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Abstract Numerical simulations of the nonlinear
Schrödinger equations are studied using Delta-shaped
basis functions, which recently proposed by Reutskiy.
Propagation of a soliton, interaction of two solitons,
birth of standing and mobile solitons and bound state
solutions are simulated. Some conserved quantities
are computed numerically for all cases. Then we ex-
tend application of the method to solve some coupled
nonlinear Schrödinger equations. Obtained systems
of ordinary differential equations are solved via the
fourth- order Runge–Kutta method. Numerical solu-
tions coincide with the exact solutions in desired ma-
chine precision and invariant quantities are conserved
sensibly. Some comparisons with the methods applied
in the literature are carried out.
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1 Introduction

Recently, finding numerical solution of the complex
nonlinear evolution equations is becoming rapidly at-
tractive and popular [1, 2, 6–8, 10, 13, 15, 17]. One
type of the famous complex nonlinear evolution equa-
tions with various and important applications in hy-
drodynamics, plasma physics, nonlinear optics, self-
focusing in laser pulses, propagation of heat pulses in
crystals, description of the dynamics of Bose–Einstein
condensate at extremely low temperature, etc. is the
class of Schrödinger equations [9].

The one-dimensional nonlinear Schrödinger equa-
tion (NLSE) with a central role in quantum mechanics
is one of the most important equations in mathemat-
ical physics and physical chemistry with applications
in many different fields such as plasma physics, non-
linear optics, water waves, particle-in-a-box, the har-
monic oscillator, the hydrogen atom, the rigid rota-
tor, and bimolecular dynamics. This equation plays the
role of Newton’s laws and conservation of energy in
classical mechanics.

The coupled nonlinear Schrödinger equations
(CNLSEs) arise in a great variety of physical situa-
tions, for example, propagation of pulses with equal
mean frequencies in birefringent nonlinear fiber offers
the opportunity to investigate the quasiparticle behav-
ior soliton governed by them; see, e.g., [17] and refer-
ences therein.
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In the sequel, i = √−1 and (x, t) ∈ (−∞,∞) ×
(0, T ). Considered NLSE is as follows:

i
∂u

∂t
+ ∂2u

∂x2
+ q|u|2u = 0, (1.1)

where q is a real parameter and u(x, t), which gov-
erns weakly nonlinear, strongly dispersive, and almost
monochromatic wave [23], is a complex-valued func-
tion of the spatial coordinate x and the time variable t .
Usually, (1.1) is endowed with the initial condition
u(x,0) = s(x) and the asymptotic boundary condition
u → 0 as |x| → ∞.

The CNLSEs which arose in a great variety of phys-
ical situations [17] are as follows:

i

(
∂u1

∂t
+ δ

∂u1

∂x

)
+ 1

2

∂2u1

∂x2
+ (|u1|2 + e|u2|2

)
u1 = 0,

i

(
∂u2

∂t
− δ

∂u2

∂x

)
+ 1

2

∂2u2

∂x2
+ (

e|u1|2 + |u2|2
)
u2 = 0,

(1.2)

where e is the cross phase modulation coefficient, δ is
the normalized strength of the linear birefringence,
and u1 and u2 are the wave amplitude in two polar-
izations.

The strong coupled nonlinear Schrödinger equa-
tions (SCNLSEs) which considered here are as fol-
lows:

i
∂u1

∂t
+ β

∂2u1

∂x2
+ (

α1|u1|2 + (α1 + 2α2)|u2|2
)
u1

+ γ u1 + Γ u2 = 0,

i
∂u2

∂t
+ β

∂2u2

∂x2
+ (

α1|u2|2 + (α1 + 2α2)|u1|2
)
u2

+ γ u1 + Γ u1 = 0,

(1.3)

where the linear coupling parameter Γ accounts for
effects that arise from the twisting of the fiber and
elliptic deformation of a fiber. It is also referred to
the linear birefringence or relative propagation con-
stant. The term proportional to α1 describes the self-
focusing of a signal for pulses in birefringent media.
The parameter β describes the group velocity disper-
sion, and (α1 + 2α2) is the cross phase modulation.
Finally, the term γ appears as constant ambient poten-
tial called normalized birefringence.

Equations (1.2) and (1.3) are usually equipped with
the following initial conditions:

u1(x,0) = s1(x), u2(x,0) = s2(x),

−∞ < x < ∞,

and the following asymptotic boundary conditions

u1, u2 → 0, |x| → ∞.

In this study, we aim to solve numerically NLSE
(1.1), CNLSEs (1.2), and SCNLSEs (1.3) by using a
boundary method of Treffz-type newly developed by
Reutskiy et al. [18–21]. When this method applies in a
collocation regime, it can be considered as a meshless
collocation method similar to the radial basis func-
tions (RBFs) collocation method, which has shown to
provide a truly meshless computational approach for
solving various partial differential equations (PDEs);
see, e.g., [14, 16] and references therein. Such meth-
ods have advantage in comparing with most traditional
mesh-dependent methods such as finite element and fi-
nite difference method since mesh construction is not
a trivial work especially for nonlinear, moving bound-
ary, and multidimensional problems [5].

The rest of the paper is organized as follows. In
Sect. 2, we describe briefly the Delta-shaped basis
functions. Without taking details into account, con-
struction of a semi-discrete method based on the
Delta-shaped basis functions is described in Sect. 3.
Section 4 is devoted to the numerical results. Section 5
is a brief conclusion.

2 Delta-shaped basis functions

New delta-shaped basis function derived by Reutskiy
from the Fourier series of the Dirac-delta function can
be applied to successfully simulate a set of scattered
data in regular or irregular domains [5, 18–21]. In
the sequel, we describe briefly these functions. Let
(ϕn(x), λn) be a solution of the following Sturm–
Liouville eigenvalue problem

⎧⎪⎨
⎪⎩

−d2ϕ

dx2
= λϕ, x ∈ (−1,1),

ϕ(−1) = ϕ(1) = 0.

(2.1)
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Obviously, λn = nπ
2 , ϕn(x) = sin(nπ x+1

2 ), and fur-
thermore∫ 1

−1
ϕm(x)ϕn(x) dx = δmn =

{
1, m = n,

0, m �= n.

In other words, eigenfunctions {ϕn(x)}∞n=1 form an or-
thogonal system on [-1,1] and the Dirac’s delta func-
tion can be formally written as follows:

δ(x − ξ) =
∞∑

n=1

ϕn(ξ)ϕn(x). (2.2)

Since this series diverges at any point in the interval
[−1,1], using some kinds of regularization techniques
such as Lanczos or Riesz or Abel [19], a smooth delta-
shaped function, IM,χ (x, ξ), can be obtained through
the formal series expansion (2.2). We consider here the
Riesz regularization technique and, therefore, the reg-
ularized delta-shaped functions have the form

IM,χ (x, ξ) =
M∑

n=1

(
1 − n2

(M + 1)2

)χ

ϕn(ξ)ϕn(x).

(2.3)

Here, χ plays the role of regularizing and M plays
the role of scaling. The support of the basis function
decreases as M increases. The parameters M and χ

which can be known shape parameters (because of
their close relation with the properties of the functions)
should be taken in coupling. It must be pointed out
that the optimal choice of these shape parameters is an
open problem and can be dealt with experimentally. In
general, choosing χ = 4,6,8,12,14,16,18 for M =
10,20,30,40,50,80,100 is found to be close to the
optimal one. More details can be found in [18, 21].

3 Construction of the method

In order to approximate solution to (1.1), we assume
that f and g are real and imaginary parts of u, respec-
tively, i.e.,

u(x, t) = f (x, t) + ig(x, t). (3.1)

Substituting (3.1) into (1.1) leads to the following cou-
pled real partial differential equations:{

gt = fxx + q
(
f 2 + g2)f,

ft = −gxx − q
(
f 2 + g2)g.

(3.2)

For solving (1.1) on the interval [a, b], artificial
boundary conditions u(a, t) = 0 and u(b, t) = 0 are
needed to model the physical boundary condition.
Therefore, system (3.2) must be equipped with the fol-
lowing boundary conditions:

f (a, t) = f (b, t) = 0 = g(a, t) = g(b, t), t ∈ [0, T ].
Then, we choose some center points

ξ1 < ξ2 < · · · < ξN,

in the interval [a, b] and approximate f and g as fol-
lows:
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f (x, t) �
N∑

j=1

fj (t)IM,χ (x, ξj ),

g(x, t) �
N∑

j=1

gj (t)IM,χ (x, ξj ).

(3.3)

By choosing some collocation points,

a = x1 < x2 < · · · < xN = b,

(often equidistant with step size h) substituting (3.3)
into (3.2) and imposing boundary conditions, we get
a system of ordinary differential equations which can
be solved with the aid of the classical Runge–Kutta
method of order four (RK4).

It must be pointed out that center points and collo-
cation points are different but for ease of computation
it is better to be identical.

We end this section by stating the following useful
proposition which proved by Hon et al. [5].

Proposition 3.1 The coefficient matrix

A = [
IM,χ (xk, ξj )

]
N×N

is positive definite if M ≥ N .

4 Numerical results

4.1 Numerical tests of NLSE

Accuracy of the numerical results are measured by us-
ing the following L∞ error norm

E∞ = ∥∥un − Un
∥∥∞ = max

j

∣∣un
j − Un

j

∣∣. (4.1)
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where un and Un denote the exact and numerical so-
lution at nth time level, respectively. The reliable soli-
ton solutions of Eq. (1.1) must keep some conservation
laws [24]. The following two conserved quantities are
considered here:

C1 =
∫ b

a

|u|2 dx ≈ h

N∑
j=0

∣∣Un
j

∣∣2
, (4.2)

C2 =
∫ b

a

[
|ux |2 − 1

2
q|u|4

]
dx

≈ h

N∑
j=1

(∣∣(Ux)
n
j

∣∣2 − 1

2
q
∣∣Un

j

∣∣4
)

. (4.3)

Relative changes of invariants are defined as EC1 =
C1−C0

1
C0

1
and EC2 = C2−C0

2
C0

2
where C0

1 and C0
2 are the

values of the conserved quantities C1 and C2 at time
t = 0, respectively.

4.1.1 Motion of single soliton

Equation (1.1) has been used to model a number of
physical situations involving nonlinearity and disper-
sion. When a certain balance is reached between non-
linearity and dispersion, solitons are formed. This is
simply illustrated by the single soliton solution of the
equation as follows:

u(x, t) = α

(
2

q

)1/2

exp

(
i

{
1

2
cx − 1

4

(
c2 − α2)t

})

× sech
(
α(x − ct)

)
, (4.4)

where c represents the speed of the soliton whose
magnitude depends on α, which determines its am-
plitude. Parameters q = 2, c = 4, α = 1 and solu-
tion interval −20 ≤ x ≤ 20 are chosen to coincide
with earlier works so that comparison of results can
be done. We establish the initial condition and bound-
ary conditions from the exact solution (4.4). Analyt-
ical values of conserved quantities are C1 = 2 and
C2 = 7.33333333333334. In Table 1, L∞-error norm
and relative errors of conserved quantities are shown
for various time and space step size.

For M = 4000 and χ = 1200, graph of the travel-
ling soliton is presented in Figs. 1, 2, 3 and 4 at dif-
ferent times t = 0.0, t = 1.0 and t = 2.5 in which
the real and imaginary components and the modules

are displayed. Plot of the error at time t = 1.0 for
the parameters M = 4000, χ = 1200, h = 0.125 and
t = 0.0025 is shown in Fig. 5. Results are reasonably
comparable with the other numerical method [10].

For obtaining experimental optimal values of M

and χ , one can repeat computation once by changing
χ for fixed M and then by changing M for fixed χ .
Results depicted in Table 2 imply that this problem is
not a problem of extreme sensitivity with respect to
choosing M and χ .

4.1.2 Interaction of two solitons

Interaction of two positive solitary waves is studied by
using the initial condition

u(x,0) = u1(x,0) + u2(x,0). (4.5)

where

uj (x,0) = αj

(
2

q

)1/2

exp

(
i

{
1

2
cj (x − xj )

})

× sech
(
αj (x − xj )

)
, j = 1,2. (4.6)

We choose the parameters q = 2, h = 0.125, t =
0.0025, α1 = 1.0, α2 = 0.1, x1 = −10, x2 = 10,
c1 = 4, c2 = 10, and −20 ≤ x ≤ 20. These pa-
rameters give solitons with the equal amplitudes
9.999999972506763e−001 occurring at x1 = −10
and x2 = 10, respectively, and both of them have the
velocity of 4 but move in opposite direction, collide
and separate. The simulation of interaction is shown at
different times in Fig. 6. Results are in good agreement
with other numerical methods [2, 4, 10].

Conserved quantities and amplitudes and peak po-
sitions of both solitons at various times and compari-
son of conserved quantities and their relative changes
with some earlier works are seen at Fig. 7 and Tables 3
and 4, respectively. The conservation laws are satis-
fied up to time t = 5.0 with a greater degree of accu-
racy. C1 and C2 remain the same to eight digits at time
t = 5.0, that are better than results in [10].

4.1.3 Maxwellian initial condition

According to the theory, if
∫ ∞
−∞ u(x,0) dx ≥ π , a soli-

ton is generated, or else it fades out [3]. This is stud-
ied in the paper using the Maxwellian initial condition,
given by [4],

u(x,0) = A exp
(−x2), (4.7)
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Table 1 Comparison of
single soliton solution of
Eq. (1.1) at time t = 1 for
M = 4000

Method χ h t E∞ × 105 EC1 EC2

Delda-shaped 5000 0.4 0.01 12 −4.536e−008 −4.407e−008
Delda-shaped 2300 0.3125 0.025 1.5 −4.379e−006 −1.214e−005
Delda-shaped 7300 0.3125 0.01 0.021 −4.467e−008 −1.249e−007
Delda-shaped 7300 0.3125 0.02 2.3 −1.438e−006 −3.992e−006
Delda-shaped 1200 0.125 0.0025 0.01 1.758e−011 2.401e−010
Delda-shaped 1200 0.125 0.001 0.01 6.125e−011 3.615e−010
Delda-shaped 100 0.05 0.000625 0.01 −5.698e−013 −6.162e−013
CDQ [10] 0.3125 0.01 5.6 4.380e−06 1.214e−05
CDQ [10] 0.3125 0.01 0.2 4.512e−08 1.253e−07
CDQ [10] 0.125 0.01 0.2 4.412e−011 1.226e−010
CDQ [10] 0.125 0.01 0.02 4.541e−013 1.266e−012
PDQ [11] 0.1 0.0025 0.02 −5.222e−011 2.931e−09
PDQ [11] 0.3125 0.02 2.53 −1.440e−06 −3.942e−06
B-spline Galerkin [2] 0.05 0.005 30 0.0000000 0.0000006
B-spline Galerkin [2] 0.3125 0.020 200 0.0000066 0.0003417
B-spline Col [4] 0.05 0.005 800 0.00000 0.00000
B-spline Col [4] 0.03 0.005 200 0.00000 0.00000
Explicit [22] 0.05 0.000625 600 0.00000 60.0055
Implicit/explicit [22] 0.05 0.001 600 0.00309 0.01205
Implicit (C-N) [22] 0.05 0.005 600 0.00001 0.00557
Hopscotch [22] 0.08 0.002 500 0.00003 0.01407
Split-step Fourier [22] 0.3125 0.020 500 0.00000 0.00005
A-L Local [22] 0.06 0.0164 600 0.00004 0.00797
A-L Global [22] 0.05 0.040 600 0.00003 0.00550
Pseudospectral [22] 0.3125 0.00026 500 0.00001 0.00003

Fig. 1 Single soliton with real and imaginary components and the modules at different times 0, 1, and 2.5
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Fig. 2 Imaginary part of single soliton at different times

Fig. 3 Real part of single soliton at different times

Fig. 4 Modules of single soliton at different times

where h = 0.15, t = 0.002 and q = 2 for the domain
−45 ≤ x ≤ 45. Numerical experiment of the birth of
soliton is carried out for the values A = 1 and 1.78.
The program is run until the time t = 6 to observe the
development of the soliton. Figure 8 presents the birth
of standing soliton with A = 1.78 while the solution

Fig. 5 Plot of error at time t = 1 with M = 4000, χ = 1200,
h = 0.01 and t = 0.0025

Table 2 Investigating error of single soliton solution of
Eq. (1.1) for h = 0.125 and dt = 0.001 up to time t = 1 for
different values of M and χ

M = 1000 M = 2000 χ = 200

χ E∞ χ E∞ M E∞

10 5.17e−005 40 3.21e−002 1510 5.71e−004
20 1.05e−007 50 4.32e−003 1520 2.86e−005
30 1.02e−007 60 5.36e−004 1530 1.33e−006
40 1.01e−007 80 7.32e−006 1540 1.75e−007
50 1.01e−007 100 1.04e−007 1550 1.02e−007
60 1.01e−007 150 1.02e−007 1600 1.01e−007
70 1.01e−007 200 1.01e−007 1800 1.01e−007
80 6.43e−006 250 1.01e−007 2000 1.01e−007
81 8.99e−005 300 1.01e−007 2500 1.02e−007
83 1.20e−003 350 2.87e−006 3000 3.37e−006
86 8.93e+000 360 1.24e−003 3200 3.26e−005

decays away with value A = 1 as shown in Fig. 9.
Maximas of the solutions are drawn in Fig. 10 from
which evolution of soliton of magnitude of about 4
and dissolution can visualized clearly. Thus, the theory
is verified that if A = 1.78 >

√
π = 1.7725, a soliton

is produced, so with choice of the less than A <
√

π

initial soliton decays away. Conserved quantities for
both cases are graphed in Figs. 11 and 12. Using
the Maxwellian initial condition (4.7), analytical con-
served quantities can be computed as following:

C1 = A2
√

π/2 and C2 = 1

4
A2(2

√
2 − qA2)√π,

and results of those quantities and their relative er-
rors are recorded in Table 5. Consequently, conserved
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Fig. 6 Interaction of two
solitons at different times
t = 0,2,2.5,5 with
M = 4000, χ = 500,
h = 0.125 and t = 0.0025

Fig. 7 Values of C1 and C2
for interaction of two
solitons with M = 4000,
χ = 500, h = 0.125 and
t = 0.0025

quantities obtained using numerical method preserved
satisfactorily well.

4.1.4 Birth of mobile soliton

The birth of the mobile soliton is studied using the ini-
tial condition

u(x,0) = A exp
(−x2 + 2ix

)
, (4.8)

where h = 0.125 and t = 0.001 over the domain
[−30,80]. Simulation is studied with values A = 1
and A = 1.78 to see solutions until time t = 6.0. Mo-
bile soliton of amplitude 4 is produced with A = 1.78
and the formation of soliton can be observed form
the Fig. 13. Once again solution is faded out with
A = 1 and is graphed in Fig. 14. Maximas of two solu-
tions and conserved quantities are depicted in Figs. 15
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Table 3 Values of C1 and C2 for interaction of two solitons with M = 4000, χ = 500, h = 0.125 and t = 0.0025

t C1 C2 Soliton 1 Soliton 2

Amplitude and peak position Amplitude and peak position

0 3.999999991 14.6666669 0.9999999972506763 −10 0.9999999972506763 10

0.5 3.999999991 14.6666668 0.9999946921173225 −8 0.9999946921173085 8

1 3.999999990 14.6666668 1.000000639378599 −6 1.000000639378603 6

1.5 3.999999990 14.6666668 0.9994579125790593 −4 0.9994579125791129 4

2 3.999999990 14.6666668 0.9948743169607603 −1.75 0.9948743169608429 1.75

2.5 3.999999990 14.6666668 1.984567952311632 0 1.984567952311632 0

3 3.999999990 14.6666668 0.9740967405227943 2.25 0.9740967405230238 −2.25

3.5 3.999999990 14.6666668 0.9997326716422408 4.25 0.9997326716425774 −4.25

4 3.999999990 14.6666668 0.9996466059149936 6.25 0.9996466059154411 −6.25

4.5 3.999999989 14.6666668 0.9996448724566495 8.25 0.9996448724571159 −8.25

5 3.999999988 14.6666667 0.9996414215448909 10.25 0.9996414215453822 −10.25

Table 4 Comparison of
two soliton simulations
with some earlier results for
M = 4000

Method χ h t Time EC1 EC2

Delda-shaped 2500 0.2 0.005 2.5 −2.7e−009 −1.3e−006

Delda-shaped 500 0.125 0.001 2.5 1.1e−010 −9.8e−009

Delda-shaped 500 0.125 0.001 2.5 −1.4e−011 −7.9e−009

Delda-shaped 800 0.13 0.0036 2.5 −6.0e−010 −1.8e−008

Delda-shaped 4000 0.625 0.005 2.5 −2.3e−005 4.6e−003

Delda-shaped 2300 0.3125 0.01 3 −1.4e−007 −3.9e−007

Delda-shaped 2300 0.3125 0.005 3 −4.3e−009 −3.0e−008

Delda-shaped 2300 0.25 0.01 3 −1.3e−007 −3.7e−007

Delda-shaped 500 0.125 0.0025 3 −2.3e−010 −8.6e−009

CDQ [10] 0.25 0.010 2.5 −1.0e−007 −6.1e−006

CDQ [10] 0.25 0.005 2.5 −3.0e−009 −5.8e−006

CDQ [10] 0.20 0.005 2.5 −3.0e−009 −1.6e−007

PDQ [11] 0.25 0.010 2.5 −6.0e−008 −4.4e−006

PDQ [11] 0.25 0.005 2.5 4.1e−008 −4.1e−006

PDQ [11] 0.20 0.005 2.5 3.1e−009 −5.2e−007

Explicit [22] 0.13 0.0036 2.5 0.00000 0.0066

Split-step Fourier [22] 0.625 0.005 2.5 0.00071 0.036

and 16, respectively. Conserved quantities and their
relative errors are presented in Table 6. Both invariants
for this simulation are conserved reasonably well.

4.1.5 Bound state of solitons

For the soliton solutions of the Schrödinger equation,
the speed and amplitude can be selected separately.
This allows solitons to move at same speeds all the
time interacting with the other one. Precise results are
obtained by Miles [12] by using initial condition

u(x,0) = sech(x), (4.9)

which produces a bound state of λ solutions if

q = 2λ2, λ = 1,2, . . . .

However, the solution does not have usable form if
λ ≥ 3. Numerical studies are conducted for bound
state of solitons with the initial conditions using the
parameters q = 2,8,18,32. Solution of this problem
includes extremely large space and time gradients thus
producing a numerical method to model these behav-
ior have quite importance in terms of the numerical
analysts. Conserved quantities with initial condition
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Fig. 8 Maxwellian with A = 1.78, h = 0.15, t = 0.002,
M = 4000 and χ = 500

Fig. 9 Maxwellian with A = 1, h = 0.15, t = 0.002,
M = 4000 and χ = 500

Fig. 10 Maximas, amplitude of wave for A = 1 and A = 1.78
with h = 0.15, t = 0.002, M = 4000, and χ = 500

(4.9) can be computed analytically by

C1 = 2, C2 = 2

3
(1 − q). (4.10)

With considering rounding errors and computational
costs, some numerical methods can be applied in prac-

tice to conserve quantities to a fixed number of dig-
its. Parameters h = 0.1, t = 0.0005, M = 4000,
χ = 700, and q = 18, 32 over a region −20 ≤ x ≤ 20
are used for the sake of the comparison with studies.
When q = 18, graphs are depicted in Fig. 17 at early
times of simulation in which shapes of 3 bound soli-
tons are in complete agreement with the papers [4, 10].
The graph of modules of the numerical solution from
the discrete set of data is also produced successfully
for q = 32 shown in Fig. 18. Both invariants for both
cases remain almost constant and reflect the satisfac-
tory as illustrated in Table 7 with q = 18, C1 and C2

are converged up to 6 and 5 digits, respectively, at time
t = 5. Situation deteriorated little with q = 32 since
changes of C1 and C2 are happened at fourth digit.

4.2 Numerical tests of CNLSEs

Consider the CNLS equations (1.2), and let

u1(x, t) = f1(x, t) + ig1(x, t),

u2(x, t) = f2(x, t) + ig2(x, t),

(4.11)

where fj (x, t) and gj (x, t) for j = 1,2 are the real
functions. Substituting Eq. (4.11) into Eq. (1.2) leads
to the associated two coupled pair of real partial dif-
ferential equations

∂f1

∂t
= −δ

∂f1

∂x
− 1

2

∂2g1

∂x2
− p1g1,

∂g1

∂t
= −δ

∂g1

∂x
+ 1

2

∂2f1

∂x2
+ p1f1,

∂f2

∂t
= δ

∂f2

∂x
− 1

2

∂2g2

∂x2
− p2g2,

∂g2

∂t
= δ

∂g2

∂x
+ 1

2

∂2f2

∂x2
+ p2g2,

(4.12)

where p1 = (f 2
1 +g2

1 +e(f 2
2 +g2

2)) and p2 = (e(f 2
1 +

g2
1) + f 2

2 + g2
2). For solving (1.2) on the interval

[a, b], artificial boundary conditions uj (a, t) = 0 and
uj (b, t) = 0 for j = 1,2 are needed to model the
physical boundary condition. Therefore, system (4.12)
must be equipped with the following boundary condi-
tions:

f1(a, t) = g1(a, t) = f2(a, t) = g2(a, t) = 0,

f1(b, t) = g1(b, t) = f2(b, t) = g2(b, t) = 0,
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Fig. 11 Conservation
quantity for A = 1 and
A = 1.78 with h = 0.15,
t = 0.002, M = 4000, and
χ = 500

Fig. 12 Conservation
quantity for A = 1 and
A = 1.78 with h = 0.15,
t = 0.002, M = 4000, and
χ = 500

Table 5 Error of conserved quantities for Maxwellian with pa-
rameters M = 4000, χ = 500, h = 0.15 and t = 0.002

t EC1 EC2

A = 1
1 −5.9e−011 −8.2e−010
2 −9.6e−011 −1.1e−009
3 −6.0e−011 1.5e−007
4 −1.5e−008 1.2e−005
5 −2.6e−007 2.9e−005
6 −5.8e−007 −3.1e−005

A = 1.78
1 3.5e−011 4.8e−010
2 3.8e−011 6.9e−010
3 1.1e−010 −6.4e−009
4 −2.0e−008 −4.5e−006
5 −9.2e−007 −4.7e−005
6 −6.0e−006 −9.8e−005

where t ∈ [0, T ]. Then we choose some center points

ξ1 < ξ2 < · · · < ξN,

in the interval [a, b] and approximate f1, f2, g1 and
g2 as follows:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(x, t) �
N∑

j=1

f1j (t)IM,χ (x, ξj ),

f2(x, t) �
N∑

j=1

f2j (t)IM,χ (x, ξj ),

g1(x, t) �
N∑

j=1

g1j (t)IM,χ (x, ξj ),

g2(x, t) �
N∑

j=1

g2j (t)IM,χ (x, ξj ).

(4.13)
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Fig. 13 Birth of a soliton for A = 1.78, h = 0.125, t = 0.001,
M = 4000, χ = 150

Fig. 14 Birth of a soliton for A = 1, h = 0.125, t = 0.001,
M = 4000, χ = 150

Fig. 15 Amplitude of birth of a soliton for h = 0.125,
t = 0.001, M = 4000, χ = 150

Assuming that N collocation points are distributed
uniformly in the domain [a, b] as a = x1 < · · · <

xN = b and substituting (4.13) into (4.12) and impos-
ing boundary conditions, a system of ordinary differ-
ential equations will be obtained which can be solved
with the aid of RK4. In order to obtain a reliable so-
lution, discrete conservation quantities are important

features in computing smooth soliton solutions of the
CNLS equations. The mass, momentum, and energy
conservation quantities of the solution to Eq. (1.2) are
computed numerically by employing the composite
rectangle rules as follows:

I1 =
∫ ∞

∞
|u1|2 dx ≈ h

N∑
j=0

∣∣uj

1

∣∣2
,

I2 =
∫ ∞

∞
|u2|2 dx ≈ h

N∑
j=0

∣∣uj

2

∣∣2
,

I3 =
∫ ∞

∞
i

2∑
l=1

(ululx − ulxul) dx

≈ h

N∑
j=0

i
((

u
j

1u
j

1x − u
j

1xu
j

1

) + (
u

j

2u
j

2x − u
j

2xu
j

2

))
,

I4 =
∫ ∞

∞

(
1

2

2∑
l=1

|ulx |2 − 1

2

2∑
l=1

|ul |4 − e|u1|2|u2|2
)

dx

≈ h

N∑
j=1

(
1

2

2∑
l=1

∣∣uj
lx

∣∣2 − 1

2

2∑
l=1

∣∣uj
l

∣∣4 − e
∣∣uj

1

∣∣2∣∣uj

2

∣∣2

)
.

For k = 1,2,3,4, the relative error EIk is defined

as EIk = Ik−I 0
k

I 0
k

where I 0
k is the value of conserved

quantity Ik at time t = 0. Furthermore, the accuracy of
the method is measured by using the L∞ error norm
defined by

E∞ = max
1≤x≤N

(∣∣u1(xj , t)
∣∣ − |f1j + ig1j |

)
.

The exact solution of Eq. (1.2) is

u1(x, t) =
√

2α

1 + e
sech

(√
2α(x − νt)

)

× exp

(
i(ν − δ)x −

(
ν2 − δ2

2
− α

)
t

)
,

u2(x, t) =
√

2α

1 + e
sech

(√
2α(x − νt)

)

× exp

(
i(ν + δ)x −

(
ν2 − δ2

2
− α

)
t

)
,

where α and ν are real parameters. Consider the CNLS
equations (1.2), subject to the initial conditions

u1(x,0) =
√

2α

1 + e
sech (

√
2αx) exp

(
i(ν − δ)x

)
,

u2(x,0) =
√

2α

1 + e
sech (

√
2αx) exp

(
i(ν + δ)x

)
,

(4.14)
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Fig. 16 Birth of soliton
conservation quantity for
h = 0.125, t = 0.001,
M = 4000, χ = 150

Table 6 Error of birth of a mobile soliton with A = 1 and A =
1.78, h = 0.125, t = 0.001, M = 4000, χ = 150 on domain
[−30,80]
t EC1 EC2

A = 1.78

1 −4.1e−011 −2.6e−010

2 −6.5e−011 −4.6e−010

3 −1.6e−010 −1.6e−010

4 −1.5e−008 5.4e−008

5 −1.7e−007 1.8e−007

6 −1.3e−006 −3.6e−006

A = 1

1 −1.1e−011 −7.7e−011

2 −1.9e−011 −1.3e−010

3 −4.2e−010 1.5e−009

4 −1.5e−008 6.8e−009

5 −9.3e−008 −5.5e−008

6 −4.5e−007 −1.8e−006

Fig. 17 Bound state for λ = 3

Fig. 18 Bound state for λ = 4

Table 7 Error of bound state solitons for h = 0.1, t = 0.0005,
M = 4000 and χ = 700 over a region −20 ≤ x ≤ 20

t EC1 EC2

λ = 3
1 2.3e−009 1.8e−005
2 −2.2e−007 1.0e−006
3 −9.9e−007 −2.8e−006
4 −1.7e−006 9.0e−006
5 −2.4e−006 1.1e−005

λ = 4
1 4.7e−006 −2.5e−004
2 −3.1e−005 9.0e−004
3 −3.7e−005 −6.8e−004
4 −4.7e−005 −4.8e−004
5 −5.2e−005 −7.8e−004

where α, e, and ν are constants [7, 17]. By setting

a = −20, b = 60, ν = 1, α = 1, e = 1, δ = 0,

(4.15)



Numerical solution of the Schrödinger equations by using Delta-shaped basis functions 89

Table 8 Error of a single soliton solution at t = 12 for M =
4000

Method χ h t E∞

δ = 0

Delda-shaped 1200 0.3125 0.025 4.5e−005

Delda-shaped 1200 0.3125 0.01 4.7e−005

Delda-shaped 300 0.125 0.002 1.8e−011

Delda-shaped 400 0.2 0.002 6.3e−007

Delda-shaped 600 0.2 0.002 1.5e−008

CDQ [15] 0.3125 0.025 4.8e−005

CDQ [15] 0.3125 0.01 4.8e−005

CDQ [15] 0.125 0.008 3.8e−009

DRK4 [6] 0.1 0.008 2.0e−004

DIMPR [6] 0.1 0.008 2.3e−004

GM [7] 0.1 0.01 3.6e−002

δ = 0.5

Delda-shaped 300 0.3125 0.04 4.0e−005

Delda-shaped 400 0.2 0.02 1.9e−007

Delda-shaped 400 0.2 0.002 1.3e−008

Delda-shaped 400 0.125 0.002 1.2e−008

CDQ [15] 0.3125 0.04 5.0e−005

CD [8] 0.2 0.04 2.8e−003

CSC [17] 0.2 0.04 3.5e−004

Table 9 Relative errors of conserved quantities for a single soli-
ton with M = 4000, χ = 600, h = 0.2 and t = 0.002

t IE1 IE3 IE4

8 4.4e−014 2.3e−014 7.4e−013

16 −3.8e−013 −6.0e−013 1.1e−012

24 −8.6e−013 −1.3e−012 1.4e−012

32 −1.1e−012 −1.7e−012 9.1e−013

40 −5.6e−013 −8.7e−013 1.8e−012

numerical results are compared with the methods of
CDQ [15], Galerkin (GM) [7], DRK4 [6], and DIMPR
[6] and by setting

a = −20, b = 80, ν = 1, α = 1, e = 2/3, δ = 0.5,

(4.16)

numerical results are compared with the methods of
CDQ [15], central difference (CD) [8] and Chebyshev
spectral collocation (CSC) [17] in Table 8. In Table 9,
we present relative errors of the conserved quantities

obtained from the proposed scheme for parameters
setting (4.15) with h = 0.2 and t = 0.002. Consid-
ering parameters setting (4.16), Fig. 19 shows the evo-
lution of single soliton moving to right with velocity
ν = 1.

4.2.1 Interaction of two solitary waves

Interaction of two solitary waves are studied by using
the initial conditions

u1(x,0) =
2∑

j=1

√
2αj

1 + e
sech(

√
2αjxj )

× exp
(
ii(νj − δ)xj

)
,

u2(x,0) =
2∑

j=1

√
2αj

1 + e
sech(

√
2αjxj )

× exp
(
i(νj + δ)xj

)
.

(4.17)

We choose parameters x1 = x, x2 = x − 25, α11 = 1,
α2 = 0.5, ν1 = 1, ν2 = 0.1, δ = 0.5, and e = 2/3 to
compare our results with those in the literature [8, 17].
These parameters give amplitude 1.095445114992280
and 0.7745966692414844 for larger and smaller soli-
tary wave, respectively. Computations are carried out
up to time t = 50 with time step t = 0.002 and
space step h = 0.2 on the interval −20 ≤ x ≤ 70.
From the initial conditions (4.17), the solitary wave
is propagated rightwards. In this process, the larger
and smaller wave unite and separate while preserving
their original shapes. Plots of both waves during the
interaction from time t = 0 to time t = 50 are shown
in Fig. 20. Three conserved quantities I1, I3 and I4

are presented in Table 10. We used values M = 4000,
χ = 600, h = 0.2, t = 0.002, and domain [−20,70]
to obtain the value of the conserved quantities.

4.2.2 Interaction of three solitary waves

Interaction of three solitary waves are studied by using
the initial conditions

u1(x,0) =
3∑

j=1

√
2αj

1 + e
sech(

√
2αjxj )

× exp
(
i(νj − δ)xj

)
,

u2(x,0) =
3∑

j=1

√
2αj

1 + e
sech(

√
2αjxj )

× exp
(
i(νj + δ)xj

)
.
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Fig. 19 Motion of single
soliton with M = 4000,
χ = 600, h = 0.2, and
t = 0.002

Fig. 20 Interaction of two
solitons with M = 4000,
χ = 600, h = 0.2 and
t = 0.002

Table 10 Conserved quantities for interaction of two solitons
with M = 4000, χ = 600, h = 0.2, and t = 0.002

t I1 I3 I4

0 2.8970563 −7.2682 0.9

10 2.8970563 −7.2682 0.9

20 2.8970563 −7.2682 0.9

30 2.8970563 −7.2682 0.8

40 2.8970563 −7.2682 0.8

50 2.8970561 −7.2681 0.8

We choose the following parameters x1 = x, x2 =
x − 25, x3 = x − 50, α1 = 1.2, α2 = 0.72, α3 = 0.36,
ν1 = 1.0, ν2 = 0.1, ν3 = −1.0, δ = 0.5, and e = 2/3
on domain [−20,70]. We conclude that among the
interaction of three solitary waves, two of them are
moving in the same direction with different velocities,
while the third one is moving in the opposite direc-
tion. It is observed that larger, medium, and solitary
waves unite and separate while preserving their orig-
inal shape (see Fig. 21). The values of the three con-
served quantities are shown in Table 11.

4.3 Numerical tests of SCNLSEs

For testing elastic collisions, inelastic collisions and
fusion properties of two solitons, we consider Eq. (1.3)

Table 11 Conserved quantities for interaction of three solitons
with M = 4000, χ = 600, h = 0.2, and t = 0.002

t I1 I3 I4

0 4.317266 −3.9392 1.5

10 4.317266 −3.9392 1.5

20 4.317266 −3.9392 1.5

30 4.317266 −3.9391 1.3

40 4.317266 −3.9391 1.3

50 4.317265 −3.9388 1.3

with initial conditions

u1(x,0) = √
2 sech

(
x + D0

2

)
exp(iν0x/4),

u2(x,0) = √
2 sech

(
x − D0

2

)
exp(−iν0x/4),

where D0 and ν0 are constants. First, we consider the
elastic collision of two solitons by choosing the pa-
rameters β = 1, α1 = 1, α2 = −1/6, γ = 1, Γ = 1,
ν0 = 1, D0 = 25. Figure 22 shows that the proposed
scheme simulates the solitary waves well. The two
waves emerge without any changes in their shapes.
This phenomenon shows that the interaction is elas-
tic. It must be pointed out that the elastic collisions are
those from which the newly formed shapes reemerge
under deformation.
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Fig. 21 Interaction of three
solitons with h = 0.02,
t = 0.002, χ = 600,
M = 4000, and δ = 0.5

Fig. 22 Elastic collision. β = 1, α1 = 1, α2 = −1/6, γ = 1,
Γ = 1, ν0 = 1, D0 = 25, and M = 4000

Now we consider the inelastic-transitive collision
of two solitons. To do so, we choose the parame-
ters β = 1, α1 = 1, α2 = −1/6, γ = 1, Γ = 0.0175,
ν0 = 1, D0 = 25. Figure 23 shows inelastic collision
of two solitons. From this figure, we see that, after the
interaction, the solitary waves leave dispersive oscil-
lations and their amplitudes are altered. Both waves
change their shape and the interaction is inelastic.

We consider now the fusion of two solitons by
choosing the parameters β = 1, α1 = 1, α2 = −1/3,
γ = 1, Γ = 0.0175, and ν0 = 0.4, D0 = 20. From
Fig. 24, we see that the two solitons collapse into one
soliton.

5 Conclusion

Applicability and efficiency of a semidiscrete method
based on the newly developed Delta-shaped basis

Fig. 23 Inelastic collision. β = 1, α1 = 1, α2 = −1/6, γ = 1,
Γ = 0.0175, ν0 = 1, D0 = 25, and M = 4000

functions have been tested by solving some Schrö-
dinger-type equations. The fourth-order Runge–Kutta
method for the time integration of the resulting sys-
tems of nonlinear ordinary differential equations has
been applied. Some satisfactory numerical simulations
such as motion of single solitary wave and double and
triple solitary waves, generation of solitary waves us-
ing the Maxwellian initial condition, birth of mobile
soliton, bound state of solitons, elastic and inelastic
collision of two solitons, and fusion of two solitons
have been carried out.

Without taking computational costs into account,
the first two test problems, the motion of single soliton
and interaction of two solitons, have been simulated
with more accurate results in comparison with earlier



92 R. Mokhtari et al.

Fig. 24 Fusion of two
solitons. β = 1, α1 = 1,
α2 = −1/3, γ = 1,
Γ = 0.0175 and ν0 = 0.4,
D0 = 20, and M = 4000

works and the proposed method can compete very well
with the successful method of differential quadrature
[10, 11].

Furthermore, the performance of the method has
been monitored by computing some conserved quan-
tities. We have found that for almost all of our experi-
ments, invariant quantities are conserved satisfactorily.

Interaction of double and triple solitary waves, gen-
eration of solitary waves using the Maxwellian initial
condition, birth of mobile soliton, bound state of soli-
tons, and other numerical simulations have been car-
ried out as well as some earlier successful studies.

Finally, our scheme is sensibly conservative and
can generate reasonable numerical results.
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