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Abstract Unlike the tracking control of a single ma-
rine vehicle, this paper considers the leaderless and
leader-follower cooperative control of multiple marine
surface vehicles subject to unknown nonlinear dynam-
ics and ocean disturbances, all seeking to maintain a
relative formation. For both cases, a cooperative con-
trol design approach is proposed by integrating neural
networks, a backstepping technique, and graph the-
ory. It is shown that with the developed cooperative
controllers, formation behavior among vehicles can be
achieved for any undirected connected communication
graphs without requiring the accurate model of each
vehicle. Based on Lyapunov stability analysis, all sig-
nals in the closed-loop system are guaranteed to be
uniformly ultimately bounded, and cooperative track-
ing errors converge to a small neighborhood of the ori-
gin. Simulation results are given to show the efficacy
of the proposed methods.
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1 Introduction

Cooperative control of multivehicle (agent) systems
has received significant attention due to wide appli-
cations in engineering which include cooperative res-
cue and search, coordinated exploration and exploita-
tion, sensor networks, situation awareness for military
missions, etc. In a typical theoretical setup, the co-
operative control problem is reduced to a consensus
problem, which has been extensively studied in recent
years [1–7]. For cooperative control of multiagent sys-
tems, leaderless consensus means that the agents reach
a common value via local interaction; while leader-
follower consensus means that there exists a leader
who specifies a reference trajectory for the whole
group to follow. In recent years, numerous results on
these two topics have been reported in literature and
readers are referred to the papers [8–14] and refer-
ences therein. In most existing works on consensus,
the agent dynamics are assumed to be first-, second-,
high-order integrators or linear systems [8–14], which
may not be adequate to describe the agent dynamics
as they perform maneuvers in a harsh and demanding
environment.

Since most practical systems are inherently nonlin-
ear and subject to external disturbances, and cooper-
ative control of nonlinear systems is more challeng-
ing. In [15], a neural adaptive control approach is ap-
plied to leaderless consensus of first-order nonlinear
systems on undirected graph. In [16], neural leader-
follower consensus controllers are developed for first-
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order nonlinear systems, and this result is extended to
second-order nonlinear systems in [17] and further to
high-order nonlinear systems in [18]. Robust consen-
sus tracking control of second-order nonlinear systems
is presented in [19], where identifier-based continuous
consensus protocols are developed to enable global
asymptotic tracking performance both for undirected
and directed graphs. In [20], robust finite-time con-
sensus tracking controllers are proposed for second-
order nonlinear systems based on the terminal sliding-
mode technique. Despite these efforts, how to develop
systematic design methods for cooperative control of
real-world agents is still an open problem.

During the past decade, the marine control commu-
nity has focused on the cooperative control of marine
surface vehicles (MSVs), and a variety of approaches
have been proposed, ranging from leader-follower
mechanisms [22, 23], virtual structure method [24],
behavioral approach [25], to cooperative path fol-
lowing framework [26]. Obviously, these control ap-
proaches only result in low-level cooperative behav-
iors. However, to execute more challenging missions,
it needs the use of multiple vehicles working together
to achieve a collective objective [1–3]. For instance,
a fleet of MSVs are required to track a moving tar-
get, which can be regarded as a leader, in a sen-
sor network, where only the instantaneous motion
of the target can be obtained by a portion of vehi-
cles due to limited sensing region, and they update
their knowledge by communicating with a subset of
nearby vehicles, in order to track the leader. Appar-
ently, such motion control scenario cannot be accom-
plished by those formation control strategies men-
tioned above.

Motivated by the above observations, this paper
considers the leaderless and leader-follower cooper-
ative control of MSVs subject to uncertain nonlinear
dynamics and external ocean disturbances. The com-
munication graph among the vehicles is assumed to
be undirected and connected. In the leaderless case,
the objective is that a group of MSVs achieve desired
relative deviations on their vectors of earth-fixed po-
sitions and attitudes via local interaction. As for the
leader-follower case, the objective is to drive a group
of MSVs to a time-varying reference trajectory with
desired deviations. This control design different from
the traditional tracking control of MSV is that only a
fraction of followers have access to the reference tra-
jectory. For both cases, distributed adaptive controllers

are proposed by employing neural networks (NNs), a
backstepping technique and graph theory. It is shown
that, with the developed controllers, all signals in the
closed-loop system are guaranteed to be uniformly ul-
timately bounded, and cooperative tracking errors con-
verge to a small neighborhood of origin. The devel-
oped leaderless cooperative controller holds promise
for applications in automated docking of marine ve-
hicles through a distributed decision-making strategy;
and the leader-follower cooperative controller can be
regarded as an extension of the traditional tracking
control of a single vehicle [27–29] to those of net-
worked multivehicle systems.

Comparisons with the existing results are as fol-
lows: Unlike the vehicles modeled as single integra-
tors [8, 9], double integrators [10–12], nonholonomic
integrators [13], and linear systems [14], the vehicle
dynamics considered in this paper are more practi-
cal. Although the vehicle model belongs to a class of
second-order systems, the classical method like feed-
back linearization cannot be used to deal with this
problem because there exist unknown nonlinear dy-
namics in the vehicle model. Thus, these results for
linear system models cannot be directly applied to
our case. In contrast to the neural cooperative con-
trol designs in [15–18] where the NN identification of
system dynamics is coupled with the communication
graph, the proposed backstepping-based cooperative
design approach separates the NN learning of system
dynamics and the communication scheme, and hence
the cooperative controllers are practical to implement.
Compared with the neural tracking controllers devel-
oped for single vehicles [27–30], the control prob-
lem confronted in this paper is more challenging in
the sense that it does not permit a centralized track-
ing approach. Different from the cooperative path fol-
lowing controllers proposed in [26], where each vehi-
cle must have access to a reference path, the proposed
controllers can be implemented in a distributed man-
ner that allows even only one vehicle has access to the
reference trajectory.

This paper is organized as follows. Section 2 intro-
duces some preliminaries and states the problem for-
mulation. The leaderless and leader-follower cooper-
ative control algorithms with stability results are pre-
sented in Sects. 3 and 4, respectively. An example is
given to illustrate the theoretical results in Sect. 5. Sec-
tion 6 concludes this paper.
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2 Problem formulation and preliminaries

2.1 Preliminaries

Before proceeding, some notations are presented be-
low. ‖ · ‖ denotes the Euclidean norm. ‖ · ‖F de-
notes the Frobenius norm. λmin(·) denotes the small-
est eigenvalue of a square matrix (·). ⊗ denotes the
Kronecker product. tr(·) represents the trace of a given
matrix (·). IN represents the identity matrix of dimen-
sion N . 1 denotes a column vector with all entries
equal to one. diag{Ai} represents a block-diagonal
matrix with matrixes Ai, i = 1, . . . ,N , on its diag-
onal. If x = [x1, . . . , xN ]T , then define tanh(x) =
[tanh(x1), tanh(x2), . . . , tanh(xN)]T .

2.1.1 Graph theory

Let us introduce some graph concepts. A graph G =
{V, E } consists of a node set V = {n1, . . . , nN } and
an edge set E = {(ni, nj ) ∈ V × V } with element
(ni, nj ) that describes the communication from node
i to node j . Define an adjacency matrix A = [aij ] ∈
R

N×N given by aij = 1, if (nj , ni) ∈ E ; and aij = 0,
otherwise. The Laplacian matrix L = [lij ] associated
with the graph G is defined as lij = −aij , if j �= i,
and lij = ∑N

k=1 aik , otherwise. If aij = aji , for i, j =
1, . . . ,N , then the graph G is undirected. A path in the
graph is an ordered sequence of nodes such that any
two consecutive nodes in the sequence are an edge of
the graph. An undirected graph is connected if there
is a path between every pair of nodes. For simplic-
ity, we assume that the communication graph between
MSVs is undirected and connected. Finally, define a
diagonal matrix B = diag(b1, . . . , bN) to be a leader
adjacency matrix, where bi > 0 if and only if the ith
vehicle is a neighbor of the leader; otherwise bi = 0.
Denote H = L + B .

Lemma 1 [8] If G is a connected undirected graph
and at least one vehicle has access to the leader, then
the matrix H is symmetric and positive definite.

Lemma 2 If G is a connected undirected graph,
then there exist a positive definite matrix P such
that zT Lz = sT P s, where z = [z1, . . . , zN ]T , s =
[s1, . . . , sN ]T , si = ∑N

j=1 aij (zi − zj ).

Proof Omitted here for brevity and the proof details
can be found in [15]. �

2.1.2 Neural networks [31]

NNs are commonly used as a tool for modeling un-
known nonlinear dynamics due to their approximation
capabilities. A multilayer feed-forward NN with xk as
the input and yi the output is described as follows:

yi =
N2∑

j=1

[

wijσj

(
N1∑

k=1

ϑjkxk + ϑj0

)]

+ wi0,

i = 1, . . . ,N3, j = 1, . . . ,N2, k = 1, . . . ,N1,

(1)

where ϑjk is the weight from the input neuron i to
the hidden neuron j , ϑj0 the bias term, wij the weight
from the hidden neuron j to the output yi , wi0 the bias
term to the output yi , N2 the number of hidden neu-
rons, and σj the activation function. For simplicity, the
input-output mapping of NN is expressed by

f (x1, . . . , xN1) = WT σ
(
V T ν̆

)
, (2)

where ν̆ = [1, x1, . . . , xN1 ]T . W is a matrix with its
ith column give by [wi0,wi1, . . . ,wiN3]T . σ = [1, σ1,

. . . , σN2] is a vector consisting of σj . V is a matrix
with its j th column given by [ϑj0, ϑj1, . . . , ϑjN1]T .

The universal approximation theorem claims that,
given a continuous real-valued function f (x) : Ω →
R

N3 with a compact set Ω ∈ R
N1 , and a constant real

number εM > 0 , there exist ideal weights W and V

such that

f (x) = WT σ
(
V T ν̆

) + ε(ν̆), (3)

where ‖ε(ν̆)‖ ≤ εM .
In general, the ideal weights W and V are unknown

and require to be estimated in controller design. Let Ŵ

and V̂ be the estimates of the idea weights W and V ,
respectively, and then the weight estimation errors are
described by W̃ = Ŵ − W, Ṽ = V̂ − V .

For (3), the function approximation error can be ex-
pressed as

ŴT σ
(
V̂ T ν̆i

) − WT σ
(
V T ν̆

)

= W̃T
(
σ̂ − σ̂ ′V̂ T ν̆

) + ŴT σ̂ ′Ṽ T ν̆ + dnn, (4)

where σ̂ = σ(V̂ T ν̆), σ = σ(V T ν̆), σ̂ ′ denotes the Ja-
cobian matrix.

For the sigmoid activation function, the residual
term dnn satisfies
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‖dnn‖ ≤ �1
∥
∥ν̆Ŵ T σ̂ ′∥∥

F
+ �2

∥
∥σ̂ ′V̂ T ν̆

∥
∥ + �3, (5)

where �1, �2, �3 are positive constants.

2.2 Problem formulation

Consider a group of N MSVs governed by the three
degrees-of-freedom (DOF) nonlinear model with kine-
matics and kinetics [32]

{
η̇i = R(ψi)νi,

Miν̇i + Ci(νi)νi + Di(νi)νi + gi(νi) = τi + τiw,

(6)

where

R(ψi) =
⎡

⎣
cosψi − sinψi 0
sinψi cosψi 0

0 0 1

⎤

⎦ ; (7)

ηi = [xi, yi,ψi]T ∈ R
3 is the position vector in the

earth-fixed reference frame; νi = [ui, vi, ri]T ∈ R
3

is the velocity vector in the body-fixed reference
frame; Mi = MT

i ∈ R
3×3,Ci(νi) ∈ R

3×3,Di(νi) ∈
R

3×3 denote the inertia matrix, Coriolis/centripetal
matrix, and damping matrix, respectively; gi(νi) =
[giu, giv, gir ]T ∈ R

3 represents the unmodeled dy-
namics; τi = [τiu, τiv, τir ]T ∈ R

3 denotes the con-
trol input with τiu the surge force and τir the yaw
moment; τiw = [τiwu, τiwv, τiwr ]T denotes the distur-
bances from the environment.

Leaderless cooperative control Design a distributed
cooperative control law τi for the vehicle (6) using its
own states (ηi, νi) and its neighbor’s states (ηj , νj )

such that

ηi − Δi → ηj − Δj , ∀i = 1, . . . ,N, (8)

with bounded errors. Δi = [Δix,Δiy,Δiψ ]T ∈ R
3 is

desired relative final configuration.
Suppose there exists a virtual leader who moves

along a time-varying reference trajectory ηr ∈ R
3 with

bounded derivatives, and in the network, only a frac-
tion of the vehicles have access to the leader; then the
leader-follower cooperative control problem is stated
as below.

Leader-follower cooperative control Design a dis-
tributed cooperative control law τi for the vehicle (6)
using its own states (ηi, νi) and its neighbors’ states
(ηj , νj ) such that

ηi − Δi → ηr , ∀i = 1, . . . ,N, (9)

with bounded errors.
To move on, we make use of the following assump-

tions.

Assumption 1 For the time-dependent disturbance
τiw , there exists a positive constant ρwM ∈ R such that
‖τiw‖∞ ≤ ρwM .

Assumption 2 The time-varying reference trajectory
η̇r is bounded. That is, there exists a positive constant
ρM ∈ R such that ‖η̇r‖∞ ≤ ρM .

3 Leaderless cooperative control

In this section, we show that NNs, the backstepping
technique and graph theory can be integrated to de-
sign the leaderless cooperative controllers. At first, a
distributed kinematic control law is developed based
on graph theory; next, NNs are employed to account
for the model uncertainties.

3.1 Controller design

Following the backstepping design technique [34], we
first introduce the change of coordinates
{

zi1 = ηi − Δi,

zi2 = νi − αi1, i = 1, . . . ,N,
(10)

where αi1 are virtual control signals. Then the time
derivative of zi1 and zi2 with (6) can be described by

⎧
⎪⎨

⎪⎩

żi1 = R(ψi)νi,

Miżi2 = −Ci(νi)νi − Di(νi)νi − gi(νi) + τiw

+ τi − Miα̇i1, i = 1, . . . ,N.

(11)

To facilitate the controller design, define
{

z1 = [zT
11, . . . , z

T
N1]T , z2 = [zT

12, . . . , z
T
N2]T ,

R = diag{R(ψi)}, M = diag{Mi}.
(12)

The iterative design procedure is described as follows.
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Step 1: At this step, a distributed kinematic virtual
control law αi1 based on the local information is con-
structed as follows:

αi1 = − ki1R
T (ψi)si , (13)

where ki1 ∈ R
3×3 is a diagonal matrix with its diago-

nal entries being positive and nondiagonal entries be-
ing zero, and

si =
N∑

j=1

aij

[
ηi − Δi − (ηj − Δj)

]
, (14)

where si is the cooperative tracking error. In what fol-
lows, we obtain the closed-loop subsystem:

żi1 = − ki1si + R(ψi)zi2, (15)

which can be expressed in a matrix form

ż1 = − K1(L ⊗ I3)z1 + Rz2, (16)

where K1 = diag{ki1}.
Consider the Lyapunov function candidate

V11 = 1

2
zT

1 (L ⊗ I3)z1, (17)

whose time derivative along (16) is given by

V̇11 = − zT
1 K1

(
L2 ⊗ I3

)
z1 + zT

1 (L ⊗ I3)Rz2. (18)

Step 2: At this step, consider another Lyapunov func-

tion candidate

V12 = V11 + 1

2
zT

2 Mz2, (19)

whose time derivative with (11) is

V̇12 ≤
N∑

i=1

{
zT
i2

(−Ci(νi)νi − Di(νi)νi − gi(νi) + τi

+ τiw − Miα̇i1 + RT (ψi)si
)}

− zT
1 K1

(
L2 ⊗ I3

)
z1. (20)

The desired kinetic control law τi is chosen as

τi = −ki2zi2 − RT (ψi)si + fi(·), (21)

where fi(·) = Miα̇i1 +Ci(νi)νi +Di(νi)νi +gi(νi)−
ρwM tanh(zi2); ki2 ∈ R

3×3 is a diagonal matrix with

its diagonal entries being positive constants and non-
diagonal entries being zero. In practice, the parame-
ters Ci , Di , gi , Mi , and ρwM are very hard to obtain.
Hence, an NN is employed to handle the unknown dy-
namics as follows:

fi(·) = WT
i σ

(
V T

i ν̆i

) + εi(ν̆i ), (22)

where ν̆i = [1, α̇T
i1, ν

T
i ]T ∈ R

7 is the input vector;
Wi,Vi are the NN weights; εi(ν̆i ) is the approxima-
tion error satisfying ‖εi(ν̆i )‖ ≤ εiM with εiM a posi-
tive constant.

Then an NN-based kinetic control law is proposed
as

τi = ŴT
i σ

(
V̂ T

i ν̆i

) − (ki2 + hi)zi2 − RT (ψi)si , (23)

with an adaptive law
{ ˙̂

Wi = −ΓiW [(σ̂ − σ̂ ′V̂ T
i ν̆i )z

T
i2 + kWŴi],

˙̂
Vi = −ΓiV [ν̆iz

T
i2Ŵ

T
i σ̂ ′ + kV V̂i],

(24)

where hi is an auxiliary function defined as

hi = ki3
(∥
∥ν̆iŴ

T
i σ̂ ′∥∥2

F
+ ∥

∥σ̂ ′V̂ T
i ν̆i

∥
∥2 + 1

)
I3, (25)

and kW ∈ R, kV ∈ R,ΓiW ∈ R,ΓiV ∈ R, ki3 ∈ R are
positive constants.

Finally, substituting the control law (23) into (20)
gives

V̇12 ≤
N∑

i=1

{
zT
i2

[−hizi2 + W̃T
i

(
σ̂ − σ̂ ′V̂ T

i ν̆i

)

+ ŴT
i σ̂ ′Ṽ T

i ν̆i + dinn − ρwM tanh(zi2) + τiw

]}

− zT
1 K1

(
L2 ⊗ I3

)
z1 − zT

2 K2z2, (26)

where K2 = diag{ki2}.

Remark 1 Different from the passivity-based ap-
proach for output synchronization [21], the proposed
controller does not rely on the passivity property of
system and is model-independent in that the controller
does not require the knowledge of the inertial ma-
trix, Coriolis and centrifugal force, and hydrodynamic
damping.

3.2 Stability analysis

To analyze the stability of overall system, the follow-
ing theorem is proposed.
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Theorem 1 Consider a networked system consisting
of N MSVs governed by the dynamics (6) with As-
sumption 1 satisfied. Let the network topology be undi-
rected, fixed and connected. Select the control law (23)
with the adaptive law (24). Then, for bounded ini-
tial conditions, all the signals in the closed-loop sys-
tem are uniformly ultimately bounded (UUB), and (8)
holds for 1 ≤ i ≤ N , provided that the control param-
eter K2 satisfies

λmin(K2) > 1/2. (27)

Proof Consider the Lyapunov function candidate

V1 = V12 + 1

2

N∑

i=1

{
tr
(
W̃T

i Γ −1
iW W̃i

) + tr
(
Ṽ T

i Γ −1
iV Ṽi

)}
,

(28)

where W̃i = Ŵi − Wi , Ṽi = V̂i − Vi . Taking the time
derivative of (28), and using (24) and (26), we have

V̇1 ≤ −sT K1s − zT
2 K2z2 +

N∑

i=1

{
zT
i2(−εi + dinn

− hizi2) − ρwMzT
i2 tanh(zi2) + ‖zi2‖1ρwM

− kW tr
(
W̃T

i Ŵi

) − kV tr
(
Ṽ T

i V̂i

)}
, (29)

where s = [sT
1 , . . . , sT

N ]T .
Using Young’s inequality and the fact |γ | − γ

tanh(γ ) ≤ 0.2785 for a given variable γ ∈ R, the fol-
lowing inequalities hold:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|zT
i2εi | ≤ 1

2‖zi2‖2 + 1
2‖εM‖2,

−kV tr{Ṽ T
i V̂i} ≤ − kV

2 ‖Ṽi‖2
F + kV

2 ‖Vi‖2
F ,

−kW tr{W̃T
i Ŵi} ≤ − kW

2 ‖W̃i‖2
F + kW

2 ‖Wi‖2
F ,

0.8355 ≥ −zT
i2 tanh(zi2) + ‖zi2‖1,

zT
i2dinn ≤ ki3‖zi2‖2(‖ν̆iŴ

T
i σ̂ ′‖2

F + ‖σ̂ ′V̂ T
i ν̆i‖2 + 1)

+ �2
i1+�2

i2+�2
i3

4ki3
.

(30)

Then we derive that

V̇1 ≤ −λmin(K1)‖s‖2 −
[

λmin(K2) − 1

2

]

‖z2‖2

−
N∑

i=1

{
kW

2
‖W̃i‖2

F + kV

2
‖Ṽi‖2

F

}

+
N∑

i=1

{
1

2
‖εM‖2 + kW

2
‖Wi‖2

F + kV

2
‖Vi‖2

F

+ 0.8355�wM + �2
i1 + �2

i2 + �2
i3

4ki3

}

, (31)

which can be described as

V̇1(t) ≤ α1V1(t) + β1, (32)

where
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

α1 = min{ 2λmin(K1)
λmax(P )

,
2λmin(K2)−1

λmax(M)
,

kW

Γ −1
iW

,
kV

Γ −1
iV

},
β1 = ∑N

i=1{ 1
2‖εM‖2 + kW

2 ‖Wi‖2
F + kV

2 ‖Vi‖2
F

+ 0.8355�wM + �2
i1+�2

i2+�2
i3

4ki3
}.

(33)

By integration of (32), we have

V1(t) ≤ V1(0)e−α1t + β1

α1

(
1 − e−α1t

)
, (34)

It is straightforward to verify that all signal in the
closed-loop system are UUB [35]. By Lemma 2, we
obtain

1

2
λmin(P )‖s‖2 ≤ V1(t). (35)

Therefore, the cooperative tracking error ‖s‖ con-

verges to a compact set Ωs := {‖s‖ ≤
√

2β1/α1
λmin(P )

} as

t → ∞. Also note that zT
1 (L ⊗ I3)z1 ≥ λ2(L)‖z1 −

1 ⊗ Ave(z1)‖ where Ave(z1) = ∑N
i=1 z1i [36], we have

1

2
λ2(L)

∥
∥z1 − 1 ⊗ Ave(z)

∥
∥2 ≤ V (t). (36)

It follows that ‖z1 − 1 ⊗ Ave(z1)‖ is bounded by√
2β1

λ2(L)α1
as t → ∞, implying zi1 → zj1 → Ave(z).

This completes the proof. �

Remark 2 Note that by appropriately increasing the

control gains K1,K2,ΓiW ,ΓiV , the bound
√

2β1
λ2(L)α1

can be reduced.

4 Leader-follower cooperative control

In the preceding section, there does not exist a leader
in the group which means that the final position of
each vehicle is not known. In many instances, it is
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desirable for the group to follow a time-varying ref-
erence trajectory, and the reference trajectory may be
only available to a fraction of vehicles. To handle this
case, a leader-follower cooperative control design is
developed by incorporating the leader-follower syn-
chronization strategy, the backstepping technique and
NNs. In this section, we continue to use the symbols
and notations defined for the leaderless case. If they
need to be modified for the leader-follower case, we
redefine them explicitly.

4.1 Controller design

In this case, redefine zi1 as

zi1 = ηi − Δi − ηr, (37)

whose time derivative is given by

żi1 = R(ψi)νi − η̇r . (38)

Similar to the leaderless case, the iterative design pro-
cedure is elaborated as follows.

Step 1: Since only a portion of vehicles have access
to ηr , the traditional tracking control scheme cannot
be applied. Here, a distributed virtual control law αi1

based on the local information is proposed as follows:

αi1 = − ki1R
T (ψi)δi − κiR

T (ψi) tanh(δi), (39)

where κi ∈ R
3×3 is a diagonal matrix with its di-

agonal entries being positive constants and nondi-
agonal entries being zero. Here, the additional term
κiR

T (ψi) tanh(δi) is used to cancel out the unknown
term η̇r in (38), leading to a distributed kinematic con-
troller. δi is defined as

δi =
N∑

j=1

aij

[
ηi − Δi − (ηj − Δj)

] + bizi1. (40)

It follows that (38) is

żi1 = − ki1δi − κ tanh(δi) + R(ψi)zi2 − η̇r , (41)

which can be expressed in a matrix form

ż1 = −K1
[
(H ⊗ I3)z1

] − κ tanh
[
(H ⊗ I3)z1

]

− 1 ⊗ η̇r + Rz2, (42)

where κ = diag{κi}.

Consider a Lyapunov function candidate

V21 = 1

2
z1(H ⊗ I3)z1, (43)

whose time derivative along (42) is given by

V̇21 ≤ −zT
1 K1

(
H 2 ⊗ I3

)
z1 + zT

1 (H ⊗ I3)Rz2

+ zT
1 (H ⊗ I3){−κ tanh

[
(H ⊗ I3)z1

]

+ ∥
∥zT

1 (H ⊗ I3)
∥
∥

1�M, (44)

where the inequality

∣
∣zT

1 (H ⊗ I3)(1 ⊗ η̇r )
∣
∣ ≤ ∥

∥(H ⊗ I3)z1
∥
∥

1�M (45)

is applied. In addition, note that

∥
∥(H ⊗ I3)z1

∥
∥

1 ≤ zT
1 (H ⊗ I3) tanh

[
(H ⊗ I3)z1

]

+ 0.8355N, (46)

and it follows that (44) can be further put into

V̇21 ≤ −zT
1 K1

(
H 2 ⊗ I3

)
z1 + zT

1 (H ⊗ I3)Rz2

− [
λmin(κ) − �M

][
zT

1 (H ⊗ I3)
]

× tanh
[
(H ⊗ I3)z1

] + 0.8355�MN. (47)

Select λmin(κ) > �M such that

V̇21 ≤ −zT
1 K1

(
H 2 ⊗ I3

)
z1 + zT

1 (H ⊗ I3)Rz2

+ 0.8355�MN. (48)

Step 2: Consider another Lyapunov function candi-

date

V22 = V21 + 1

2
zT

2 Mz2, (49)

and its time derivative with (48) and (11) satisfies

V22 ≤ −zT
1 K1

(
H 2 ⊗ I3

)
z1 + 0.8355�M

+
N∑

i=1

{
zi2

(−Ci(νi)νi − Di(νi)νi − gi(νi)

+ τi + τiw − Miα̇i1 + RT (ψi)si
)}

. (50)

Similar to the leaderless case, the kinetic controller is
taken as

τi = ŴT
i σ

(
V̂ T

i ν̆i

) − (ki2 + hi)zi2 − RT (ψi)si , (51)
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where Ŵi and V̂i are updated as (24).
Finally, substituting the control law (51) into (50)

gives

V̇12 ≤
N∑

i=1

{
zT
i2

[−hizi2 + W̃T
i

(
σ̂ − σ̂ ′V̂ T

i ν̆i

)

+ ŴT
i σ̂ ′Ṽ T

i ν̆i + dinn − ρwM tanh(zi2) + τiw

]}

− zT
1 K1

(
L2 ⊗ I3

)
z1 − zT

2 K2z2 + 0.8355�MN.

(52)

Remark 3 The NNs-based cooperative control designs
are presented in [15–18]. Note that in these works, the
NN identification of system dynamics is coupled with
the communication graph, which may be undesirable
in practice since the nonlinear vehicle dynamics is lo-
cal. The backstepping-based cooperative control de-
sign proposed in this paper separates the NN learning
of system dynamics and the communication scheme,
and hence are practical to implement for real-world
vehicles.

4.2 Stability analysis

We are ready to state the second result of this paper.

Theorem 2 Consider a networked system consisting
of N MSVs governed by the dynamics (6) with As-
sumptions 1–2 satisfied. Let the network topology be
undirected, fixed and connected and at least one MSV
has access to ηr . Select the control law (51) with the
adaptive law (24). Then, for bounded initial condi-
tions, all the signals in the closed-loop system are
UUB, and (9) holds for 1 ≤ i ≤ N , provided the con-
trol parameters κ and K2 satisfy

λmin(κ) > �M,λmin(K2) >
1

2
. (53)

Proof Consider the Lyapunov function candidate

V2 = V22 + 1

2

N∑

i=1

{
tr
(
W̃T

i Γ −1
iW W̃i

) + tr
(
Ṽ T

i Γ −1
iV Ṽi

)}
,

(54)

whose time derivative with the adaptive law (24) and
(52) is

V̇2 ≤ −zT
1 K1

(
H 2 ⊗ I3

)
z1 − zT

2 K2z2 +
N∑

i=1

{
zT
i2(−εi

+ dinn − hizi2) − kW tr
(
W̃T

i Ŵi

) − kV tr
(
Ṽ T

i V̂i

)

− ρwMzT
i2 tanh(zi2) + ‖zi2‖1ρwM + 0.8355�M

}
.

(55)

By Lemma 1 and using the inequalities in (30), it leads
to

V̇2 ≤ −λmin(K1)λmin
(
H 2)‖z1‖2

−
[

λmin(K2) − 1

2

]

‖z2‖2

−
N∑

i=1

{
kW

2
‖W̃i‖2

F + kV

2
‖Ṽi‖2

F

}

+
N∑

i=1

{
1

2
‖εM‖2

+ kW

2
‖Wi‖2

F + kV

2
‖Vi‖2

F + 0.8355(�wM + �M)

+ �2
i1 + �2

i2 + �2
i3

4ki3

}

, (56)

which can be described as

V̇2(t) ≤ α2V2(t) + (β2), (57)

where
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α2 = min{2λmin(K1)λmin(H
2),

2λmin(K2)−1
λmax(M)

,

kW

Γ −1
iW

,
kV

Γ −1
iV

},
β2 = ∑N

i=1{ 1
2‖εM‖2 + kW

2 ‖Wi‖2
F + kV

2 ‖Vi‖2
F

+ 0.8355(�M + �wM) + �2
i1+�2

i2+�2
i3

4ki3
},

i = 1, . . . ,N.

By integration of (58), we have

V2(t) ≤ V2(0)e−α2t + β2

α2

(
1 − e−α2t

)
. (58)

We conclude that all signals in the closed-loop system
are UUB.

From (54) and (58), we obtain

1

2
λmin(H)‖z1‖2 ≤ 1

2
zT

1 (H ⊗ I3)z1. (59)

Thus, the tracking error ‖z1‖ converges to a com-

pact set Ωz := {‖z1‖ ≤
√

2β2
λmin(H)α2

} as t → ∞, imply-
ing (9). By increasing K1,K2,ΓiW ,ΓiV , the compact
set to which the tracking error converges can also be
reduced. This completes the proof. �
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Remark 4 In contrast to the traditional tracking con-
trol of single vehicle to which one trajectory must be
assigned [27–29], here, only a portion of vehicles have
access to the reference trajectory, and thus the control
problem confronted in this paper is more challenging.
The cooperative tracking controllers designed in this
paper can be regarded as an extension of traditional
tracking control of single vehicle to those of the net-
worked multivehicle systems.

Remark 5 For simplicity, the backstepping design
technique is used to construct the cooperative con-
trollers in this paper. If needed, the dynamic surface
control approach proposed in [33] can be employed
to estimate the derivatives of virtual control signals.
Therefore, a possible future work includes an exten-
sion to the dynamic surface control-based design.

5 An example

Consider a networked system that consists of five
MSVs and the model parameters can be found in Ta-
ble 1 [37]. Without loss of generality, some model
uncertainties and ocean disturbance are introduced
into the model. Suppose that the information-exchange
topology among the five vehicles is given in Fig. 1.

5.1 Leaderless cooperative control

This subsection considers the leaderless cooperative
control case. At first, we discuss how to choose the
number of neurons and control parameters. As in
most control systems, the performance can be im-
proved by trying a few simulation runs and adjust-
ing the parameters to obtain good results. The num-
ber of neurons is selected as follows. The simulation
was firstly performed with eight neurons when six
neurons were used, and it was found that the approx-
imation performance degraded. On the other hand,
a simulation using twelve neurons did not improve
the approximation performance dramatically. There-
fore, eight neurons were selected. For the NN acti-
vation function, we use the sigmoid basic function
of the form 1/[1 + exp(−x)]. The NN weights are
initialized with zero. Once started, the NN weights
can be adjusted online to obtain better performance.
For control parameters, we know the control gains
should be selected large and another consideration is

Fig. 1 Communication topology

Table 1 Model parameters

Parameters Value

m11 25.8

m22 33.8

m23 = m32 1.0115

c13 = −m31 −33.8v − 1.0115r

c23 = −m32 25.8u

d11 0.72 + 1.33|u| + 5.87u2

d22 0.8896 + 36.5|v| + 0.805|r|
d23 7.25 + 0.845|v| + 3.45|r|
d32 0.0313 + 3.96|v| + 0.130|r|
d33 1.90 − 0.080|v| + 0.75|r|
gu 0.0279uv2 + 0.0342v2r

gv 0.0912u2v

gr 0.0156ur2 + 0.0278urv3

τwu −2 cos(0.5t) cos(t) + 0.3 cos(0.5t) sin(0.5t) − 3

τwv 0.01 sin(0.1t)

τwr 0.6 sin(1.1t) cos(0.3t)

that the adaptive terms should be faster than the pro-
portional terms such that a good approximation can
be obtained. Therefore, the adaptive gains are taken
as ΓWi

= 100, ΓVi
= 100, kW = 0.1, kV = 0.1, Ac-

cordingly, the proportional gains are taken as ki1 =
diag{0.2,0.2,0.2}, ki2 = diag{75,22,68.4}.

Simulation results are depicted in Figs. 2–4. Fig-
ure 2 shows the entire formation geometries of the five
vehicles with information-exchange given by Fig. 1. It
can be seen that they come into the desired star forma-
tion. The geometric pattern of the formation is station-
ary. The norms of consensus errors ‖si1‖ are plotted
in Fig. 2, and it demonstrates that the consensus errors
are bounded to a small neighborhood of the origin. To
verify the learning ability of NN, the approximation
errors are depicted in Fig. 3 where it shows that the
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Fig. 2 Case 1: Formation trajectories in 2D plane

Fig. 3 Case 1: Consensus errors

uncertainties are efficiently compensated by outputs of
NNs.

5.2 Leader-follower cooperative control

In this subsection, we consider the case where only the
MSV 1 has access to a time-varying reference trajec-
tory [0.1t;2 sin(πt/150);a tan 2(0.1t,2 sin(πt/150))].
The control parameters ΓWi

,ΓVi
, kW , kV , ki1, ki2 are

taken as the same as the above and others are selected
as bi = 10, κi = diag{0.2,0.15,0.2}. Simulation re-
sults are provided in Figs. 5–7. Figure 5 shows the
entire formation geometries of the five vehicles with

Fig. 4 Case 1: Approximation errors

Fig. 5 Case 2: Formation trajectories in 2D plane

information-exchange given by Fig. 1. It can be ob-
served that the star formation is also well established
despite the existence of the uncertain dynamics and
external disturbances. The norms of consensus errors
‖si1‖ are plotted in Fig. 6, and it reveals that the con-
sensus errors are bounded to a small neighborhood
of the origin. To verify the learning ability of NNs,
the approximation errors are depicted in Fig. 7, and it
demonstrates that the uncertainties are also efficiently
compensated by outputs of NNs.
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Fig. 6 Case 2: Consensus errors

Fig. 7 Case 2: Approximations errors

6 Conclusions

This paper considered the leaderless and leader-fol-
lower cooperative tracking control of multiple ma-
rine surface vehicles with uncertain nonlinear dynam-
ics. Two cooperative controllers have been proposed
and analyzed based on neural networks, the back-
stepping technique and graph theory. These two neu-
ral controllers have been designed to ensure that for-
mation behavior among vehicles can be reached for
any undirected connected communication graph with-
out requiring the accurate model of each vehicle.
Based on Lyapunov stability analysis, all signals in the
closed-loop systems are guaranteed to be uniformly
ultimately bounded. Simulation results have demon-

strated the efficacy of the cooperative controllers and
the learning ability of neural networks.
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