x)

−d + q(x)

)

= d

dx

(− 2rx2

k
+ rx(1 − α

k
)

(β1 − d)x − dα

)

≤ 0

⇐⇒ 2r(β1 − d)

k
x2 − 4rdα

k
x + rdα

(

1 − α

k

)

≥ 0

⇐⇒ 2dα

k
− (β1 − d)

(

1 − α

k

)

≤ 0

⇐⇒ k ≥ 2dα

β1 − d
+ α

⇐⇒ k ≥ 2x∗ + α.

Using a uniqueness theorem in [31], we conclude that
there is a unique G.A.S limit cycle if k ≥ 2x∗ + α. �

2.2 The case k ≤ dα/(β1 − d)

For k ≤ dα/(β1 − d), system (1.3) has no coexis-
tence equilibrium E∗, has one extinction equilibrium
E0(0,0), and has at least one predator-free equilibrium
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E0
1(x1,0) or has at most three predator-free equilibria

E0
i (xi,0); i = 1,2,3.

2.2.1 k ≤ T

When k ≤ T , basic facts in this case are as follows:
1. The extinction equilibrium E0 is saddle with un-

stable manifold in the x-direction and stable manifold
in the y-direction.

2. There is no coexistence equilibrium E∗, one
predator-free equilibrium E0

1 .
If k < dα/(β1 − d), the predator-free equilibrium

E0
1 is G.A.S. Since the eigenvalues of J (E0

1) are both
negative, the system has no coexistence equilibrium
in B1. Again, if k = dα/(β1 − d), transcritical bi-
furcation appears. If dα/(β1 − d) < k < (β1 + d)α/

(β1 − d), E∗ is G.A.S and E0
1 is saddle, the unstable

manifold of E0
1 directs inward B1. Thus, there exists a

heteroclinic orbit connecting E∗ and E0
1 .

Theorem 2.7 The extinction equilibrium E0 is saddle.
If k < dα/(β1 − d), the predator-free equilibrium E0

1
is G.A.S; if k = dα/(β1 − d), E0

1 is a saddle-node and
transcritical bifurcation appears.

2.2.2 T < k ≤ dα/(β1 − d)

When T < k, basic facts in this case are as follows:
1. There is no coexistence equilibrium. For the

predator-free equilibrium E0
i (xi,0), we have rxi(1 −

xi

k
) − h(xi−T )

h+xi−T
= 0, and T < xi < k, xi < dα

β1−d
.

3. The extinction equilibrium E0 is saddle with un-
stable manifold in x-direction and stable manifold in
y-direction.

As mentioned before, the eigenvalues of J (E0
i ) are

λ1 = r − 2rxi

k
− h2

(h + xi − T )2

= F ′(xi) and λ2 = β1xi

α + xi

− d.

In this case xi < dα/(β1 − d), then λ2 < 0.
(a) If there is only one predator-free equilibrium

E0
1 , then F ′(x1) < 0, i.e., λ1 < 0. Thus, E0

1 is G.A.S.
Since there is no coexistence equilibrium E∗ in B1 and
E0 is saddle.

(b) If there is three predator-free equilibria E0
i , i =

1,2,3, then F ′(x1) < 0, F ′(x2) > 0 and F ′(x3) < 0.
Hence, E0

i (i = 1,3) is a A.S node and E0
2 is saddle.

In this case, the first quadrant R2+ is divided into two

regions by the stable manifold of E0
2 : in the first re-

gion E0
1 is G.A.S and in the second region E0

3 is G.A.S
(bistability).

(c) If there is two predator-free equilibria E0
i , i =

1,2, then F ′(x1) < 0 and F ′(x2) = 0, hence E0
1 is a

G.A.S node and system (1.3) exhibits saddle-node bi-
furcations. Let s = r − 2rx2/k + √

r − 2rx2/k with
x2 < k/2, and h∗ = ks(x2 − T )/(k + 2rx2 − kr). It
is easy to compute that F ′(x2) = 0 is equivalent to
h = h∗. If h = h∗, then λ1 = 0. On the other hand,
one can write λ2 = β1x2/(α + x2) − d , so that λ2 	= 0
(so long as x2 	= dα/(β1 − d)). We shift the equilib-
rium (h∗, x2,0) to the origin: ξ = h − h∗, u = x − x2,
v = y, and the new system can be written as

u̇ = r
(
u + x2

)
(

1 − u + x2

k

)

− βv(u + x2)

α + u + x2
− (ξ + h∗)(u + x2 − T )

ξ + h∗ + u + x2 − T

=: F1(ξ, u, v),

v̇ = β1v(u + x2)

α + u + x2
− dv =: F2(ξ, u, v) − dv.

(2.11)

Then we have

∂F1

∂ξ
= − (u + x2 − T )2

(ξ + h∗ + u + x2 − T )2
,

∂2F1

∂u2
= −2r

k
+ 2βαv

(α + u + x2)3

+ 2(ξ + h∗)2

(ξ + h∗ + u + x2 − T )3
,

∂F1

∂ξ
(0,0,0) = − (x2 − T )2

(h∗ + x2 − T )2
,

∂2F1

∂u2
(0,0,0) = −2r

k
+ 2(h∗)2

(h∗ + x2 − T )3
.

To make sure ∂2F1/∂u2 (0,0,0) 	= 0, we need to re-
quire that h∗2 	= r(h∗ + x2 − T )3/k, which is true if
3r(x2 − T )/k > 1. Then we can conclude that there
exists a saddle-node bifurcation [34] if h = h∗, x2 <

k/2 and 3r(x2 −T )/k > 1. In fact, the system has only
one predator-free equilibrium E0

1 for h > h∗, there is
two equilibria E0

1 and E0
2 for h = h∗, and there are

three equilibria E0
1 , E0

2 and E0
3 for h < h∗.

Theorem 2.8 The system (1.3) exhibits saddle-node
bifurcations if h = h∗ with k/3r + T < x2 < k/2.

We continue to discuss the case T < dα/(β1 − d).
From above discussion, we know that if there are three
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predator-free equilibria, then F ′(x1) < 0, F ′(x2) > 0
and F ′(x3) < 0. Besides, if xi < dα/(β1 − d) (i =
1,2,3) then E0

i (i = 1,3) are A.S and E0
2 is saddle.

In this case, the first quadrant R2+ is divided into two
regions by the stable manifold of E0

1 : in the first region
limit cycle is G.A.S. and in the second region E0

3 is
G.A.S. (bistability).

Further, observe that J (E0
i ) has one zero eigen-

value precisely when xi = dα/(β1 − d) and J (E0
i ) =( a11 a12

0 0

)
, where a12 	= 0 and a11 	= 0 as long as

F ′(xi) 	= 0. The eigenvalue λ = 0 of J (E0
i ) has an

eigenvector vT = (1 − a11
a12

), and a left eigenvector

wT = (0 1). If we write the right-hand side of system
(1.3) as f (x, y), then one gets wT fd(x,0) = 0 and

wT Dfd(x4,0)v = a11

a12
	= 0,

wT D2f (x, 0)(v, v) = 2a11β1

a12(α + x)2
	= 0.

Therefore, by Sotomayor’s theorem, one concludes
that under the conditions established above, system
(1.3) experiences a transcritical bifurcation. Thus, un-
der some condition relating xi to h and T , we have
an explicit value of the predator death rate d which is
such that xi = dα/(β1 − d). When such bifurcation
happens, and an exchange of stability between equi-
libria is possible.

Theorem 2.9 The system (1.3) exhibits transcritical
bifurcations if xi = dα/(β1 − d).

2.3 Numerical results

Our focus so far has been on the dynamics of the sys-
tem (1.3). To facilitate the interpretation of our math-
ematical results in model (1.3), we proceed to in-
vestigate the complex case of system (1.3) has three
predator-free equilibria by numerical simulations.

Let r = 0.6, k = 10, β = 1.2, α = 1, h = 2, T =
0.1, β = 0.9. In this case, we consider x∗ = dα/

(β1 − d) as bifurcation parameter. In fact, x∗ is an in-
creasing function of d , which has the range: 0–0.9. It
is easy to verify that there is three predator-free equi-
libria E0

3(0.273,0), E0
2(2.146,0), E0

1(5.688,0). The
extinction equilibrium E0 is saddle.

(1) If d = 0.1, then x∗ = 0.125 and T < x∗ < x3.
Thus, the coexistence equilibrium E∗ is G.A.S., the
predator-free equilibria: E0

i (i = 1,3) are saddle and

Fig. 6 (a) Let d = 0.1. E∗ is G.A.S, E0
i (i = 1,3) are saddle

and E0
2 is unstable node, and there exist heteroclinic orbit con-

necting E∗ and E0
i (i = 1,2,3). (b) When d = 0.3, E∗ does not

exist, E0
3 is G.A.S., E0

2 is an unstable node and E0
3 is saddle, and

there exist heteroclinic orbit connecting E0
3 and E0

i (i = 1,2)

E0
2 is unstable node, and there exist heteroclinic orbit

connecting E∗ and E0
i (i = 1,2,3), which is shown in

Fig. 6(a).
(2) As d increase and d = 0.3, it follows that x∗ =

0.5 and x3 < x∗ < x2, hence there is no E∗, and E0
3

is G.A.S., E0
2 is unstable node and E0

1 is saddle and
there exist heteroclinic orbit connecting E0

3 and E0
i

(i = 1,2), which is shown in Fig. 6(b).
(3) When d = 0.7, then x∗ = 3.5 and x2 < x∗ < x1

and TrJ (E∗) > 0. Thus, E∗ is unstable node, E0
3 is

G.A.S., E0
i (i = 2,3) are saddle, and there exist two

heteroclinic orbit connecting E∗ and E0
2 , E0

3 and E0
1 ,

which is shown in Fig. 7(a).
(4) When d = 0.715, then x∗ = 3.86 and x2 < x∗ <

x1 and TrJ (E∗) > 0. Thus, E∗ is unstable focus, E0
3 is
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Fig. 7 (a) When d = 0.7, E∗ is unstable node, E0
1 and E0

2 are
saddle, E0

3 is G.A.S, and there exist two heteroclinic orbit con-
necting E∗ and E0

2 , E0
3 and E0

1 . (b) When d = 0.715, E∗ is
unstable focus and E0

1 and E0
2 are saddle. Thus, R2+ is divided

into two regions by unstable manifold of E0
2 , which ultimately

approach the stable limit cycle: in the first region limit cycle is
G.A.S. and in the second region E0

3 is G.A.S. (bistability)

A.S., E0
i , (i = 1,2) are saddle. Thus, the first quadrant

R2+ is divided into two regions by the stable manifold
of E0

2 : in the first region limit cycle is G.A.S. and in
the second region E0

3 is G.A.S (bistability), which is
shown in Fig. 7(b).

(5) Further increase d = 0.72 will lead to the limit
cycle is broken. It is easily to verify that x∗ = 4 and
x2 < x∗ < x1 and TrJ (E∗) < 0. The equilibria E0

1
and E0

2 are saddle. Thus, R2+ is divided into two re-
gions by the stable manifold of E0

2 : in the first region
E∗ is G.A.S. and in the second region E0

3 is G.A.S.,
which is shown in Fig. 8(a) (bistability).

(6) If d = 0.78, then x∗ = 6.5 and x1 < x∗ < k,
hence there is E∗, and the equilibrium E0

2 is saddle.

Fig. 8 (a) When d = 0.72, the limit cycle is broken, E0
1 and E0

2
are saddle. Thus, R2+ is divided into two regions by the unstable
manifold of E0

2 : in the first region E∗ is G.A.S. and in the second
region E0

3 is G.A.S (bistability). (b) When d = 0.78, E∗ does
not exist and E0

2 is saddle. Thus, R2+ is divided into two regions
by the unstable manifold of E0

2 : in the first region E0
1 is G.A.S.

and in the second region E0
3 is G.A.S (bistability)

Thus, the first quadrant R2+ is divided into two regions
by the stable manifold of E0

2 : in the first region E0
1 is

G.A.S. and in the second region E0
3 is G.A.S., which

is shown in Fig. 8(b) (bistability).
We made the following observations.
(1) When the harvesting threshold is larger than the

carrying capacity of the prey, T > k, the harvesting
does not affect the ecosystem, that is, it is not nec-
essary to control the prey, which cannot be viewed
as the pest. By Theorem 2.1, all solutions of system
(1.3) ultimately approach the region B1 in which the
dynamics of system (1.3) is equivalent to the classical
predator–prey system (2.10). From the biological view
point, the natural enemy has enough food for predation
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even if the prey is harvested, which is in line with re-
ality.

(2) When the harvesting threshold for the pest
is below the carrying capacity, T < k, the presence
of threshold harvesting makes the dynamic behavior
more complex with multiple equilibria, limit cycle,
heteroclinic orbit, bistability, saddle-node bifurcation,
transcritical bifurcation and Hopf bifurcation, which is
shown in Figs. 5, 6, 7.

(3) Besides, when the harvesting threshold is be-
low the carrying capacity, T < k, the system has
one predator-free equilibrium E0(k,0) in the absence
of harvesting; the system has predator-free equilibria
E0(x,0) in the presence of harvesting, and x < k.
Consequently, the harvesting decrease the density of
pest species. Further, when the harvesting threshold

dα
β1−d

< T < k, the asymptotic state of a solution can
either be the coexistence equilibrium or a limit cycle
around the equilibrium, which implies the equilibrium
level is always below the threshold, that is the aim of
the control is attained.

(4) Since harvesting starts only the prey population
is above the threshold T , it is easily to compute

dy∗

dh
= − (x∗ − T )2(α + x∗)

(h + x∗ − T )2βx∗ < 0.

The continuous threshold harvesting decrease the den-
sity of predator species and this is happen due to the
loss of food for predator species. Thus, harvesting also
has impact on the natural enemy species.

(5) It is observed that the system has the bistability.
So, the asymptotic state of a solution of the system
can either be an equilibrium or a limit cycle which
is shown in example 4. So, the extinction or survival
of the predator (natural enemy) is possible depending
on the initial size of the both species populations. In
the example presented in this article, the coexistence
equilibrium E∗ and the predator-free equilibrium E0

3
are G.A.S in example 5, predator-free equilibria E0

3
and E0

1 are G.A.S in example 6. The consequence of
global stability is that exploitation will not irreversibly
change the system. As long as the predator are not
made extinct by excessive exploitation of their food
supply, the system is able to recover. Once harvesting
is stopped, the system will asymptotically approach its
equilibrium level.

3 Stability analysis of system (1.4)

In this section, we give a qualitative analysis of system
(1.4). Using the same approach of Theorem 2.1, the
positivity and boundedness of the solution of system
(1.4) are stated as follows. Positivity implies that the
system persists, i.e., the populations survive. Bound-
edness may be interpreted as a natural restriction to
growth as a consequence of limited resources.

Theorem 3.1 All solutions of system (1.4) with the
positive initial conditions (x0, y0) are uniformly bound-
ed in B2, which is positively invariant, where

B2 =
{

(x, y) ∈ R2+ : 0 ≤ x + βy

β1
≤ L

d

}

. (3.1)

Next, we discuss steady states for (1.4). Since
threshold T > 0, the extinction equilibrium E0(0,0)

and prey-free equilibrium E0(k,0) always exist for
any parametric value. For the coexistence equilibrium
E∗(x∗, y∗), it follows that

y = r

β

(

1 − x

k

)

(α + x),

x = α(H(y) + dy)

(β1 − d)y − H(y)
.

(3.2)

From the first Eq. (3.2), the coexistence equilibrium
E∗ exists only when x∗ < k. In the absence of harvest-
ing, H(y) = 0, system (1.4) has only one coexistence
equilibrium E∗ = ( dα

β1−d
, y∗) where

y∗ = rβ1α[kβ1 − d(k + α)]
βk(β1 − d)2

:= T0 if
dα

β1 − d
< k.

(3.3)

Since the threshold harvesting policy starts only when
the size of pest population is above the threshold T ,
we will consider two cases in the next sections: 0 <

T < T0 and 0 < T0 ≤ T .
Assume 0 < T < T0. Then there is no coexistence

equilibrium E∗ when y < T . Note that β1x
α+x

is a in-
creasing function with respect to x. When y > T ,
if the coexistence equilibrium E∗ = (x∗, y∗) exists
then dα/(β1 − d) < x∗ < k and y∗ > T . Substitut-
ing y = r

β
(1 − x

k
)(α + x) into the expression x, i.e.,

the second Eq. (3.2), then x∗ is a root of the following
quartic equation:
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p(x) := β1 − d

β2k2
x4 − 2k(β1 − d) − α(β1 − 2d)

β2k2
x3

+
(

(c − T )(β1 − d) − h

rβk

+ 2kα(2d − β1) − α2d

β2k2
+ β1 − d

β2

)

x2

+
(

(β1 − 2d)kα + 2α2d

β2k

+ h(α − k) + (c − T )(k(β1 − d) + dα)

βrk

)

x

+ hT

r2
− α(h + dc − dT )

rβ
− dα2

β2
= 0, (3.4)

where (β1 − d)/(β2k2) > 0. By T < y∗, it is easy to
verify that

p
(
dα/(β1 − d)

) = −h(T0 − T ) < 0. (3.5)

In such case, the equation p(x) = 0 at most has three
positive roots in interval (dα/(β1 −d), k). That is, sys-
tem (1.4) have at most three coexistence equilibria. In
fact, we show this case in Fig. 9(a). Denote the three
coexistence equilibria by E∗

1 (x∗
1 , y∗

1 ), E∗
2 (x∗

2 , y∗
2 ) and

E∗
3 (x∗

3 , y∗
3 ) and suppose that x∗

1 > x∗
2 > x∗

3 . Let the
right side of system (1.4) be

f1(x, y) = rx

(

1 − x

k

)

− βxy

α + x
and

f2(x, y) = β1xy

α + x
− dy − H(x).

(3.6)

By the formula for the implicit function derivation,
the slopes of x-nullcline and y-nullcline are −f1x

f1y
and

−f2x

f2y
. Thus, if there is one E∗ such that

f1x

f1y

∣
∣
∣
∣
E∗

= −f2x

f2y

∣
∣
∣
∣
E∗

, (3.7)

then system (1.4) have two coexistence equilibria, E∗
1

and E∗
2 or E∗

3 and E∗
2 . If there is one E∗ such that

−f1x

f1y

∣
∣
∣
∣
E∗

< −f2x

f2y

∣
∣
∣
∣
E∗

, (3.8)

then system (1.4) have three equilibria, E∗
1 , E∗

2 , and
E∗

3 . Under other conditions, there is only one equilib-
rium.

Assume 0 < T0 ≤ T , it follows from (3.4) that
p(dα/(β1 − d)) = −h(T0 − T ) ≥ 0. So, there is at
most four coexistence equilibria. There is only one co-
existence equilibrium E∗(x∗, y∗) when y ≤ T , which
is given by

Fig. 9 The nullclines and equilibria

E∗ =
(

dα

β1 − d
,
rβ1α[kβ1 − d(k + α)]

βk(β1 − d)2

)

if
dα

β1 − d
< k.

For the case y > T , based on the above analysis, the
coexistence equilibrium E∗ will be unique, provided
that (3.7) holds for every such E∗, since if there are
more than one E∗, the equality (3.7) must not hold
for alternate equilibria; system (1.4) have two coexis-
tence equilibria E∗

1 and E∗
2 , provided that there is only

one equilibrium such that (3.8) holds and (3.7) does
not hold; system (1.4) have three coexistence equilib-
ria E∗

1 , E∗
2 , and E∗

3 , provided that there are one equi-
librium such that (3.7) and (3.8) holds, respectively;
system (1.4) have four coexistence equilibria E∗

1 , E∗
2 ,

E∗
3 , and E∗

4 , provided that there are two equilibria such
that (3.7) holds; there is no equilibrium under other
conditions, which is shown in Fig. 9(b).
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3.1 The case 0 < T < T0

When 0 < T < T0, basic facts in this case are as fol-
lows.

1. The extinction equilibrium E0(0, 0) and pest-
free equilibrium E0(k, 0) exist.

2. When y < T , there is no coexistence equilib-
rium; when y > T , there is at least one coexistence
equilibrium E∗

1 = (x∗
1 , y∗

1 ) or is at most three coex-
istence equilibria E∗

i = (x∗
i , y∗

i ), i = 1,2,3 where
dα

β1−d
< x∗

i < k.

3.1.1 Stability analysis

Let us now consider the stability of the system (1.4)
governing the extinction equilibrium E0(0,0), the
pest-free equilibrium E0(k,0) and the coexistence
equilibrium E∗(x∗

i , y∗
i ), i = 1,2,3. The stability of

the equilibrium E(x, y) is determined by the nature
of eigenvalues of the Jacobian matrix

J (E) =
(

r − 2rx
k

− βαy

(α+x)2
−βx
α+x

β1αy

(α+x)2
β1x
α+x

− d − dH(y)
dy

)

=
(

f1x f1y

f2x f2y

)

.

For the extinction equilibrium E0, we can get the
same results for system (1.3) as Theorem 2.2 and Re-
mark 2.1.

Theorem 3.2 The extinction equilibrium E0 is saddle
with unstable manifold in x-direction and stable man-
ifold in y-direction.

Remark 3.1 Threshold harvesting should ensure the
sustainability of system.

For the pest-free equilibrium E0, the eigenvalues
are −r and β1k

α+k
− d . So, if k > dα

β1−d
, it is saddle with

stable manifold in x-axis and unstable manifold direc-
tion in y = −β1k+(r−d)(α+k)

βk
(x − k).

If k < dα
β1−d

, the pest-free equilibrium is stable. In
fact, the pest-free equilibrium is G.A.S. In this case,
the coexistence equilibrium E∗ does not exist. It is im-
possible that system (1.4) exists a closed orbit in B2.
Again, if the coexistence equilibrium E∗ exists, then
the pest-free equilibrium E0 is saddle.

For the coexistence equilibrium E∗(x∗, y∗) where
y∗ > T , the Jacobian matrix takes the form

J (E∗) =
(

a11
−βx∗
α+x∗

β1αy∗
(α+x∗)2 a22

)

,

a11 = rx∗(k − α − 2x∗)
k(α + x∗)

= x∗
(

βy∗

(α + x∗)2
− r

k

)

,

a22 = h(y∗ − T )2 − hT c

y∗(c + y∗ − T )2
.

Its determinant and trace are respectively

DetJ
(
E∗) = a11a22 + β1βαy∗x∗

(α + x∗)3
:= D,

TrJ
(
E∗) = a11 + a22 := Tr.

If D < 0, one of the eigenvalues has positive real parts
and the other one has negative real parts. Hence, E∗
is an unstable saddle, and the existence of the limit
cycle is guaranteed by Poincaré–Bendixson theorem
and Theorem 3.1.

If D > 0, Tr > 0, then eigenvalues of J (E∗) have
positive real parts. Hence, E∗ is an unstable node, and
the existence of limit cycle is also guaranteed.

If D > 0, Tr < 0, then all eigenvalues of J (E∗)
have negative real parts, hence E∗ is stable. Further, if
(TrJ (E∗))2 −4 DetJ (E∗) ≥ 0 then E∗ is stable node;
if (TrJ (E∗))2 − 4 DetJ (E∗) < 0 then E∗ is stable fo-
cal point. Next, we can use the Lyapunov–LaSalle the-
orem to give a sufficient condition under which it is
G.A.S. Consider

V (x, y) = x − x∗ − x ln
x

x∗

+ β(α + x∗)
β1α

(

y − y∗ − y ln
y

y∗

)

.

Its derivative along the solutions of (1.4) is

dV

dt
= βy∗(x − x∗)2

(α + x)(α + x∗)
− r(x − x∗)2

k

+ β(α + x∗)(y − y∗)
β1α

(
H(y∗)

y∗ − H(y)

y

)

.

It follows for y ≤ T that

dV

dt
= βy∗(x − x∗)2

(α + x)(α + x∗)
− r(x − x∗)2

k

≤ (
x − x∗)2

(
βy∗

α(α + x∗)
− r

k

)

.

Clearly, if βy∗
α(α+x∗) − r

k
< 0 then dV

dt
< 0. Further, if

y > T , then

dV

dt
<

(
x − x∗)2

(
βy∗

(α + x)(α + x∗)
− r

k

)

+ βh(α + x∗)(y − y∗)2

β1α(c + y − T )

y∗ − T − c

y∗(c + y∗ − T )
.
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So, if T < y∗ < T + c then dV
dt

< 0. In summary,
dV
dt

< 0 always holds if

βy∗

α(α + x∗)
− r

k
< 0 and T < y∗ < T + c. (3.9)

Hence, the Lyapunov–LaSalle theorem implies that all
solutions ultimately approach the coexistence equilib-
rium E∗ if (3.9) holds.

If k = dα
β1−d

, transcritical bifurcation appears. When

k > dα
β1−d

, D > 0 and Tr < 0, the coexistence equilib-

rium E∗ is stable. Besides, we had shown that E0 is
saddle when k > dα

β1−d
. In this case, as k decreases

when it is below some level such that the inequality
(3.9) holds, then E∗ is G.A.S. When k = dα

β1−d
, then

E∗ collides E0. Thus, E0 is saddle-node, and tran-
scritical bifurcation appears. Interestingly, all orbits
will eventually tend to E0, since dy

dt
< 0 always holds

in B2 and E0 is saddle with unstable manifold in x-
direction and stable manifold in y-direction.

Summarizing the above discussion, we obtain the
following theorem.

Theorem 3.3 If k > dα
β1−d

, the pest-free equilibrium

E0 is saddle with stable manifold in x-direction and
unstable manifold in y = −β1k+(r−d)(α+k)

βk
(x − k); if

k < dα
β1−d

, E0 is G.A.S; if k = dα
β1−d

, transcritical bi-
furcation appears and all orbits will eventually tend to
E0. Assume that D > 0 and Tr < 0, the coexistence
equilibrium E∗ is stable; furthermore, if the inequal-
ity (3.9) holds, E∗ is G.A.S; if D < 0, E∗ is saddle; if
D > 0 and Tr > 0, E∗ is an unstable node, and there
is at least one limit cycle near E∗.

3.1.2 Bifurcations analysis

From above discussion, system (1.4) has a degener-
ate positive equilibrium when Tr = 0 and D = 0 hold.
By a standard arguments of bifurcation theorem, we
conclude that some bifurcation may occur for system
(1.4). It is interesting that what kinds of bifurcation
system (1.4) can undergo when the original parame-
ters of system vary. Firstly, we will discuss the Hopf
bifurcation.

Assume that D > 0 and Tr < 0, the coexistence
equilibrium E∗ is stable; if D > 0 and Tr > 0, E∗
is an unstable node. The existence of Hopf bifurca-
tion can be guaranteed. In other words, there are pa-
rameter values so that E∗ satisfies TrJ (E∗) = 0. If

Tr = 0 and D > 0, then the Jacobian matrix J (E∗)
has a pair of pure imaginary eigenvalues. In fact, the
two pure imaginary eigenvalues are λ = ±√

Di and
Re(λ) = Tr/2. Also, we have

d

dTr

[
Re(λ)

]

Tr=0 = 1

2
	= 0. (3.10)

Hence, the conditions for Hopf-bifurcations are sat-
isfied. Thus, there exist small amplitude periodic solu-
tions near E∗.

Note that in parameter space (r, k,β,α,β1, d,h,

T , c), there is a surface

H = {
(r, k,β,α,β1, d,h,T , c) : D > 0,Tr = 0

}

such that the coexistence equilibrium E∗ is a center.
Next, we discuss conditions under which E∗ is center-
type and the system undergo a Hopf bifurcation, and
to determine the direction of such bifurcation we ex-
plicitly the corresponding Lyapunov number [32]. We
first shift E∗(x∗, y∗) to the origin using a change of
coordinates given by u = x − x∗ and v = y − y∗, then
we obtain the corresponding power series expansions,
and noticing that some of the coefficients vanish, we
get

u̇ = a10u + a01v + a20u
2 + a11uv + a30u

3

+ a21u
2v + O1

(∣
∣(u, v)

∣
∣4)

,

v̇ = b10u + b01v + b20u
2 + b11uv + b02v2r

+ b30u
3 + b21u

2v + b03v
3 + O2

(∣
∣(u, v)

∣
∣4)

.

(3.11)

Here, Oi(|(u, v)|4), i = 1,2 is the same order infinity,
and

a10 = r − 2rx∗

k
− βαy∗

(α + x∗)2
, a01 = −βx∗

α + x∗ ,

a20 = 2βαy∗

(α + x∗)3
− 2r

k
, a11 = −βα

(α + x∗)2
,

a30 = −6βαy∗

(α + x∗)4
, a21 = 2βα

(α + x∗)3
,

b10 = β1αy∗

(α + x∗)2
,

b01 = β1x
∗

α + x∗ − d − hc

(c + y∗ − T )2
,

b20 = −2β1αy∗

(α + x∗)3
, b11 = β1α

(α + x∗)2
,

b02 = 2hc

(c + y∗ − T )3
, b30 = 6β1αy∗

(α + x∗)4
,

b21 = −2β1α

(α + x∗)3
, b03 = −6hc

(c + y∗ − T )4
.

(3.12)



Dynamics in two nonsmooth predator–prey models with threshold harvesting 123

It is clear that a10b01 − a01b10 = D > 0, a10 + b01 =
0 because all parameters belongs to H . Since a01 =
−βx∗
α+x∗ , using the formula of the first Lyapunov number
at the origin of (3.11) in [32], which is

σ = −3πR

2a01D3/2
= 3(α + x∗)πR

2βx∗D3/2
,

where x∗ satisfies Eq. (3.4) and

R = a10b10
(
a2

11 + a11b02 − 2b2
02

)

+ a10a01
(
b2

11 + a20b11 + a11b02

− 2a2
20 + 2b20b02

) − a2
01b20(2a20 + b11)

+ a01(b10 − 2a01)(b11b02 − a11a20)

− a01(a01 + b10)
(
3b10b03 − a01(3a30 + b21)

+ 2a10a21
)
. (3.13)

Therefore, the sign of σ is determined by R. If
R 	= 0, then the origin of (3.11) is a weak focus
of multiplicity one, it is stable if R < 0 and unsta-
ble if R > 0. Thus, system (1.4) experiments sub-
critical (σ > 0) and supercritical (σ < 0) Hopf bi-
furcations. With the aid of numerical calculation,
we can find that the sign of σ is not determined.
For instance, r = 1, k = 1, β = 0.12, α = 0.59, β1 =
0.41, d = 0.1, h = 0.1, c = 0.1, T = 0.1, for which we
have σ = −49.83 < 0. If r = 1, k = 1, β = 0.47, α =
1.56, β1 = 0.78, d = 0.2, h = 0.15, c = 0.15, T = 0.1,
it is easy to compute σ = 51.676 > 0. Therefore, in
the surface H there exists a curve

l = {
(r, k,β,α,β1, d,h,T , c) : R = 0, D > 0, Tr = 0

}

such that σ = 0 where σ is a continuous function
of all parameters. When all parameters is at the curve
l, the origin of (3.11) is a weak focus of multiplicity
at least two or a center. Hence, the surface of H is
divided into two parts Hsup and Hsub by the curve l.
That is,

Hsup = {
(r, k,β,α,β1, d,h,T , c) : σ < 0, D > 0, Tr = 0

}
,

Hsub = {
(r, k,β,α,β1, d,h,T , c) : σ > 0, D > 0, Tr = 0

}
.

The surface Hsup is the supercritical Hopf-bifurcation
surface and the surface Hsub is the subcritical Hopf-
bifurcation surface of system (1.4). Summarizing the
above discussion, we have the following theorem.

Theorem 3.4 When TrJ (E∗) = 0, the system (1.4)
exhibits subcritical if σ > 0 and supercritical Hopf bi-
furcations if σ < 0.

Notice that D = f1xf2y − f1yf2x at E∗, system
has only two coexistence equilibria when there are pa-
rameters so that E∗ satisfies D = 0; system has three

coexistence equilibria when D > 0; system has only
one coexistence equilibrium under other conditions.
Thus, if system has only two coexistence equilibria
E∗

i , i = 1,2 i.e., the case of D = 0 at E∗
2 , then saddle-

node bifurcation appears. Then there exists a surface
in parameter space

SN = {
(r, k,β,α,β1, d,h,T , c) : D = 0, Tr 	= 0

}
,

such that for all parameters on the surface SN , sys-
tem (1.4) has only two equilibria E∗

1 and E∗
2 , E∗

2 is a
saddle-node. When the parameters pass from one side
of the surface to the other side, the number of equilib-
ria changes from two to three. This implies that system
(1.4) undergoes a saddle-node bifurcation of codimen-
sion 1. The surface SN is called a saddle-node bifurca-
tion surface. In this case, we consider h as bifurcation
parameter, and D = 0 when h = h∗.

The Jacobian of (1.4) at E∗
2 is given in Sect. 3.1.1.

The eigenvalues are λ1,2 = Tr±
√

Tr2−4D
2 . When the

parameters belongs to SN , one can readily see that
λ1 = 0 and λ2 = Tr 	= 0. We shift the equilibrium
(h∗, x∗

2 , y∗
2 ) to the origin: ξ = h − h∗, u = x − x∗

2 ,
v = y − y∗

2 , and the new system can be given

u̇ = r
(
u + x∗

2

)
(

1 − u + x∗
2

k

)

− β(v + y∗
2 )(u + x∗

2 )

α + u + x∗
2

=: F1(ξ, u, v),

v̇ = β1(v + y∗
2 )(u + x∗

2 )

α + u + x∗
2

− d
(
v + y∗

2

)

− (ξ + h∗)(v + y∗
2 − T )

c + v + y∗
2 − T

=: F2(ξ, u, v).

(3.14)

Then, we have

∂F2

∂ξ
= − v + y∗

2 − T

c + v + y∗
2 − T

,

∂2F2

∂v2
= 2(ξ + h∗)c

(c + v + y∗
2 − T )3

,

∂F2

∂ξ
(0,0,0) = − y∗

2 − T

c + y∗
2 − T

,

∂2F2

∂v2
(0,0,0) = 2ch∗

(c + y∗
2 − T )3

.

It is east to verify that ∂2F2
∂v2 (0,0,0) 	= 0. Then we

can conclude that there exists [34] a saddle-node bi-
furcation when h = h∗ > 0. In particular, this means
that the system has one coexistence equilibria E∗

1 for
h > h∗, there is exactly two equilibria E∗

1 and E∗
2 for
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h = h∗, and there are three equilibria E∗
1 , E∗

2 and E∗
3

for h < h∗.

Theorem 3.5 The system (1.4) exhibits saddle-node
bifurcations if h = h∗.

From Theorem 3.5, saddle-node bifurcation ap-
pears when D = 0. That is, there are three coexistence
equilibria E∗

1 , E∗
2 and E∗

3 when D > 0. As the value
of D decrease, the equilibrium E∗

3 tends to the equilib-
rium E∗

2 , when it is equal to zero, i.e., D = 0, E∗
3 col-

lides E∗
2 . Thus, the root x∗

2 is a double root of equation
(3.4) for D = 0.

Next, we discuss the case of D = 0 and Tr = 0 at
E∗

2 . In such case, both eigenvalues of the Jacobian ma-
trix at E∗

2 are zero. The Jacobian matrix is not zero
matrix since x∗

2 > 0. Thus, system (3.14) can be trans-
formed to

u̇ = v + P1(u, v),

v̇ = Q1(u, v),
(3.15)

where P1(u, v) and Q1(u, v) are smooth functions
with at least the second order with respect to (u, v).
Because x∗

2 is a double root of Eq. (3.4), it follows that
Q1(u,0) = k2u

2 + Q(u), where k2 is a nonzero con-
stant depending on parameter (r, k,β,α,β1, d,h,T , c)

and Q(u) is a smooth function with at least the third
order with respect to u. By a series of nonsingular
transformations in [33], system (3.15) becomes

u̇ = v,

v̇ = k2u
2
(
1 + h(u)

) + k3u
mv

(
1 + g(u)

)

+ v2Q2(u, v),

(3.16)

where h(u), g(u) and Q2(u, v) are smooth func-
tions in all variables, h(0) = g(0) = Q2(0,0) = 0,
k2 and k3 are constants depending on parameters (r ,
k,β,α,β1, d, , h,T , c) and k2 	= 0, m ≥ 1 is an integer
and. From ([33], Theorem 7.3, Chap. 2), the equilib-
rium (0,0) of system (3.16) is a cusp. This implies
equilibrium (x∗

2 , y∗
2 ) of system (1.4) is a cusp.

There are parameter values so that E∗ satisfies
D = 0 and Tr = 0, i.e., there exists a curve C =
{(r, k,β,α,β1, d,h,T , c) : D = 0, Tr = 0} such that
there are only two equilibria E∗

1 and E∗
2 , and E∗

2 is a
cusp for all parameters on the curve C.

Next we only transform system (1.4) to the canoni-
cal normal form of cusp of codimension two as in [34].
Let u = x − x∗

2 and v = y − y∗
2 , and expand system

(1.4) in a power series around the origin, then system
(1.4) becomes

u̇ = a10u + a01v + a20u
2 + a11uv

+ O1
(∣
∣(u, v)

∣
∣3)

,

v̇ = b10u + b01v + b20u
2 + b11uv + b02v

2

+ O2
(∣
∣(u, v)

∣
∣3)

,

(3.17)

where Oi(|(u, v)|3), i = 1,2 is the same order infin-
ity, a10, a01, a20, a11, b10, b01, b20, b11, b02 see (3.12).
Make the affine transformation u1 = u, v1 = a10u +
a01v, then system (3.17) becomes

u̇1 = v1 +
(

a20 − a10a11

a01

)

u2
1

+ a11

a01
u1v1 + O3

(∣
∣(u1, v1)

∣
∣3)

,

v̇1 = (a01b10 − a10b01)u1 + (a10 + b01)v1

+
(

a10a20 − a10b11 + a01b20

− a10a
2
11

a01
+ a2

10b02

a2
01

)

u2
1

+
(

a10a11

a01
+ b11 − 2a10b02

a2
01

)

u1v1

+ b02

a2
01

v2
1 + O4

(∣
∣(u1, v1)

∣
∣3)

.

(3.18)

Here, Oi(|(u1, v1)|3), i = 3,4 is the same order infin-
ity. Make further some the C∞ changes of variables in
a small neighborhood of (0,0)

u2 = u1 − a11

2a01
u2

1,

v2 = v1 +
(

a20 − a10a11

a01

)

u2
1,

u3 = u2, v3 = v2 + O5
(∣
∣(u2, v2)

∣
∣3)

,

then

u̇3 = v3,

v̇3 = (a01b10 − a10b01)u3 + (a10 + b01)v3

+ η1u
2
3 + η2u3v3

+ b02

a2
01

v2
3 + O5

(∣
∣(u3, v3)

∣
∣3)

,

(3.19)

where O5(|(u2, v2)|3) is the same order infinity and

η1 = a11b10

2
− a10b11 + a01b20 − a20b01
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+ a2
10b02

a2
01

+ a10a11b01

2a01
,

η2 = 2a20 − a10a11

a01
+ b11 − 2a10b02

a2
01

.

Since D = a10b01 − a01b10 = 0 and Tr = a10 + b01 =
0, this leads that the origin of (3.19) is a cusp of codi-
mension 2 if η1η2 	= 0. Hence, we present the E∗

2 is a
cusp of codimension two.

Theorem 3.6 If D = 0, Tr = 0 and η1η2 	= 0, sys-
tem (1.4) has two coexistence equilibria E∗

i (x∗
i , y∗

i )

i = 1,2, and E∗
2 is a cusp of codimension two.

In the following, we will find the versal unfolding
of E∗

2 (x∗
2 , y∗

2 ) depending on the original parameters of
system (1.4), where d and h can be chosen as bifur-
cation parameters, Bogdanov–Takens bifurcation will
occur.

Let d = d∗ − κ1, h = h∗ − κ2, where parameters
d = d∗ and h = h∗ satisfies Tr = 0 and D = 0 respec-
tively, and κ1 and κ2 are very small parameters. Con-
sider the following system:
dx

dt
= rx

(

1 − x

k

)

− βxy

α + x
,

dy

dt
= β1xy

α + x
− (

d∗ − κ1
)
y

− (h∗ − κ2)(y − T )

c + y − T
.

(3.20)

When κ1 = κ2 = 0, system (3.20) has only two posi-
tive equilibrium E∗

1 , E∗
2 , and E∗

2 is a cusp of codimen-
sion 2.

Next, we reduce system (3.20) to the normal form
in successive steps. These steps are reminiscent of
those performed in the proof of Theorem 3.6. For sim-
plicity, we omit the laborious steps and write down the
normal form directly:

u̇3 = v3,

v̇3 = a01κ1y
∗
2 + a01κ2(y

∗
2 − T )

(c + y∗
2 − T )

− (a10u3 − v3)

(

κ1 + κ2c

(c + y∗
2 − T )2

)

+ (a10 + b01)v3 + (a01b10 − a10b01)u3 (3.21)

+ η3u
2
3 + η4u3v3

+ b02(c + y∗
2 − T )2 − κ2c

a2
01(c + y∗

2 − T )2
v2

3

+ G1(u3) + v3G2(u3)

+ v2
3G3(u3, v3),

where

η3 = η1 + a10a11 − 2a01a20

2a01

(

κ1 + κ2c

(c + y∗
2 − T )2

)

− a2
10κ2c

a2
01(c + y∗

2 − T )2
,

η4 = η2 + 2a10κ2c

a2
01(c + y∗

2 − T )2
.

In addition, G1(u3) is power series in u3 of powers
ui

3 satisfying i ≥ 3, G2(u3) is power series in u3 of
powers ui

3 satisfying i ≥ 2, G3(u3, v3) is power se-

ries in (u3, v3) of powers ui
3v

j

3 satisfying i + j ≥ 1,
and G1(u3), G2(u3), G3(u3, v3) are all functions de-
pending on κ1, κ2. When D = 0, Tr = 0, 0 < |κ1| � 1,
0 < |κ2| � 1 and η1η2 	= 0, it follows that η3η4 	= 0.
Applying the Malgrange preparation theorem, we have

a01κ1y
∗
2 + a01κ2(y

∗
2 − T )

(c + y∗
2 − T )

− a10u3

(

κ1 + κ2c

(c + y∗
2 − T )2

)

+ η3u
2
3 + G1(u3)

=
(

u2
3 − u3

a10(κ1(c + y∗
2 − T )2 + κ2c)

η3(c + y∗
2 − T )2

+ a01κ1y
∗
2

η3
+ a01κ2(y

∗
2 − T )

η3(c + y∗
2 − T )

)

Q(u3, κ1, κ2),

where Q(u3, κ1, κ2) is a power series in u3 and
Q(0, κ1, κ2) = η3. For simplicity of computation, in-
troducing the new time by

τ =
∫ t

0

√
Q(u3(s), κ1, κ2)ds and

z1 = u3, z2 = v3√
Q(u3(s), κ1, κ2)

,

and further make the affine transformation

z3 = z1 − a10(κ1(c + y∗
2 − T )2 + κ2c)

2η3(c + y∗
2 − T )2

,

z4 = z2,

then system (3.21) becomes

ż3 = z4,

ż4 = μ1(κ1, κ2) + z2
3 + μ2(κ1, κ2)z4

+
(

ξ2(κ1, κ2) + η4√
η3

)

z3z4

+ z2
4

a2
01Q1

(

b02 − κ2c

(c + y∗
2 − T )2

+ ξ3(κ1, κ2)

)

+ R2(z3, z4, κ1, κ2),

(3.22)
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where ξi(0, κ2) = 0, i = 1,2,3,
∂ξj (0,κ2)

∂κ1
= 0, j =

1,3 and R2(z3, z4,0,0) is a power series in (z3, z4)

of powers zi
3z

j

4 satisfying i + j ≥ 3 and j ≥ 2, and

μ1(κ1, κ2) = a01κ1y
∗
2

η3
+ a01κ2(y

∗
2 − T )

η3(c + y∗
2 − T )

+ 1

4

(
a10(κ1(c + y∗

2 − T )2 + κ2c)

η3(c + y∗
2 − T )2

)2

,

μ2(κ1, κ2) = 1

a2
01Q1

(

κ1 + a10κ1

2
√

η3

+ κ2c

(c + y∗
2 − T )2

+ ξ1(κ1, κ2)

)

,

Q1 =
√

Q

(
a10(κ1(c + y∗

2 − T )2 + κ2c)

2η3(c + y∗
2 − T )2

, κ1, κ2

)

.

(3.23)

Computing the Jacobian of (3.23) shows that the above
parameter transformation from (κ1, κ2) to (μ1,μ2) is
not singular in a small neighborhood of (κ1, κ2) =
(0,0). Then system (3.22) can be rewritten as

ż3 = z4,

ż4 = μ1 + μ2z4 + z2
3 + η4√

η3
z3z4

+
(

b02 − κ2c

(c + y∗
2 − T )2

)
z2

4

a2
01Q1

.

By the theorem of Bogdanov and Takens in [34], we
obtain the following theorem.

Theorem 3.7 When 0 < |h − h∗| � 1, 0 < |d −
d∗| � 1 and η1η2 	= 0, system (1.4) undergoes the
cusp bifurcation of codimension 2 (i.e., the B–T bi-
furcation). Hence, there exists values of the param-
eters (r, k,β,α,β1, d,h,T , c) such that system (1.4)
has a unique stable limit cycle for some parameter
values, and system (1.4) has a stable homoclinic loop
for other parameter values.

3.2 The case 0 < T0 ≤ T

When 0 < T0 ≤ T , basic facts in this case are as fol-
lows.

1. The extinction equilibrium E0(0, 0) and pest-
free equilibrium E0(k, 0) exist.

2. When y > T , there is at most four coexis-
tence equilibria or there is no coexistence equilibrium;
when y ≤ T , there is only one coexistence equilibrium
E∗

1 (x∗
1 , y∗

1 ) where x∗
1 = dα

β1−d
and y∗

1 = T0.
Firstly, for the case y > T , the discussion is com-

pletely same as in above section, we omit the details.

When y < T , according to the theory of a classical
predator–prey system

dx

dt
= rx

(

1 − x

k

)

− βxy

α + x
,

dZ

dt
= β1xy

α + x
− dy,

(3.24)

we obtain the following theorem.

Theorem 3.8 The extinction equilibrium E0 is saddle.
If k < dα

β1−d
, then the pest-free equilibrium E0 is sad-

dle; if k > dα
β1−d

, E0 is G.A.S; if k = dα
β1−d

, transcrit-
ical bifurcation appears and all orbits will eventually
tend to E0. If k < α + 2x∗, the coexistence equilib-
rium E∗ is stable; further, if k < α + x∗, E∗ is G.A.S;
if k > α + 2x∗, E∗ is unstable and system has at least
one limit cycle; if k = α + 2x∗, Hopf bifurcation oc-
curs.

Finally, we show the stability of the coexistence
equilibrium E∗ for the case x∗ = dα

β1−d
and T = y∗ =

T0. For convenience, we discuss the following two sys-
tems with harvesting and without harvesting, respec-
tively,

(a)

⎧
⎪⎪⎨

⎪⎪⎩

dx

dt
= rx

(

1 − x

k

)

− βxy

α + x
,

dy

dt
= β1xy

α + x
− dy,

(b)

⎧
⎪⎪⎨

⎪⎪⎩

dx

dt
= rx

(

1 − x

k

)

− βxy

α + x
,

dy

dt
= β1xy

α + x
− dy − h(y − T )

c + y − T
.

(3.25)

When T = T0, then the coexistence equilibrium E∗
a of

(3.25(a)) is equal to the coexistence equilibrium E∗
b of

(3.25(b)), E∗
a = E∗

b . Accordingly, the determinant and
trace of the Jacobian matrix J (E∗

i ) are Tri and Deti
(i = a, b), respectively. Based on the above analysis,
we can obtain

Tra − Trb = hc

(c + y∗ − T )2
> 0,

Deta = Detb + hcTra
(c + y∗ − T )2

> 0.

We summarize the dynamics of system (1.4) at the
coexistence equilibrium E∗ when T = y∗ as follows,
which is shown in Fig. 10.

Assume Detb = f1xf2y − f1yf2x > 0.
(1) If Trb > 0, then Tra > 0, E∗

a and E∗
b are unsta-

ble. Furthermore,
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Fig. 10 The dynamics of
system (1.4) at the
coexistence equilibrium E∗
when T = y∗
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(i) if Tr2
a − 4Deta ≥ 0, both E∗

a and E∗
b are unstable

node; hence, E∗ is unstable node and the existence of
limit cycle is guaranteed by the Poincaré–Bendixson
theorem (see Fig. 10(a)).

(ii) if Tr2
a − 4Deta < 0 and Tr2

b − 4Detb ≥ 0, E∗
a is

unstable focus and E∗
b is an unstable node; hence, E∗

is unstable and the existence of the limit cycle is also
guaranteed (see Fig. 10(b)).

(iii) if Tr2
b − 4Detb < 0, both E∗

a and E∗
b are unsta-

ble focus; in this case, it is intricate, the stability of E∗
may be stable or unstable or system (1.4) has periodic
solutions (see Fig. 10(c)).

(2) If Trb < 0 and Tra > 0, then E∗
a is unstable and

E∗
b is stable. Furthermore,
(i) if Tr2

b − 4Detb ≥ 0, then E∗
a is unstable node

and E∗
b is stable node; in this case, system (1.4) has

homoclinic loops (see Fig. 10(d)).
(ii) if Tr2

b − 4Detb < 0 and Tr2
a − 4Deta ≥ 0, then

E∗
a is an unstable node and E∗

b is stable focus; hence,
E∗ is unstable.

(iii) if Tr2
b − 4Detb < 0 and Tr2

a − 4Deta < 0, then
E∗

a is unstable focus and E∗
b is stable focus. In this

case, it is intricate, the stability of E∗ may be stable or
unstable or system (1.4) has periodic solutions.

(3) If Tra < 0, then E∗
a and E∗

b are stable equilibria.
Furthermore,

(i) if Tr2
a − 4Deta ≥ 0 and Tr2

b − 4Detb ≥ 0, then
both E∗

a and E∗
b are stable node; hence, E∗ is a stable

node (see Fig. 10(e)).
(ii) if Tr2

a − 4Deta ≥ 0 and Tr2
b − 4Detb < 0, then

E∗
a is a stable node and E∗

b is stable focus, hence, E∗
is stable (see Fig. 10(f)).

(iii) if Tr2
a − 4Deta < 0 and Tr2

b − 4Detb ≥ 0, then
E∗

a is stable focus and E∗
b is stable node, hence, E∗ is

stable.
(iv) if Tr2

a − 4Deta < 0 and Tr2
b − 4Detb < 0, then

both E∗
a and E∗

b are stable focus; in this case, it is in-
tricate, the stability of E∗ may be stable or unstable or
system (1.4) has periodic solutions.

Assume Detb = f1xf2y − f1yf2x < 0, then Tra >

0, hence E∗
b is a saddle and E∗

a is an unstable focus
(see Fig. 10(g)) or node (see Fig. 10(h)).

Furthermore, for the case of (3(iii)), the discontin-
uous Hopf bifurcation of (1.4) at T = y∗ occurs, this
implies there exists an asymptotically stable limit cy-
cle as required (using the same approach as system
(1.3) at T = x∗ in Sect. 2.2.1).

To facilitate the interpretation of our mathematical
results, we summarize the dynamics of system (1.4)

at the coexistence equilibrium E∗ in Table 1 (without
loss of generality, we only give the results of the case
0 < T < T0).

3.3 Numerical results

Our focus so far has been on the dynamics of system
(1.4). To facilitate the interpretation of our mathemat-
ical results in model (1.4), we proceed to investigate
it by numerical simulations. Since system (1.4) cannot
be solved explicitly, it is difficult to study them analyt-
ically.

Let r = 2.7, k = 8.5, β = 1.2, α = 1, β1 = 1, d =
0.64, c = 1, T = 1. In this case, we consider h as bifur-
cation parameter. It easy to compute that T0 = 4.943.
Therefore, there is at most three coexistence equilib-
ria caused by continuous threshold harvesting when
T < T0. The two boundary equilibria E0, E0 are un-
stable saddles.

If h = 0.97, system (1.4) has only one coexistence
equilibrium E∗

3 , which is unstable, hence there ex-
ists a unique G.A.S. cycle (see Fig. 11(a)). As soon
as h = 0.9755, there is two coexistence equilibria
E∗

i , i = 2,3: E∗
3 is unstable, E∗

2 is saddle-node and
there exists homoclinic orbit which lies in the intersec-
tion of the stable manifold and the unstable manifold
of the equilibrium E∗

2 (see Fig. 11(b)). As the harvest-
ing rate increases when h = 1.005, there is three coex-
istence equilibria E∗

i (i = 1,2,3): E∗
3 is unstable, E∗

2
is saddle and E∗

1 is stable. System exists homoclinic
orbit which joins the saddle to itself (see Fig. 12(a)).
In this case, Figs. 3(b) and 4(a) show the system (1.4)
exhibits saddle-node bifurcations. When the harvest-
ing rate becomes slightly larger, i.e., h = 1.1, the ho-
moclinic orbit is broken and there is a stable limit cy-
cle near equilibrium E∗

3 . Besides, the equilibrium E∗
2

is saddle and E∗
1 is stable (see Fig. 12(b)). If the har-

vesting rate is equal to the level, h = 1.26, the limit
cycle is broken and reach the stable equilibrium E∗

3 .
The equilibrium E∗

2 is saddle and E∗
1 is stable (see

Fig. 13(a)). If h = 1.32815, the equilibrium E∗
3 col-

lides E∗
2 , and E∗

2 is saddle-node (see Fig. 13(b)). From
Figs. 12(a)–13(b), the stable equilibrium E∗

3 becomes
unstable, which implies that Hopf bifurcation occurs.
Further increasing the harvesting rate h = 1.4 will lead
to the saddle-node bifurcations. Besides, the equilib-
rium E∗

1 is G.A.S (see Fig. 14). Thus, our numeri-
cal simulations shows that system (1.4) undergoes the
B–T bifurcation.
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As we know, if the coexistence equilibrium E∗
2 is

saddle, then the first quadrant R2+ is divided into two
regions by the stable manifold of E∗

2 . The results can
be applied in the context of biological pest control. In
the example of Figs. 12(b) and 13(a), if the aim is to
lower the size of pest population in a finite time then
we require the state of the ecosystem in the second re-
gion by harvesting strategy. If the objective is to main-
tain the state at this point (biological conservation),
then we require the state of the ecosystem in the first
region by harvesting strategy.

From above discussions, there is an important
threshold X0 := dα/(β1 − d) which is the equilib-
rium level of the components x in the absence har-
vesting. We now give some biological explanations of
our threshold harvesting policy using the threshold X0.
When the threshold is above the environmental carry-
ing capacity of the prey, X0 ≥ k, the system (1.4) has
no coexistence equilibrium and the pest-free equilib-
rium E0(k, 0) is G.A.S; this implies the pest species
will eventually extinct. However, complete eradication
of the pest species is generally not possible, nor is it
biologically or economically desirable. Therefore, it is
necessary to consider the coexistence case, which is
in line with reality. When the threshold X0 is in the
interval ((k − α)/2, k), the unique coexistence equi-
librium is G.A.S. whether there is harvesting or not;
this implies the harvesting policy does not affect the
ecosystem. From the biological view point, there is
enough food for predation of the pest. As long as the
pest are not made extinct by harvesting policy, the sys-
tem is able to recover. Once harvesting is stopped, the
system will asymptotically approach its natural equi-
librium. Here, our control policy for the pest stop only
when the population is above the threshold T . Conse-
quently, the project of control pest cannot be reached.
In this case, we need to take into account others inte-
grated control strategies including available host resis-
tance, chemical, and biological control measures such
as pesticides or introducing natural enemy (this can be

further discussed by state-dependent impulsive differ-
ential equation). When the threshold X0 is below the
level (k − α)/2, the presence of continuous threshold
harvesting makes the dynamic behavior more complex
with multiple coexistence equilibria (see Fig. 9), limit

Fig. 11 (a) The unique coexistence equilibrium E∗
3 is unstable

and the stable limit cycle occur. (b) There are two coexistence
equilibria: one is an unstable focus and the other one is sad-
dle-node. Hence, there exists a homoclinic orbit, which lies in
the intersection of the stable manifold and unstable manifold of
the equilibrium E∗

2

Table 1 Conditions and
dynamic behavior for
system (1.4) at E∗

T < T0 D > 0,Tr > 0 D > 0,Tr < 0 D > 0,Tr < 0, (2.9)

E∗ Unstable node Stable G.A.S

D < 0 Tr = 0 D = 0,Tr 	= 0 D = 0,Tr = 0, η1η2 	= 0

E∗ Saddle Hopf Saddle-node Bogdanov–Takens

T = T0 The conclusion See above (1)–(3) and Fig. 10
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Fig. 12 (a) There are three coexistence equilibria: E∗
3 is unsta-

ble, E∗
2 is saddle, and E∗

1 is stable. The homoclinic orbit which
joins the saddle to itself occur. (b) The homoclinic orbit is bro-
ken and system has stable limit cycle near E∗

3 . In addition, the
equilibrium E∗

2 is saddle and E∗
1 is stable

cycle, homoclinic orbit, saddle-node bifurcation, tran-
scritical bifurcation, subcritical and supercritical Hopf
bifurcation, and Bogdanov–Takens bifurcation, which
is shown in Figs. 11, 12, 13, 14, and discontinuous
Hopf bifurcation (see Fig. 10). In such cases, the equi-
librium x∗ is always above the threshold X0 and the
equilibrium y∗ is always above the threshold T0; the
results imply harvesting for a pest raises the level of
both species. This happens due to the harvesting of
the pest lowers the level of the pest raises the level of
prey, in turn, the increase of the prey make the pests
have enough food for predation and raise the level
of the pests. Thus, harvesting has impact on the to-
tal populations. In conclusion, in comparison with the
predator–prey model without harvesting, the thresh-

Fig. 13 (a) The limit cycle is broken and reach stable equilib-
rium E∗

3 , the equilibrium E∗
2 is saddle, and E∗

1 is stable. (b) The
equilibrium E∗

2 is a cusp of codimension 2, and E∗
1 is G.A.S

old harvesting makes the dynamics more complex and
raises the equilibrium level of both species.

4 Discussion

In this paper, we have studied two Holling type II
predator–prey models with continuous threshold har-
vesting, which represents situations when the harvest-
ing policy needs to be applied only when the harvest
population is above the threshold T . The two models
are nonsmooth and the aim of this paper is to provide
how the harvesting threshold affects the dynamics of
both models. When the harvesting threshold is larger
than some positive level, the harvesting policy does
not affect the ecosystem; when the harvesting thresh-
old is less than the level, the model has complex dy-
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Fig. 14 When h = 1.4, the unique coexistence equilibrium is
G.A.S

namics with multiple coexistence equilibria, limit cy-
cle, bistability, homoclinic orbit, saddle-node bifurca-
tion, transcritical bifurcation, subcritical and supercrit-
ical Hopf bifurcation, Bogdanov–Takens bifurcation,
and discontinuous Hopf bifurcation. We provide the
complete stability analysis for both models and carry
out bifurcation analysis by choosing the death rate and
the harvesting rate of the predator as the bifurcation
parameters. Also, the figures of all degenerate struc-
tures are given.

The objective of threshold harvesting policy is to
achieve a level of pest control that is acceptable in
economic terms to farmers while causing minimal dis-
turbance to the environments of nontarget individuals.
Note that complete eradication of the pest species is
generally not possible, nor is it biologically or eco-
nomically desirable. Therefore, a good pest control
program should reduce the pest to levels acceptable to
the public. This implies that there is an economic har-
vesting threshold T above which the financial damage
is sufficient to justify using such harvesting. Our re-
sults shows that harvesting firstly decrease the density
of the pest species, and further the loss of food lowers
the density of the natural enemy for natural enemy-
pest system (1.3). While for the crop-pest system (1.4),
the harvesting lowers the level of pests and raises the
level of prey, in turn, the increase of the prey make
the pests have enough food for predation and raise the
level of the pests. It is seen that the threshold harvest-
ing policy of system (1.3) is more effective than the
system (1.4).

Acknowledgements We are extremely grateful to the critical
comments and invaluable suggestions made by anonymous hon-
orable reviewers. This work is supported by the Natural Science

Foundation of China, the Doctoral Program of Higher Educa-
tion of China and National Natural Science Foundation of China
(11101305).

References

1. Hall, D., Norgaard, R.: On the time and application of pes-
ticides. Am. J. Agric. Econ. 55, 198–201 (1973)

2. Sunding, D., Zivin, J.: Insect population dynamics, pesti-
cide use and farmworker health. Am. J. Agric. Econ. 82,
527–540 (2000)

3. Liang, J., Tang, S.: Optimal dosage and economic threshold
of multiple pesticide applications for pest control. Math.
Comput. Model. 51, 487–503 (2010)

4. Shoemaker, C.: Optimal timing of multiple application of
pesticides with residual toxicity. Biometrics 36, 803–812
(1979)

5. Talpaz, H., Curry, G., Sharpe, P., DeMichele, D., Frisbie,
R.: Optimal pesticide application for controlling the boll
weevil in cotton. Am. J. Agric. Econ. 60, 469–475 (1978)

6. Headley, J.: Defining the economic threshold, presented at
the National Academy of Sciences. In: Symposium on Pest
Control Strategies for the Future, Washington, DC, 15 April
1971, pp. 100–108 (1972)

7. Tang, S., Chen, L.: Modelling and analysis of integrated
pest management strategy. Discrete Contin. Dyn. Syst. 4,
759–768 (2004)

8. Tang, S., Cheke, R.: State-dependent impulsive models of
integrated pest management (IPM) strategies and their dy-
namic consequences. J. Math. Biol. 50, 257–292 (2005)

9. Tang, S., Xiao, Y., Chen, L., Cheke, R.: Integrated pest
management models and their dynamical behavior. Bull.
Math. Biol. 67, 115–135 (2005)

10. Pei, Y., Chen, L., Zhang, Q., Li, C.: Extinction and perma-
nence of one-prey multi-predators of Holling type II func-
tion response system with impulsive biological control. J.
Theor. Biol. 235, 495–503 (2005)

11. Pei, Y., Zeng, G., Chen, L.: Species extinction and perma-
nence in a prey-predator model with two-type functional
responses and impulsive biological control. Nonlinear Dyn.
52, 71–81 (2008)

12. Ji, L., Wu, C.: Qualitative analysis of a predator–prey model
with constant-rate prey harvesting incorporating a constant
prey refuge. Nonlinear Anal., Real World Appl. 11, 2285–
2295 (2010)

13. Xiao, D., Ruan, S.: Bogdanov–Takens bifurcations in
predator–prey systems with constant rate harvesting. Fields
Inst. Commun. 21, 493–506 (1999)

14. Xiao, D., Jennings, L.: Bifurcations of a ratio-dependent
predator–prey system with constant rate harvesting. SIAM
J. Appl. Math. 65, 737–753 (2005)

15. Huang, Y., Chen, F., Li, Z.: Stability analysis of a prey–
predator model with Holling type III response function in-
corporating a prey refuge. Appl. Math. Comput. 182, 672–
683 (2006)

16. Pei, Y., Lv, Y., Li, C.: Evolutionary consequences of har-
vesting for a two-zooplankton one-phytoplankton system.
Appl. Math. Model. 36, 1752–1765 (2012)



132 Y. Lv et al.

17. Tao, Y., Wang, X., Song, X.: Effect of prey refuge on a har-
vested predator–prey model with generalized functional re-
sponse. Commun. Nonlinear Sci. Numer. Simul. 16, 1052–
1059 (2011)

18. Tang, S., Xiao, Y., Cheke, R.: Multiple attractors of host–
parasitoid models with integrated pest management strate-
gies: eradication, persistence and outbreak. Theor. Popul.
Biol. 73, 181–197 (2008)

19. Tang, S., Cheke, R.: Models for integrated pest control and
their biological implications. Math. Biosci. 215, 115–125
(2008)

20. Collie, J., Spencer, P.: Management Strategies for fish pop-
ulations subject to long term environmental variability and
depensatory predation, Technical report 93-02, Alaska Sea
Grant College, 629–650 (1993)

21. Aanes, S., Engen, S., Saether, B., Willebrand, T., Marc-
strom, V.: Sustainable harvesting strategies of willow
ptarmigan in a fluctuating environment. Ecol. Appl. 12,
281–290 (2002)

22. Leard, B., Rebaza, J., Saether, B.: Analysis of predator–
prey models with continuous threshold harvesting. Appl.
Math. Comput. 217, 5265–5278 (2011)

23. Lande, R., Saether, B., Engen, S.: Threshold harvesting for
sustainability of fluctuating resources. Ecology 78, 1341–
1350 (1997)

24. Rebaza, J.: Dynamics of prey threshold harvesting and
refuge. J. Comput. Appl. Math. 236, 1743–1752 (2012)

25. Liu, X., Liu, S.: Codimension-two bifurcation analysis in
two-dimensional Hindmarsh–Rose model. Nonlineat Dyn.
67, 847–857

26. Tian, R., Cao, Q., Yang, S.: The codimension-two bifurca-
tion for the recent proposed SD oscillator. Nonlinear Dyn.
59, 19–27 (2010)

27. Clarke, F., Ledyaev, Y., Stern, R., Wolenski, P.: Nonsmooth
Analysis and Control Theory. Springer, New York (1998)

28. Leine, R.: Bifurcations of equilibria in non-smooth contin-
uous systems. Physica D 223, 121–137 (2006)

29. Leine, R., van Campen, D.: Bifurcation phenomena in non-
smooth dynamical systems. Eur. J. Mech. A, Solids 25,
595–616 (2006)

30. Chattopadhyay, J., Sarkar, R., Mandal, S.: Toxin produc-
ing plankton may act as a biological control for planktonic
blooms: a field study and mathematical modelling. J. Theor.
Biol. 215, 333–344 (2002)

31. Kuang, N., Freedman, H.: Uniqueness of limit cycles
in Gause-type models of predator–prey systems. Math.
Biosci. 88, 76–84 (1988)

32. Perko, L.: Differential Equations and Dynamical Systems.
Texts in Applied Mathematics, vol. 7. Springer, Berlin
(2006)

33. Zhang, Z., Ding, T., Huang, W., Dong, Z.: Qualitative The-
ory of Differential Equations. Science Press, Beijing (1992)
(in Chinese). English edition. Transl. Math. Monogr.,
vol. 101. Am. Math. Soc., Providence (1992)

34. Hale, J.: Dynamics and Bifurcations. Springer, Berlin
(1991)


	Dynamics in two nonsmooth predator-prey models with threshold harvesting
	Abstract
	Introduction
	Stability analysis
	The case dalpha/(beta1-d)<k
	0<T<=dalpha/(beta1-d)
	dalpha/(beta1-d)<T<k
	dalpha/(beta1-d)<k<=T

	The case k<=dalpha/(beta1-d)
	k<=T
	T<k<=dalpha/(beta1-d)

	Numerical results

	Stability analysis of system (1.4)
	The case 0<T<T0
	Stability analysis
	Bifurcations analysis

	The case 0<T0<=T
	Numerical results

	Discussion
	Acknowledgements
	References


