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Abstract This paper studies the chaos synchroniza-
tion of the Rikitake system based on Takagi–Sugeno
fuzzy control techniques. By employing the Lyapunov
function and linear matrix inequality approach, the
fuzzy controller design is presented to synchronize the
two identical Rikitake systems. Finally, numerical re-
sults and simulations are given to demonstrate the ad-
vantages of the proposed results.
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1 Introduction

The synchronization of chaotic systems has been in-
vestigated since its introduction in the paper [1] by
Pecora and Carrol in 1990. For instance, chaotic dy-
namics can be found in various real-life processes,
for instance in weather, turbulences in liquids, human
heart beating, brain activities, financial markets, pop-
ulation explosion, among many others. For that rea-
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son, synchronization of chaotic systems is an interest-
ing topic that, has caught the attention of the nonlin-
ear science community [2–4]. Two research directions
have been already conformed in synchronizing chaos:
(i) analysis and (ii) synthesis. Analysis problem com-
prises: (a) the classification of synchronization phe-
nomena [5], (b) the construction of a general frame-
work for unifying chaotic synchronization [6], and
(c) the comprehension of the synchronization proper-
ties, for instance, robustness [7] or geometry [8]. On
the other hand, synthesis of synchronization systems
concerns the problem of finding the control force such
that two chaotic systems share time evolution in some
sense. Both analysis and synthesis directions are ac-
tive research areas and one of the current challenges
is to achieve and explain synchronization of a chaotic
system with a different model. In fact, the study of the
chaotic synchronization with different models makes
sense in several systems, (see for details, [9–17], and
references therein).

Further, geophysicists have long been puzzled by
one striking aspect of the earth’s geomagnetic field.
The dipole has reversed its polarity many times over
geological history. The average interval between ge-
omagnetic polarity reversals is about 7 × 105 years.
However, the time series of reversals is highly irregu-
lar: There have been intervals as long as 3 × 107 years
when the polarity apparently remained unchanged.
One model which attempts to explain the reversal of
the earth’s magnetic field is the Rikitake system [18].
Among the studied topics related with the Rikitake
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system, we are recalling a few of them together with
a partial list of references, namely: shape and dynam-
ics [19, 20], the chaotic behavior [21–23], time delay
[24], passivity [25], secure communications [26–29],
parameter estimation [28–30] and many others.

On the other hand, recently fuzzy control has been
proved to be a powerful method for the control prob-
lem of complex nonlinear systems. For many real-
life systems, which are highly complex and inher-
ently nonlinear, conventional approaches to model-
ing often cannot be applied whereas the fuzzy ap-
proach might be the only appropriate alternative. In
particular, the control technique based on the so-called
Takagi–Sugeno (T-S) fuzzy model [31] has attracted a
great deal of attention. The main purpose of the T-S
fuzzy model is to represent or approximate a com-
plex nonlinear system. The T-S fuzzy model approach
will provide a powerful method for analysis of nonlin-
ear systems [32–34]. There are two model-based ap-
proaches to construct theoretically a T-S fuzzy system
of a nonlinear system. One is from local linear approx-
imation, which generates linear consequence with a
constant term included in each rule, called an affine
T-S fuzzy system [35]. The other is via a sector non-
linearity concept, in general, results in constant free
linear consequence for each rule, called a linear T-S
fuzzy system [32]. Both fuzzy systems are demon-
strated to be universal approximations to any smooth
nonlinear system [32, 35]. However, it is impractical
to describe a theoretical conversion of a mathematical
model into a T-S fuzzy model if the nonlinear system
is too complex. Subsequently, this fuzzy control was
successfully applied in many areas such as servo con-
trol design [35], industries [36], medicine [37], speed
wind turbine [38], energy resource systems [39], etc.
Furthermore, chaos synchronization based on the T-S
fuzzy control approach has been widely discussed in
many applications [40–46].

For more general nonlinear systems, it may be dif-
ficult to formulate the chaos synchronization based on
T-S fuzzy control techniques in terms of linear ma-
trix inequalities (LMIs). Since the Rikitake system is
a nonlinear system, the synchronization scheme based
on T-S fuzzy control techniques can be established in
terms of LMIs. For instance, LMI techniques [47] have
been used in [32], which help to design fuzzy con-
trollers capable of regulating chaotic systems based
on their T-S fuzzy representation. In this paper, new
criterion for T-S fuzzy Rikitake system and synchro-
nization results for two identical Rikitake systems are

developed in terms of LMIs, which can be efficiently
solved by resorting to some standard algorithms [47]
and different from the existing literature [23, 25–29],
based on Lyapunov stability theory and fuzzy state-
feedback controllers. Finally, numerical results are
provided to show the effectiveness of the obtained re-
sults.

The detailed arrangement is as follows. Section 2
briefs the concepts of identical synchronization; Sect. 3
describes the Rikitake system; In Sect. 4, the Riki-
take system and its fuzzy modeling theory are intro-
duced. In Sect. 5, a chaotic synchronization scheme
for the Rikitake system based on T-S fuzzy control
techniques are given. In Sect. 6, robust chaotic syn-
chronization scheme for an uncertain Rikitake system
based on T-S fuzzy control techniques are given, and
numerical simulations to verify the results are shown
in Sect. 7. Section 8 draws some conclusions.

2 Description of identical synchronization

Chaotic systems present high sensitivity to initial con-
ditions. Nevertheless, it is possible to synchronize
these kinds of complex systems, to drive them to
evolve on the same chaotic trajectory. Synchronization
of identical chaotic systems can be seen as an asymp-
totic equality of the state variables while both of the
systems evolve in time. This type of synchronization is
known as identical synchronization, conventional syn-
chronization, or complete synchronization. Consider
the following chaotic systems with controller u:

ẋ(t) = f
(
x(t)

)
as the drive system

and

ẏ(t) = f̂
(
y(t), x(t), u(t)

)
as the response system.

The existence of identical synchronization implies that
limt→∞ ‖e(t)‖ = 0, where e(t) = x(t) − y(t) is the
synchronizing error.

3 Description of Rikitake system

The Rikitake system is a simple mechanical model
used to study the reversals of the magnetic field of the
Earth, idealized by the Japanese geophysicist Rikitake
[18], and consists of two identical single Faraday-disk
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dynamos of the Bullard type coupled together. The
Rikitake two-disk dynamo system is depicted in Fig. 1,
and consists of two Bullard dynamos coupled together
such that the wire of one disk is wrapped around the
other, which was described by the four-dimensional
nonlinear ordinary differential equations:

L1İ1 = −R1I1 + Ω1G1I2,

L2İ2 = −R2I2 + Ω2G2I1,

I1Ω̇1 = τ1 − G1I1I2,

I2Ω̇2 = τ2 − G2I1I2,

(1)

where the quantities that apply to the first disk are de-
noted with a subscript 1, and the quantities pertinent
to the second disk have a subscript 2. Further, Ω1 and
Ω2 are angular velocity of the disks; I1 and I2 are the
current running through the system; G1 and G2 are
the mutual inductance of the disks; R1 and R2 are the
resistance of the disks; I1 and I2 are the rotational in-

Fig. 1 Rikitake’s system of coupled disks

ertia of the disks; L1 and L2 are the self inductance
of the wires; τ1 and τ2 is the externally applied torque
driving the disks. System (1) can be cast into the fol-
lowing three-dimensional nonlinear ordinary differen-
tial equation form:

ẋ1 = −μx1 + x3x2,

ẋ2 = −μx2 + (x3 − a)x1, (2)

ẋ3 = 1 − x1x2,

where the parameters μ and a have some physical
meaning when they are positive. For a physical mean-
ing of the states x1, x2, and x3, one can see [18].
However, the states x1 and x2 are directly related to
the currents through each disc of the dynamo system,
and x3 is related to the angular velocity of one of the
discs. The choice of the parameters a > 0 and μ > 0
reflects a physical meaning in the Rikitake model. This
system displays a chaotic behavior which is shown in
Fig. 2 for the parameters values in a neighborhood
{μ = 2, a = 5} and for a large enough set of initial
conditions. It is interesting to note that Eq. (2) looks
similar to the Lorenz equations. But there are a few
differences, the most important of which is the fact that
there is a constant in the last equation.

4 T-S fuzzy modeling of the Rikitake system

For the general nonlinear Rikitake system (2), it is not
convenient to find an appropriate Lyapunov function
V such that the conditions for synchronization is sat-
isfied. The approach assumes that the chaotic systems
can be represented by means of T-S fuzzy models,

Fig. 2 Rikitake system
chaotic attractor in
(x1, x2, x3)-space
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Fig. 3 (a) Membership functions M1
1 (z1(t)) and M2

1 (z1(t)); (b) Membership functions M1
2 (z2(t)) and M2

2 (z2(t))

which allows the controllers to be designed on the ba-
sis of linear techniques. Moreover, fuzzy models have
a natural capability of describing, or at least of approx-
imating, the dynamics of very complex nonlinear sys-
tems. For that reason, they have been used as an im-
portant tool to solve problems involving chaotic sys-
tems including synchronization. Hence, the T-S fuzzy
control logic has also been potential tool for approx-
imating the nonlinear Rikitake systems, which yields
an easy way to use Lyapunov stability theory [32], in
terms of LMIs.

For convenience, the system (2) can be written in
the state-space matrix form as

ẋ(t) = Ax(t) + B, (3)

where

A =
⎡

⎣
−μ x3(t) 0

x3(t) − a −μ 0
0 −x1(t) 0

⎤

⎦, B =
⎡

⎣
0
0
1

⎤

⎦ ,

x(t) = [
x1(t), x2(t), x3(t)

]T ∈ R3.

For the nonlinear terms, define z1(t) = x3(t) and
z2(t) = x1(t), then we have

A =
⎡

⎣
−μ z1(t) 0

z1(t) − a −μ 0
0 −z2(t) 0

⎤

⎦ , B =
⎡

⎣
0
0
1

⎤

⎦ .

Next, calculate the minimum and maximum values
of z1(t) and z2(t) under x3(t) ∈ [−1,1] and x1(t) ∈
[−1,1], respectively, then we get the following:

max
x3(t),x1(t)

z1(t) = 1, min
x3(t),x1(t)

z1(t) = −1,

max
x3(t),x1(t)

z2(t) = 1, min
x3(t),x1(t)

z2(t) = −1.

From the maximum and minimum values, z1(t) and
z2(t) can be represented by

z1(t) = x3(t) = M1
1

(
z1(t)

) · 1 + M2
1

(
z1(t)

) · (−1),

z2(t) = x1(t) = M1
2

(
z2(t)

) · 1 + M2
2

(
z2(t)

) · (−1),

where

M1
1

(
z1(t)

) + M2
1

(
z1(t)

) = 1,

M1
2

(
z2(t)

) + M2
2

(
z2(t)

) = 1.

Therefore, the membership functions can be calcu-
lated as

M1
1

(
z1(t)

) = 1

2

(
1 + x3(t)

)
,

M2
1

(
z1(t)

) = 1

2

(
1 − x3(t)

)
,
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M1
2

(
z2(t)

) = 1

2

(
1 + x1(t)

)
,

M2
2

(
z2(t)

) = 1

2

(
1 − x1(t)

)
.

Figures 3(a), (b) show the membership functions. By
using M1

1 , M2
1 , M1

2 , and M2
2 , the controlled nonlinear

Rikitake system (3) with control input u(t) can be ex-
pressed by the following T-S fuzzy models:

Plant Rule 1: IF z1(t) is M1
1 and z2(t) is M1

2 THEN

ẋ(t) = A1x(t) + B1 + C1u(t),

Plant Rule 2: IF z1(t) is M1
1 and z2(t) is M2

2 THEN

ẋ(t) = A2x(t) + B2 + C2u(t),

Plant Rule 3: IF z1(t) is M2
1 and z2(t) is M1

2 THEN

ẋ(t) = A3x(t) + B3 + C3u(t),

Plant Rule 4: IF z1(t) is M2
1 and z2(t) is M2

2 THEN

ẋ(t) = A4x(t) + B4 + C4u(t).

Here,

A1 =
⎡

⎣
−μ 1 0

1 − a −μ 0
0 −1 0

⎤

⎦ ,

A3 = A2 =
⎡

⎣
−μ 1 0

1 − a −μ 0
0 1 0

⎤

⎦ ,

A3 =
⎡

⎣
−μ −1 0

−1 − a −μ 0
0 −1 0

⎤

⎦ ,

A3 = A4 =
⎡

⎣
−μ −1 0

−1 − a −μ 0
0 1 0

⎤

⎦ ,

B1 = B2 = B3 = B4 =
⎡

⎣
0
0
1

⎤

⎦ ,

C1 = C2 = C3 = C4 =
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ ,

u(t) = [
u1(t), u2(t), u3(t)

]T ∈ R3.

By using center average defuzzifier method, the dy-
namical model of the Rikitake system (3) can be re-
formulated as

ẋ(t) =
4∑

i=1

hi

(
z(t)

){
Aix(t) + Bi + Ciu(t)

}
, (4)

where

h1
(
z(t)

) = M1
1

(
z1(t)

) × M1
2

(
z2(t)

)
,

h2
(
z(t)

) = M1
1

(
z1(t)

) × M2
2

(
z2(t)

)
,

h3
(
z(t)

) = M2
1

(
z1(t)

) × M1
2

(
z2(t)

)
,

h4
(
z(t)

) = M2
1

(
z1(t)

) × M2
2

(
z2(t)

)
.

This fuzzy model exactly represents the nonlinear Rik-
itake system (3) in the region [−1,1] × [−1,1] on the
x3x1 plane.

As discussed in Sect. 2 and by using drive-response
concept, the system (4) of T-S fuzzy Rikitake system
(master system) is given as

ẋ(t) =
4∑

i=1

hi

(
z(t)

){
Aix(t) + Bi

}
. (5)

Then the controlled response system (slave system) is
given by

ẏ(t) =
4∑

i=1

hi

(
ẑ(t)

){
Aiy(t) + Bi + Ciu(t)

}
, (6)

where y(t) = [y1(t), y2(t), y3(t)]T ∈ R3 is the state
vector, u(t) is the control input, and Ci is the known
constant matrix. For chaotic systems, the premise
variables in the T-S fuzzy models are used as out-
puts [40, 42]. Therefore, it is straightforward that the
premise variables in the slave system are measur-
able and same as the master. In other words, we set
hi(ẑ(t)) = hi(z(t)).

Hence, the synchronization error system is writ-
ten as

ė(t) =
4∑

i=1

hi

(
z(t)

){
Aie(t) + Ciu(t)

}
. (7)

where the synchronization error e(t) = y(t) − x(t).

Lemma 1 [33] If the following conditions hold,

Mii < 0, 1 ≤ i ≤ r,
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1

r − 1
Mii + 1

2
(Mij + Mji) < 0, 1 ≤ i �= j ≤ r,

then the following inequality holds:

r∑

i=1

r∑

j=1

hihjMij < 0,

where hi , 1 ≤ i ≤ r satisfy 0 ≤ hi ≤ 1,
∑r

i=1 hi = 1;
and r denotes the number of IF-THEN rules.

5 Conditions for chaotic synchronization
of the Rikitake system

Next, the LMI problem for achieving the synchroniza-
tion for two identical Rikitake system is presented.
Now by using the T-S fuzzy control technique, we can
obtain the following sufficient conditions for synchro-
nization of nonlinear Rikitake system using fuzzy state
feedback controllers.

Theorem 1 If there exist symmetric positive definite
matrix X and symmetric matrices Yj , (j = 1,2,3,4)

such that

Θii < 0, for 1 ≤ i ≤ r, (8)

and

1

r − 1
Θii + 1

2
Θij + 1

2
Θji < 0, for 1 ≤ i �= j ≤ r,

(9)

where

Θij = AiX + XAT
i + CiYj + YT

j CT
i ,

then the synchronization error system (7), under the
control input u(t) is given by Kj = YjX

−1e(t), is
globally asymptotically stable. Here, r is the number
of IF-THEN rules.

Proof The closed-loop error system with the control
input u(t) = ∑4

j=1 hj (z(t))Kj e(t), where Kj ∈ Rn×n

is the gain matrix of the control input u(t), can be writ-
ten as

ė(t) =
4∑

i=1

4∑

j=1

hi

(
z(t)

)
hj

(
z(t)

){[Ai + CiKj ]e(t)
}
.

(10)

Consider the following Lyapunov function:

V
(
e(t)

) = eT (t)P e(t),
(
P = P T > 0

)
.

The time derivative of V (e(t)) along the trajectory of
(10) is

V̇
(
e(t)

) = ėT (t)P e(t) + eT (t)P ė(t),

=
{

4∑

i=1

4∑

j=1

hi

(
z(t)

)
hj

(
z(t)

)

× [
Aie(t) + CiKje(t)

]
}T

P e(t)

+ eT (t)P

{
4∑

i=1

4∑

j=1

hi

(
z(t)

)
hj

(
z(t)

)

× [
Aie(t) + CiKje(t)

]
}

,

=
4∑

i=1

4∑

j=1

hi

(
z(t)

)
hj

(
z(t)

){
eT (t)AT

i P e(t)

+ eT (t)KT
j CT

i P e(t) + eT (t)PAie(t)

+ eT (t)PCiKje(t)
}
,

=
4∑

i=1

4∑

j=1

hi

(
z(t)

)
hj

(
z(t)

)
eT (t)

[
PAi

+ AT
i P + PCiKj + KT

j CT
i P

]
e(t),

V̇
(
e(t)

) = eT (t)

{
4∑

i=1

4∑

j=1

hi

(
z(t)

)
hj

(
z(t)

)[
PAi

+ AT
i P + PCiKj + KT

j CT
i P

]
}

e(t).

If the following matrix inequality is satisfied,

4∑

i=1

4∑

j=1

hi

(
z(t)

)
hj

(
z(t)

){
PAi + AT

i P

+ PCiKj + KT
j CT

i P
}

< 0, (11)

then we have

V̇
(
e(t)

)
< 0. (12)
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By using Lemma 1 and Schur complement lemma
[48], the matrix inequality (11) is equivalent to

PAi + AT
i P + PCiKi + KT

i CT
i P < 0,

for 1 ≤ i ≤ r, (13)

and
{

1

r − 1

(
PAi + AT

i P + PCiKi + KT
i CT

i P
)

+ 1

2

(
PAi + AT

i P + PCiKj + KT
j CT

i P
)

+ 1

2

(
PAj + AT

j P + PCjKi + KT
i CT

j P
)}

< 0,

for 1 ≤ i �= j ≤ r. (14)

Pre- and Post- multiplying by P −1 and introducing
change of variables X = P −1, Yj = KjP

−1, matrix
inequalities (13) and (14) are equivalent to LMIs (8)
and (9) respectively. Then, the gain matrix of the con-
trol input u(t) is given by Kj = YjX

−1. This com-
pletes the proof of Theorem 1. �

Remark 1 Comparing with the past works [23, 25, 28],
and [29], the main contributions of our method can
be summarized as follows: (i) In the existing litera-
ture, it seems that there are no results on the T-S fuzzy
model for Rikitake system. This work mainly focuses
on the synchronizing error for Rikitake system based
on T-S fuzzy modelling representation; (ii) Since all
the derived criteria are formulated in terms of LMIs,
the synchronization error analyzing for the considered
systems are readily achieved by any available LMI
solvers; (iii) The superiority and practicability of the
derived approach are demonstrated by a Rikitake non-
linear system.

Remark 2 Among various fuzzy modeling themes, the
T-S model [31] has been one of the most popular mod-
elling frameworks. A general T-S model employs an
affine model with a constant term in the consequent
part for each rule. This is often referred as an affine
T-S model [35, 40], and [41]. On the other hand, the
special type of T-S fuzzy model in which the con-
sequent part for each rule is represented by a linear
model without a constant term [32, 34]. This type of
T-S fuzzy model is often referred as T-S fuzzy model
with linear rule consequence, or simply a linear T-S
model. The master system (5) and slave system (6)

considered in this paper are in the form of an affine
T-S fuzzy model, whereas the synchronization error
system (7) is a simple linear T-S fuzzy model.

6 Conditions for robust chaotic synchronization
of the Rikitake system

Meanwhile, parameter uncertainties frequently appear
in practical systems due to the modeling inaccuracies
and/or changes in the environment. It is thus of great
importance to take parameter uncertainties into ac-
count in the master-slave synchronization scheme [7,
11, 16, 28]. Motivated by the above, in this section we
intend to design a robust state feedback control law
for an uncertain model of the Rikitake system (master
system). The uncertain model of the Rikitake system
is in the form

ẋ(t) =
4∑

i=1

hi

(
z(t)

){(
Ai + ΔAi(t)

)
x(t) + Bi

}
, (15)

where

ΔAi(t) = EiFi(t)Hi, (i = 1,2,3,4)

in which Ei and Hi are constant matrices with appro-
priate dimensions, and unknown time-varying matri-
ces Fi(t) satisfying

FT
i (t)Fi(t) ≤ I, ∀t.

It is assumed that all the elements of Fi(t) are
Lebesgue measurable. Further, the controlled response
system (slave system) is given by

ẏ(t) =
4∑

i=1

hi

(
ẑ(t)

){(
Ai + ΔAi(t)

)
y(t)

+ Bi + Ciu(t)
}
, (16)

where y(t) = [y1(t), y2(t), y3(t)]T ∈ R3 is the state
vector, u(t) is the control input, and Ci is the known
constant matrix. Hence, the robust synchronization er-
ror system is written as

ė(t) =
4∑

i=1

hi

(
z(t)

){(
Ai + ΔAi(t)

)
e(t) + Ciu(t)

}
.

(17)

where the synchronization error e(t) = y(t) − x(t).
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Theorem 2 If there exist symmetric positive definite
matrix X, symmetric matrices Yj , (j = 1,2,3,4), and
scalars εi > 0, (i = 1,2,3,4) such that

Ξii < 0, for 1 ≤ i ≤ r, (18)

and

1

r − 1
Ξii + 1

2
Ξij + 1

2
Ξji < 0, for 1 ≤ i �= j ≤ r,

(19)

where

Ξij =
⎡

⎣
AiX + XAT

i
+ CiYj + YT

j
CT

i
εiEi XHi

∗ −εiI 0
∗ ∗ −εiI

⎤

⎦,

then the robust synchronization error system (17),
under the control input u(t) is given by Kj =
YjX

−1e(t), is globally robustly asymptotically stable.
Here, r is the number of IF-THEN rules.

Proof The proof is similar to those in Theorem 1, and
thus are omitted here. �

Remark 3 In this paper, we have presented the T-S
fuzzy model representation for the chaotic Rikitake
system. Further, synchronization control schemes are
based on linear state feedback control methods. At
present, sliding-mode control has become an impor-
tant embranchment of control theory. Sliding-mode
control is strongly robust to parameter uncertainties
and external noise disturbances of the controlled sys-
tem, and has been successfully applied in controlling
chaos [27, 44]. On the other hand, in practical sys-
tems, some unknown parameters and disturbances al-
ways exist that may cause instability and poor perfor-
mance. In this regard, the H∞ synchronization con-
cept has been introduced in [6, 13] to reduce the effect
of the disturbance for chaotic synchronization prob-
lem of a class of chaotic systems via state output feed-
back control scheme based on Lyapunov theory and
LMI framework. In the future, we will combine the
novel sliding-mode control and H∞ control to design
a sliding mode H∞ controller along with the fuzzy
modeling techniques, in order to improve further the
control performance of Rikitake system. Also, we will
consider the uncertain model of the Rikitake system
and design a robust sliding mode H∞ controller. These
works will appear in near future.

7 Numerical results

Example 1 (Synchronization of the Rikitake system
without uncertain parameters)

In this example, to verify and demonstrate the ef-
fectiveness and the feasibility of the presented fuzzy
control method, the simulation results have been per-
formed. The parameters of the Rikitake system are se-
lected as in Sect. 3. From Theorem 1, by using the
MATLAB LMI Solver, the following feasible solu-
tions are obtained.

X = diag{62.5310, 62.5310, 62.5310},

Y1 =
⎡

⎣
100.3782 93.7966 0.0000
93.7966 100.3782 31.2655
0.0000 31.2655 −24.6838

⎤

⎦ ,

Y2 =
⎡

⎣
100.3782 93.7966 0.0000
93.7966 100.3782 −31.2655
0.0000 −31.2655 −24.6838

⎤

⎦ ,

Y3 =
⎡

⎣
100.3782 218.8586 0.0000
218.8586 100.3782 31.2655

0.0000 31.2655 −24.6838

⎤

⎦ ,

Y4 =
⎡

⎣
100.3782 218.8586 0.0000
218.8586 100.3782 −31.2655

0.0000 −31.2655 −24.6838

⎤

⎦ .

The initial conditions of the drive and response sys-
tem are chosen to be (x1(0), x2(0), x3(0)) = (1,−1,1)

and (y1(0), y2(0), y3(0)) = (2,−1,−2), respectively.
Figures 4(a)–(c) display that the trajectories of drive
system and response system with time length 200 sec-
onds whereas the trajectories of drive system and re-
sponse system with time length 25 seconds is depicted
in Figs. 5(a)–(c). Chaotic attractor of Rikitake system
(both master and slave) in different planes are given in
Figs. 6(a)–(f). Synchronization errors of the Rikitake
system with fuzzy control law u(t) are shown in Fig. 7.
In Fig. 7, we can see that the synchronization error
system (7) asymptotically converges to zero. That is,
the slave system follows almost perfectly the master
system. Control input u(t) of the Rikitake system is
shown in Fig. 8.

Example 2 (Synchronization of the Rikitake system
with uncertain parameters) In this example, the syn-
chronization of an uncertain Rikitake system and their
numerical simulation results have been performed.
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Fig. 4 Synchronization between master system and slave systems with time length 200 seconds

Fig. 5 Synchronization between master system and slave systems with time length 25 seconds
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Fig. 6 Projections of the Rikitake attractor into the plane (a) x1x2; (b) x1x3; (c) x2x3; (d) y1y2; (e) y1y3; (f) y2y3

Fig. 7 Synchronization
errors e(t)

The parameters of the Rikitake system are selected as
in Sect. 3. The uncertain matrix parameters Ei and Hi

are given by

E1 =
⎡

⎣
0.1 0 0

−0.1 0 0
0 0 0

⎤

⎦ ,

E2 =
⎡

⎣
0 0 0
0 −0.1 0
0 0 0

⎤

⎦ ,

E3 =
⎡

⎣
−0.1 0 0
0.1 0 0
0 0 0

⎤

⎦ ,

E4 =
⎡

⎣
0 0 0
0 0.1 0
0 0 0

⎤

⎦ ,

H1 =
⎡

⎣
0.01 0 0

−0.01 0 0
0 0 0

⎤

⎦ ,
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Fig. 8 Control input u(t)

Fig. 9 Synchronization between uncertain master system and uncertain slave systems with time length 200 seconds

H2 =
⎡

⎣
0.01 0 0

0 −0.01 0
0 0 0

⎤

⎦ ,

H3 =
⎡

⎣
−0.01 0 0
0.01 0 0

0 0 0

⎤

⎦ ,

H4 =
⎡

⎣
−0.01 0 0
0.01 0 0

0 0 0

⎤

⎦ ,

and let

F1(t) = F2(t) = F3(t) = F4(t) = sin(t).

From Theorem 2, by using the MATLAB LMI Solver,
the following feasible solutions are obtained:

X = diag{26.8435, 26.9939, 26.9939},

Y1 =
⎡

⎣
43.0314 40.5660 0.0000
40.5660 43.3320 13.4969
0.0000 13.4969 −10.6557

⎤

⎦ ,

Y2 =
⎡

⎣
43.0314 40.5660 0.0000
40.5660 43.3320 −13.4969
0.0000 −13.4969 −10.6557

⎤

⎦ ,
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Fig. 10 Projections of the uncertain Rikitake attractor into the plane (a) x1x2; (b) x1x3; (c) x2x3; (d) y1y2; (e) y1y3; (f) y2y3

Fig. 11 Synchronization
errors e(t) with uncertain
parameters

Y3 =
⎡

⎣
43.0314 94.4034 0.0000
94.4034 43.3320 13.4969
0.0000 13.4969 −10.6557

⎤

⎦ ,

Y4 =
⎡

⎣
43.0314 94.4034 0.0000
94.4034 43.3320 −13.4969
0.0000 −13.4969 −10.6557

⎤

⎦ ,

ε1 = 17.3190, ε2 = 17.3917,

ε3 = 22.7579, ε4 = 22.8343.

The initial conditions of the drive and response sys-
tem are chosen to be (x1(0), x2(0), x3(0)) = (1,−1,1)

and (y1(0), y2(0), y3(0)) = (2,−1,−2), respectively.
Figures 9(a)–(c) display that the trajectories of uncer-

tain drive system and uncertain response system with
time length 200 seconds. The chaotic attractor of the
uncertain Rikitake system (both master and slave) in
different planes are given in Figs. 10(a)–(f). Synchro-
nization errors of the Rikitake system with uncertain
parameters and fuzzy control law u(t) are shown in
Fig. 11. In Fig. 11, we can see that the synchroniza-
tion of an uncertain error system (17) robustly asymp-
totically converges to zero. That is, the uncertain slave
system follows almost perfectly the uncertain master
system.

Remark 4 The simulation results imply that the two
identical Rikitake system are synchronized with each
other, and validate the effectiveness of the derived re-
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sults. In the numerical simulations, the Euler method
is employed to solve the systems of differential equa-
tions with step size 0.01 and time length 200 seconds.

8 Conclusion

In this paper, the chaos synchronization problem has
been investigated for nonlinear Rikitake systems based
on T-S fuzzy control approach. By choosing the Lya-
punov function and designing a fuzzy state-feedback
controller, the sufficient conditions have been estab-
lished to ensure the synchronization of the Rikitake
system, which are given in terms of LMIs that can be
solved using any available LMI solvers. Simulations
results have been provided to show the merits of the
obtained results.
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