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Abstract This paper addresses the passivity problem
for uncertain neural networks with both discrete and
distributed time-varying delays. It is assumed that the
parameter uncertainties are norm-bounded. By con-
struction of an augmented Lyapunov–Krasovskii func-
tional and utilization of zero equalities, improved pas-
sivity criteria for the networks are derived in terms of
linear matrix inequalities (LMIs) via new approaches.
Through three numerical examples, the effectiveness
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to enhance the feasible region of the proposed criteria
is demonstrated.
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1 Introduction

Since neural networks have been extensively applied
in many areas such as reconstruction of moving image,
signal processing, the tasks of pattern recognition, as-
sociative memories, fixed-point computations, and so
on, the stability analysis of the concerned neural net-
works is a very important and prerequisite job because
the application of neural networks heavily depends
on the dynamic behavior of equilibrium points [1–5].
Also, due to the finite speed of information process-
ing in the implementation of the network, time-delay
occurs in many neural networks. It is well known that
time-delay often causes undesirable dynamic behav-
iors such as oscillation and instability of the networks.
Thus, delay-dependent stability and stabilization prob-
lem for neural networks with time-delay have been
paid more attention than delay-independent ones be-
cause the information on the size of time-delays is uti-
lized in delay-dependent criteria, which lead to reduce
the conservatism of stability and stabilization criteria.
To confirm this, see [6–23] and references therein.

In practice, it should be noted that the signal prop-
agation is sometimes instantaneous and can be mod-
eled with discrete delays. Also, it may be distributed
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during a certain time period so that the distributed de-
lays should be incorporated in the model. That is, it
is often the case that the neural network model pos-
sesses both discrete and distributed delays [24]. In this
regard, the stability of cellular neural networks with
discrete and distributed delays has been investigated
in [25–28]. Furthermore, the norm-bounded paramet-
ric uncertainties, which sometimes affect the stability
of systems, are considered in the works [26–28].

On the other hand, in various scientific and engi-
neering problems, stability issues are often linked to
the theory of dissipative systems. It postulates that
the energy dissipated inside a dynamic system is less
than the energy supplied from the external source [29].
Based on the concept of energy, the passivity is the
property of dynamical systems and describes the en-
ergy flow through the system. It is also an input/output
characterization and related to Lyapunov method. In
the field of nonlinear control, the concept of dissipa-
tiveness was firstly introduced by Willems [30] in the
form of inequality including supply rate and the stor-
age function. The main idea of passivity theory is that
passive properties of a system can keep the system in-
ternally.

In this regard, in [31–38], the passivity problem
for the uncertain neural networks with both discrete
and distributed time-varying delays was considered.
Chen et al. [31] investigated the passivity problem of
the neural networks by utilizing free-weighting matri-
ces and the LMI framework. In [32], improved delay-
dependent passivity criteria for the networks were pro-
posed. Xu et al. [33] studied the problem of passivity
analysis for neural networks with both time-varying
delays and norm-bounded parameter uncertainties. In
[34], improved passivity criteria for stochastic neural
networks with interval time-varying delays and norm-
bounded parameter uncertainties were proposed via
an improved approximation method. In [35], for two
types of time-varying delays, new delay-dependent
passivity conditions of delayed neural networks were
derived. Recently, by taking more information of
states as augmented vectors, an augmented Lyapunov–
Krasovskii functional was utilized in [36] to derive
passivity criteria for uncertain neural networks with
time-varying delays. Song and Cao [37] investigated
the passivity problem for a class of uncertain neural
networks with leakage delay and time-varying delays
by employing Newton–Leibniz formulation and the
free weighting matrix method. Very recently, in [38],

by constructing a novel Lyapunov–Krasovskii func-
tional including a tuning parameter in time-varying
delays and introducing some proper free-weighting
matrices, new passivity conditions for neural networks
with both discrete and distributed time-varying de-
lays were developed to guarantee the passivity perfor-
mance of the networks. However, there are rooms for
further improvement in enhancing the feasible regions
of passivity criteria.

Motivated by above discussion, in this paper, the
problem on delay-dependent passivity for uncertain
neural networks with both discrete and distributed
time-varying delays is addressed. The parameter un-
certainties are assumed to be norm-bounded. The main
contribution of this paper lies in two aspects:

1. Unlike the method of [38], no tuning parameters
in a time-varying delay are utilized. Instead, by
taking more information of states, a newly con-
structed Lyapunov–Krasovskii functional is pro-
posed. Then, inspired by the work of [39–41], a
passivity condition for neural networks with both
discrete and distributed time-varying delays and
parameter uncertainties is derived in terms of LMIs
which will be introduced in Theorem 1.

2. A novel approach partitioning m-interval of the
range of the activation function divided by state
will be proposed. Through three numerical exam-
ples, it will be shown the maximum delay bounds
for guaranteeing the passivity of the considered
neural networks increase when the partitioning
number of the bounding of activation function gets
larger.

Based on the result of Theorem 1, a passivity criterion
for uncertain neural networks with only discrete time-
varying delays will be proposed in Theorem 2. Finally,
three numerical examples are included to show the ef-
fectiveness of the proposed methods.

Notation R
n is the n-dimensional Euclidean space,

and R
m×n denotes the set of all m × n real matri-

ces. For symmetric matrices X and Y , X > Y (re-
spectively, X ≥ Y ) means that the matrix X − Y is
positive definite (respectively, nonnegative). X⊥ de-
notes a basis for the null-space of X. In, 0n, and 0m·n
denotes n × n identity matrix, n × n and m × n zero
matrices, respectively. ‖·‖ refers to the Euclidean vec-
tor norm or the induced matrix norm. diag{· · · } de-
notes the block diagonal matrix. For square matrix S,
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sym{S} means the sum of S and its symmetric matrix
ST ; i.e., sym{S} = S + ST . � represents the elements
below the main diagonal of a symmetric matrix.

2 Problem statements

Consider the following uncertain neural networks with
both discrete and distributed time-varying delays:

ẋ(t) = −(A + �A(t)
)
x(t)

+ (W0 + �W0(t)
)
f
(
x(t)

)

+ (W1 + �W1(t)
)
f
(
x
(
t − h(t)

))

+ (W2 + �W2(t)
)

×
∫ t

t−τ(t)

f
(
x(s)

)
ds + u(t),

y(t) = C1f
(
x(t)

)+ C2f
(
x
(
t − h(t)

))
,

(1)

where n denotes the number of neurons in a neu-
ral network, x(t) = [x1(t), . . . , xn(t)]T ∈ R

n is the
neuron state vector, y(t) ∈ R

n is the output vector,
f (xi(·)) = [f1(xi(·)), . . . , fn(xi(·))]T ∈ R

n denotes
the neuron activation function vector, u(t) ∈ R

n is the
input vector, A = diag{a1, . . . , an} ∈ R

n×n is a posi-
tive diagonal matrix, Wi ∈ R

n×n (i = 0,1,2) are the
interconnection weight matrices, Ci ∈ R

n×n (i = 1,2)

are known constant matrices, and �A(t) and �Wi(t)

(i = 0,1,2) are the parameter uncertainties of the
form

[
�A(t),�W0(t),�W1(t),�W2(t)

]

= DF(t)[Ea,E0,E1,E2],
where F(t) is the time-varying nonlinear function sat-
isfying

FT (t)F (t) ≤ I, ∀t ≥ 0. (2)

The delays h(t) and τ(t) are time-varying delays sat-
isfying

0 ≤ h(t) ≤ hU , −∞ < ḣ(t) ≤ hD,

0 ≤ τ(t) ≤ τU ,

where hU , hD , and τU are known positive scalars.
It is assumed that the neuron activation functions

satisfy the following condition.

Assumption 1 [42] The neuron activation func-
tions fi(·), i = 1, . . . , n are continuous, bounded, and
satisfy

k−
i ≤ fi(u) − fi(v)

u − v
≤ k+

i , u, v ∈ R,

u 	= v, i = 1, . . . , n, (3)

where k+
i and k−

i are constants.

Remark 1 In Assumption 1, k+
i and k−

i can be al-
lowed to be positive, negative, or zero. As mentioned
in [14], Assumption 1 describes the class of glob-
ally Lipschitz continuous and monotone nondecreas-
ing activation when k−

i = 0 and k+
i > 0. Also, the

class of globally Lipschitz continuous and monotone
increasing activation functions can be described when
k+
i > k−

i > 0.
For passivity analysis, the systems (1) can be

rewritten as

ẋ(t) = −Ax(t) + W0f
(
x(t)

)+ W1f
(
x
(
t − h(t)

))

+ W2

∫ t

t−τ(t)

f
(
x(s)

)
ds + u(t) + Dp(t),

p(t) = F(t)q(t),
(4)

q(t) = −Eax(t) + E0f
(
x(t)

)+ E1f
(
x
(
t − h(t)

))

+ E2

∫ t

t−τ(t)

f
(
x(s)

)
ds,

y(t) = C1f
(
x(t)

)+ C2f
(
x
(
t − h(t)

))
.

The objective of this paper is to investigate delay-
dependent passivity conditions for system (4). Before
deriving our main results, we state the following defi-
nition and lemmas.

Definition 1 The system (1) is called passive if there
exists a scalar γ ≥ 0 such that

−γ

∫ tp

0
uT (s)u(s) ds ≤ 2

∫ tp

0
yT (s)u(s) ds, (5)

for all tp ≥ 0 and for all solution of (1) with x(0) = 0.

Lemma 1 [43] Let ζ ∈ R
n, Φ = ΦT ∈ R

n×n, and Υ ∈
R

m×n such that rank(Υ ) < n. The following state-
ments are equivalent:

(i) ζ T Φζ < 0, ∀Υ ζ = 0, ζ 	= 0,
(ii) Υ ⊥T

ΦΥ ⊥ < 0.



2178 O.M. Kwon et al.

3 Main results

In this section, new passivity criteria for network (4)
will be proposed. For the sake of simplicity on ma-
trix representation, ei ∈ R

18n×n (i = 1,2, . . . ,18) are
defined as block entry matrices (for example, e2 =
[0n, In,016n×n]T ). The notations of several matrices
are defined as

ζ T (t) =
[
xT (t), xT

(
t − h(t)

)
, xT (t − hU), ẋT (t),

ẋT (t − hU),

∫ t

t−h(t)

xT (s) ds,

∫ t−h(t)

t−hU

xT (s) ds, f T
(
x(t)

)
,

f T
(
x
(
t − h(t)

))
, f T

(
x(t − hU)

)
,

f T
(
x(t − τU )

)
,

∫ t

t−h(t)

f T
(
x(s)

)
ds,

∫ t−h(t)

t−hU

f T
(
x(s)

)
ds,

∫ t

t−τ(t)

f T
(
x(s)

)
ds,

∫ t−τ(t)

t−τU

f T
(
x(s)

)
ds, xT (t − τU ),

uT (t),pT (t)

]
,

μT (t) = [xT (t), ẋT (t), f T
(
x(t)

)]
,

νT (t) = [xT (t), f T
(
x(t)

)]
,

Υ = [ − A,02n×n,−In,03n×n,W0,

W1,04n×n,W2,02n×n, In,D],

P̄i =
⎡

⎣
0 Pi 0
Pi 0 0
0 0 0

⎤

⎦ (i = 1,2),

Π1 = [e1, e3, e6 + e7, e12 + e13, e14 + e15],
Π2 = [e4, e5, e1 − e3, e8 − e10, e8 − e11],
Π3 = [e1, e4, e8], Π4 = [e3, e5, e10],
Π5 = [e1, e8], Π6 = [e2, e9],
Π7 = [e6, e1 − e2, e12, e7, e2 − e3, e13],
Π8 = [e14, e15],
Φ1 = sym

{
Π1RΠT

2

}
,

Φ2 = Π3NΠT
3 − Π4NΠT

4 +
2∑

i=1

sym

{
[e2(i+3), e2i−1]

×
[

Λi − �i

K+�i − K−Λi

]
eT

3+i

}
,

+ Π5GΠT
5 − (1 − hD)Π6GΠT

6 + h2
UΠ3Q1Π

T
3

+ hU

(
e1P1e

T
1 − e2(P1 − P2)e

T
2 − e3P2e

T
3

)

− Π7

[
Q1 + P̄1 S1

� Q1 + P̄2

]

ΠT
7

+ (h2
U/2

)2
e4Q3e

T
4 − (hUe1 − e6 − e7)

× Q3(hUe1 − e6 − e7)
T ,

Φ3 = [e1, e8]M[e1, e8]T − [e16, e11]M[e16, e11]T

+ τ 2
Ue8Q2e

T
8 − Π8

[
Q2 S2

� Q2

]

ΠT
8 ,

Ω = ε
(−Eae

T
1 + E0e

T
8 + E1e

T
9 + E2e

T
14

)T

× (−Eae
T
1 + E0e

T
8 + E1e

T
9 + E2e

T
14

)− εe18e
T
18,

Ψ =
3∑

l=1

Φl + Ω − sym
{
e8C

T
1 eT

17

}

− sym
{
e9C

T
2 eT

17

}− γ e17e
T
17,

Θ1j = −
3∑

i=1

sym
{[

e7+i − ei

(
K− + ((j − 1)/m

)

× (K+ − K−))]H3(j−1)+i

× [e7+i − ei

(
K− + (j/m)

(
K+ − K−))]T },

Θ2j = − sym
{[

e11 − e16
(
K− + ((j − 1)/m

)

× (K+ − K−))]H̃j

× [e11 − e16
(
K− + (j/m)

(
K+ − K−))]T },

Θj = Θ1j + Θ2j (j = 1,2, . . . ,m). (6)

Then the main result is given by the following the-
orem.

Theorem 1 For given positive scalars hU , hD , τU ,
and a positive integer m, diagonal matrices K− =
diag{k−

1 , . . . , k−
n } and K+ = diag{k+

1 , . . . , k+
n }, the

system (4) is passive for 0 ≤ h(t) ≤ hU , ḣ(t) ≤ hD and
0 ≤ τ(t) ≤ τU , if there exist positive scalars ε and γ ,
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positive diagonal matrices Λa = diag{λa1, . . . , λan}
(a = 1,2), �a = diag{δa1, . . . , δan} (a = 1,2),
Hb = diag{hb

1, . . . , h
b
n} (b = 1,2, . . . ,3m), H̃b =

diag{h̃b
1, . . . , h̃

b
n} (b = 1,2, . . . ,m), positive definite

matrices R ∈ R
5n×5n, N ∈ R

3n×3n, M ∈ R
2n×2n,

G ∈ R
2n×2n, Q1 ∈ R

3n×3n, Q2 ∈ R
n×n, Q3 ∈ R

n×n,
any symmetric matrices P1 ∈ R

n×n, P2 ∈ R
n×n, and

any matrices S1 ∈ R
3n×3n, S2 ∈ R

n×n, satisfying the
following LMIs:

(
Υ ⊥)T (Ψ + Θj)Υ

⊥ < 0 (j = 1,2, . . . ,m), (7)
[

Q1 + P̄1 S1

� Q1 + P̄2

]

≥ 0, (8)

[
Q2 S2

� Q2

]

≥ 0, (9)

where Υ , P̄1, P̄2, Ψ , and Θj are defined in (6).

Proof Consider the following Lyapunov–Krasovskii
functional candidate as

V = V1 + V2 + V3 + V4 + V5, (10)

where

V1 =

⎡

⎢⎢⎢
⎢⎢⎢
⎣

x(t)

x(t − hU)
∫ t

t−hU
x(s) ds

∫ t

t−hU
f (x(s)) ds

∫ t

t−τU
f (x(s)) ds

⎤

⎥⎥⎥
⎥⎥⎥
⎦

T

R

⎡

⎢⎢⎢
⎢⎢⎢
⎣

x(t)

x(t − hU)
∫ t

t−hU
x(s) ds

∫ t

t−hU
f (x(s)) ds

∫ t

t−τU
f (x(s)) ds

⎤

⎥⎥⎥
⎥⎥⎥
⎦

,

V2 =
∫ t

t−hU

μT (s)Nμ(s) ds +
∫ t

t−τU

νT (s)Mν(s) ds

+ 2
n∑

i=1

(
λ1i

∫ xi (t)

0

(
fi(s) − k−

i s
)
ds

+ δ1i

∫ xi (t)

0

(
k+
i s − fi(s)

)
ds

)

+ 2
n∑

i=1

(
λ2i

∫ xi (t−hU )

0

(
fi(s) − k−

i s
)
ds

+ δ2i

∫ xi (t−hU )

0

(
k+
i s − fi(s)

)
ds

)
,

V3 =
∫ t

t−h(t)

νT (s)Gν(s) ds,

V4 = hU

∫ t

t−hU

∫ t

s

μT (u)Q1μ(u)duds

+ τU

∫ t

t−τU

∫ t

s

f T
(
x(u)

)
Q2f

(
x(u)

)
duds,

V5 = h2
U

2

∫ t

t−hU

∫ t

s

∫ t

u

ẋT (v)Q3ẋ(v) dv duds.

Time-derivative of V1, V2, and V3 are calculated as

V̇1 = 2

⎡

⎢⎢⎢⎢⎢
⎢⎢
⎣

x(t)

x(t − hU)
∫ t

t−h(t)
x(s) ds + ∫ t−h(t)

t−hU
x(s) ds

∫ t

t−h(t)
f (x(s)) ds + ∫ t−h(t)

t−hU
f (x(s)) ds

∫ t

t−τ(t)
f (x(s)) ds + ∫ t−τ(t)

t−τU
f (x(s)) ds

⎤

⎥⎥⎥⎥⎥
⎥⎥
⎦

T

× R

⎡

⎢⎢⎢⎢
⎣

ẋ(t)

ẋ(t − hU)

x(t) − x(t − hU)

f (x(t)) − f (x(t − hU))

f (x(t)) − f (x(t − τU ))

⎤

⎥⎥⎥⎥
⎦

= ζ T (t)
(
sym

{
Π1RΠT

2

})
ζ(t), (11)

V̇2 = μT (t)Nμ(t) − μT (t − hU)Nμ(t − hU)

+ νT (t)Mν(t) − νT (t − τU )Mν(t − τU )

+ 2
(
f
(
x(t)

)− K−x(t)
)T

Λ1ẋ(t)

+ 2
(
K+x(t) − f

(
x(t)

))
�1ẋ(t)

+ 2
(
f
(
x(t − hU)

)− K−x(t − hU)
)T

× Λ2ẋ(t − hU)

+ 2
(
K+x(t − hU) − f

(
x(t − hU)

))

× �2ẋ(t − hU)

= ζ T (t)
(
Π3NΠT

3 − Π4NΠT
4 + [e1, e8]M[e1, e8]T

− [e16, e11]M[e16, e11]T

+ sym
{(

e8 − e1K
−)Λ1e

T
4

}

+ sym
{(

e1K
+ − e8

)
�1e

T
4

}

+ sym
{(

e10 − e3K
−)Λ2e

T
5

}

+ sym
{(

e3K
+ − e10

)
�2e

T
5

})
ζ(t), (12)
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V̇3 ≤ ν(t)T Gν(t) − (1 − hD)νT
(
t − h(t)

)
Gν

× (t − h(t)
)

= ζ T (t)
(
Π5GΠT

5 − (1 − hD)Π6GΠT
6

)
ζ(t). (13)

Inspired by the work of [40], by adding the follow-
ing two zero equalities with any symmetric matrices
P1 and P2:

0 = xT (t)(hUP1)x(t) − x
(
t − h(t)

)
(hUP1)x

(
t − h(t)

)

− 2hU

∫ t

t−h(t)

x(s)P1ẋ(s) ds,

0 = xT
(
t − h(t)

)
(hUP2)x

(
t − h(t)

)

− xT (t − hU)(hUP2)x(t − hU)

− 2hU

∫ t−h(t)

t−hU

x(s)P2ẋ(s) ds

(14)

into the time-derivative of V4 and using Jensen’s in-
equality [44], we get

V̇4 = h2
Uμ(t)T Q1μ(t) + τ 2

Uf T
(
x(t)

)
Q2f

(
x(t)

)

+ xT (t)(hUP1)x(t)

− xT
(
t − h(t)

)
(hUP1)x

(
t − h(t)

)

+ xT
(
t − h(t)

)
(hUP2)x

(
t − h(t)

)

− xT (t − hU)(hUP2)x(t − hU)

− hU

∫ t

t−h(t)

μT (s)

×

⎛

⎜⎜⎜⎜⎜⎜
⎝

Q1 +
⎡

⎣
0n P1 0n

P1 0n 0n

0n 0n 0n

⎤

⎦

︸ ︷︷ ︸
P̄1

⎞

⎟⎟⎟⎟⎟⎟
⎠

μ(s) ds

− hU

∫ t−h(t)

t−hU

μT (s)

×

⎛

⎜⎜⎜
⎜⎜⎜
⎝

Q1 +
⎡

⎣
0n P2 0n

P2 0n 0n

0n 0n 0n

⎤

⎦

︸ ︷︷ ︸
P̄2

⎞

⎟⎟⎟
⎟⎟⎟
⎠

μ(s) ds

− τU

∫ t

t−τ(t)

f T
(
x(s)

)
Q2f

(
x(s)

)
ds

− τU

∫ t−τ(t)

t−τU

f T
(
x(s)

)
Q2f

(
x(s)

)
ds. (15)

If the inequality (8) hold, then the two inequalities,
Q1 + P̄1 ≥ 0 and Q1 + P̄2 ≥ 0, are satisfied. Thus,
V̇4 can be estimated as

V̇4 ≤ h2
Uμ(t)T Q1μ(t) + τ 2

Uf T
(
x(t)

)
Q2f

(
x(t)

)+ xT (t)(hUP1)x(t) − xT
(
t − h(t)

)
(hUP1)x

(
t − h(t)

)

+ xT
(
t − h(t)

)
(hUP2)x

(
t − h(t)

)− xT (t − hU)(hUP2)x(t − hU)

−
[ ∫ t

t−h(t)
μ(s) ds

∫ t−h(t)

t−hU
μ(s) ds

]T [ 1
1−α(t)

(Q1 + P̄1) 03n

03n
1

α(t)
(Q1 + P̄2)

][ ∫ t

t−h(t)
μ(s) ds

∫ t−h(t)

t−hU
μ(s) ds

]

−
[ ∫ t

t−τ(t)
f (x(s)) ds

∫ t−τ(t)

t−τU
f (x(s)) ds

]T [ 1
1−β(t)

Q2 0n

0n
1

β(t)
Q2

][ ∫ t

t−τ(t)
f (x(s)) ds

∫ t−τ(t)

t−τU
f (x(s)) ds

]

, (16)

where α(t) = 1 − h(t)h−1
U and β(t) = 1 − τ(t)τ−1

U , which satisfy 0 < α(t) < 1 and 0 < β(t) < 1 when
0 < h(t) < hU and 0 < τ(t) < τU , respectively. Then, by reciprocally convex approach [41], if the LMIs (8) and
(9) satisfy, then the following inequalities hold for any matrices S1 and S2

⎡

⎣
−
√

α(t)
1−α(t)

In 03n

03n

√
1−α(t)
α(t)

In

⎤

⎦

[
Q1 + P̄1 S1

� Q1 + P̄2

]⎡

⎣
−
√

α(t)
1−α(t)

In 03n

03n

√
1−α(t)
α(t)

In

⎤

⎦> 06n,

⎡

⎣
−
√

β(t)
1−β(t)

In 0n

0n

√
1−β(t)
β(t)

In

⎤

⎦
[

Q2 S2

� Q2

]⎡

⎣
−
√

β(t)
1−β(t)

In 0n

0n

√
1−β(t)
β(t)

In

⎤

⎦> 02n.

(17)
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Also, when h(t) = 0, h(t) = hM and τ(t) = 0, τ(t) = τU , respectively, we get

∫ t

t−h(t)

μi(s) ds =
∫ t

t−0
μi(s) ds = 03n×1,

∫ t−h(t)

t−hU

μi(s) ds =
∫ t−hU

t−hU

μi(s) ds = 03n×1

and
∫ t

t−τ(t)

f
(
x(s)

)
ds =

∫ t

t−0
f
(
x(s)

)
ds = 0n×1,

∫ t−τ(t)

t−τU

f
(
x(s)

)
ds =

∫ t−τU

t−τU

f
(
x(s)

)
ds = 0n×1, (18)

respectively.
Thus, from (17) and (18), the following inequality still holds:

−
[ ∫ t

t−h(t)
μ(s) ds

∫ t−h(t)

t−hU
μ(s) ds

]T [ 1
1−α(t)

(Q1 + P̄1) 03n

03n
1

α(t)
(Q1 + P̄2)

][ ∫ t

t−h(t)
μ(s) ds

∫ t−h(t)

t−hU
μ(s) ds

]

−
[ ∫ t

t−τ(t)
f (x(s)) ds

∫ t−τ(t)

t−τU
f (x(s)) ds

]T [ 1
1−β(t)

Q2 0n

0n
1

β(t)
Q2

][ ∫ t

t−τ(t)
f (x(s)) ds

∫ t−τ(t)

t−τU
f (x(s)) ds

]

≤ −

⎡

⎢
⎢⎢⎢⎢⎢⎢⎢⎢
⎣

∫ t

t−h(t)
x(s) ds

x(t) − x(t − h(t))
∫ t

t−h(t)
f (x(s)) ds

∫ t−h(t)

t−hU
x(s) ds

x(t − h(t)) − x(t − hU)
∫ t−h(t)

t−hU
f (x(s)) ds

⎤

⎥
⎥⎥⎥⎥⎥⎥⎥⎥
⎦

T

[
Q1 + P̄1 S1

� Q1 + P̄2

]

⎡

⎢
⎢⎢⎢⎢⎢⎢⎢⎢
⎣

∫ t

t−h(t)
x(s) ds

x(t) − x(t − h(t))
∫ t

t−h(t)
f (x(s)) ds

∫ t−h(t)

t−hU
x(s) ds

x(t − h(t)) − x(t − hU)
∫ t−h(t)

t−hU
f (x(s)) ds

⎤

⎥
⎥⎥⎥⎥⎥⎥⎥⎥
⎦

−
[ ∫ t

t−τ(t)
f (x(s)) ds

∫ t−τ(t)

t−τU
f (x(s)) ds

]T [
Q2 S2

� Q2

][ ∫ t

t−τ(t)
f (x(s)) ds

∫ t−τ(t)

t−τU
f (x(s)) ds

]

. (19)

Here, if the inequality (8) holds, then an upper bound

of the V̇4 can be rebounded as

V̇4 ≤ ζ T (t)

(

h2
UΠ3Q1Π

T
3 + τ 2

Ue8Q2e
T
8

+ hU

(
e1P1e

T
1 − e2(P1 − P2)e

T
2 − e3P2e

T
3

)

− Π7

[
Q1 + P̄1 S1

� Q1 + P̄2

]

ΠT
7

− Π8

[
Q2 S2

� Q2

]

ΠT
8

)

ζ(t). (20)

Lastly, an upper bound of V̇5 can be obtained as

V̇5 =
(

h2
U

2

)2

ẋT (t)Q3ẋ(t)

− h2
U

2

∫ t

t−hU

∫ t

s

ẋT (u)Q3ẋ(u) duds

≤
(

h2
U

2

)2

ẋT (t)Q3ẋ(t) −
(

hUx(t)

−
∫ t

t−h(t)

x(s) ds −
∫ t−h(t)

t−hU

x(s) ds

)T

Q3

×
(

hUx(t) −
∫ t

t−h(t)

x(s) ds −
∫ t−h(t)

t−hU

x(s) ds

)

= ζ T (t)

((
h2

U

2

)2

e4Q3e
T
4 − (hUe1 − e6 − e7)

× Q3(hUe1 − e6 − e7)
T

)
ζ(t), (21)
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where Lemma 2 in [36] was utilized in above inequal-
ity.

Since the inequality pT (t)p(t) ≤ qT (t)q(t) holds
from (2) and (4), there exists a positive scalar ε satis-
fying the following inequality:

0 ≤ ε
(
qT (t)q(t) − pT (t)p(t)

)= ζ T (t)Ωζ(t). (22)

Let us choose v = 0 from (3) and divide its range of
(3) into m interval. It should be noted that subinterval
of the range of (3) can be described as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Range (1),
Range (2),

...

Range (m − 1),

Range (m),

k−
i ≤ fi(u)

u
≤ k−

i + 1
m

(k+
i − k−

i ),

k−
i + 1

m
(k+

i − k−
i ) ≤ fi(u)

u
≤ k−

i + 2
m

(k+
i − k−

i ),
...

k−
i + m−2

m
(k+

i − k−
i ) ≤ fi(u)

u
≤ k−

i + m−1
m

(k+
i − k−

i ),

k−
i + m−1

m
(k+

i − k−
i ) ≤ fi(u)

u
≤ k+

i ,

where m is positive integer, and each condition is equivalent to

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Range (1),
Range (2),

...

Range (m − 1),

Range (m),

[fi(u) − k−
i u][fi(u) − (k−

i + 1
m

(k+
i − k−

i ))u] < 0,

[fi(u) − (k−
i + 1

m
(k+

i − k−
i ))u][fi(u) − (k−

i + 2
m

(k+
i − k−

i ))u] < 0,
...

[fi(u) − (k−
i + m−2

m
(k+

i − k−
i ))u][fi(u) − (k−

i + m−1
m

(k+
i − k−

i ))u] < 0,

[fi(u) − (k−
i + m−1

m
(k+

i − k−
i ))u][fi(u) − k+

i u] < 0.

From the conditions just above, the following in-
equalities hold for any positive diagonal matrices:
H3(j−1)+l = diag{h3(j−1)+l

1 , . . . , h
3(j−1)+l
n } and H̃j =

diag{h̃j

1, . . . , h̃
j
n}, where j = 1,2, . . . ,m and l =

1,2,3.
Case (j) for Range (j) with j = 1,2, . . . ,m:

0 ≤ −2
n∑

i=1

h
3(j−1)+1
i

[
fi

(
xi(t)

)

−
(

k−
i + j − 1

m

(
k+
i − k−

i

))
xi(t)

]

×
[
fi

(
xi(t)

)−
(

k−
i + j

m

(
k+
i − k−

i

)
)

xi(t)

]

− 2
n∑

i=1

h
3(j−1)+2
i

[
fi

(
xi

(
t − h(t)

))

−
(

k−
i + j − 1

m

(
k+
i − k−

i

)
)

xi

(
t − h(t)

)
]

×
[
fi

(
xi

(
t − h(t)

))

−
(

k−
i + j

m

(
k+
i − k−

i

))
xi

(
t − h(t)

)]

− 2
n∑

i=1

h
3(j−1)+3
i

[
fi

(
xi(t − hU)

)

−
(

k−
i + j − 1

m

(
k+
i − k−

i

))
xi(t − hU)

]

×
[
fi

(
xi(t − hU)

)

−
(

k−
i + j

m

(
k+
i − k−

i

))
xi(t − hU)

]

− 2
n∑

i=1

h̃
j
i

[
fi

(
xi(t − τU )

)

−
(

k−
i + j − 1

m

(
k+
i − k−

i

))
xi(t − τU )

]

×
[
fi

(
xi(t − τU )

)

−
(

k−
i + j

m

(
k+
i − k−

i

)
)

xi(t − τU )

]

= ζ T (t)Θj ζ(t). (23)
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From (11)–(23) and by applying S-procedure [45], an
upper bound of V̇ − 2yT (t)u(t) − γ uT (t)u(t) can be

V̇ − 2yT (t)u(t) − γ uT (t)u(t) ≤ ζ T (t)(Ψ + Θj)ζ(t)

(j = 1,2, . . . ,m). (24)

By Lemma 1, ζ T (t)(Ψ + Θj)ζ(t) with Υ ζ(t) = 0n×1

is equivalent to (Υ ⊥)T (Ψ + Θj)Υ
⊥ < 0. Therefore,

if LMIs (7), (8), and (9) hold, then (Υ ⊥)T (Ψ +
Θj)Υ

⊥ < 0 holds, which means

V̇ − 2yT (t)u(t) − γ uT (t)u(t) < 0. (25)

By integrating (25) with respect to t over the time pe-
riod from 0 to tp , we have

V
(
x(tp)

)− V
(
x(0)

)− γ

∫ tp

0
uT (s)u(s) ds

≤ 2
∫ tp

0
yT (s)u(s) ds, (26)

for x(0) = 0. Since V (x(0)) = 0, the inequality (5) in
Definition 1 holds. This implies that the neural net-
works (1) is passive in the sense of Definition 1. This
completes our proof. �

Remark 2 Unlike the method of [38], the utilized
augmented vector ζ(t) includes the state vector such
as f (x(t − τU )) and x(t − τU ). These state vec-
tors have not been utilized as an element of aug-
mented vector ζ(t) in any other literature, which is
the main difference between Theorem 1 and the meth-
ods in other literature. Correspondingly, in (23), the
terms such as −2

∑n
i=1 h̃

j
i [fi(xi(t − τU )) − (k−

i +
j−1
m

(k+
i − k−

i ))xi(t − τU )][fi(xi(t − τU )) − (k−
i +

j
m

(k+
i − k−

i ))xi(t − τU )] are utilized for the first time.

Remark 3 Recently, the reciprocally convex optimiza-
tion technique to reduce the conservatism of stabil-
ity for systems with time-varying delays was proposed
in [41]. Motivated by this work, in (15)–(19), the pro-
posed method of [41] was utilized in obtaining upper
bounds of the terms such as

− hU

∫ t

t−h(t)

μT (s)(Q1 + P1)μ(s) ds

− hU

∫ t−h(t)

t−hU

μT (s)(Q1 + P2)μ(s) ds (27)

and

− τU

∫ t

t−τ(t)

f T
(
x(s)

)
Q2f

(
x(s)

)
ds

− τU

∫ t−τ(t)

t−τU

f T
(
x(s)

)
Q2f

(
x(s)

)
ds. (28)

Remark 4 In (14), two zero equalities are proposed
inspired by the work of [40] and utilized in Theorem 1
to reduce the conservatism of the stability condition.
As presented in (14), the terms xT (t)(hUP1)x(t) −
xT (t − h(t))(hUP1)x(t − h(t)) and xT (t − h(t)) ×
(hUP2)x(t − h(t)) − xT (t − hU)(hUP2)x(t − hU)

provide the enhanced feasible region of the passivity
criterion. Furthermore, as shown in (15), the two inte-
gral terms such as −2hU

∫ t

t−h(t)
ẋT (s)P1x(s) ds and

−2hU

∫ t−h(t)

t−hU
ẋT (s)P2x(s) ds presented in (14) are

merged into the integral terms −hU

∫ t

t−h(t)
μT (s) ×

Q1μ(s) ds and −hU

∫ t−h(t)

t−hU
μT (s)Q1μ(s) ds, which

cause the conservatism of the passivity criterion.

Remark 5 Inspired by the fact that the stability and
performance of neural networks are related to the
choice of activation functions [46], the range of the
term, k−

i ≤ fi(u)
u

≤ k+
i , is divided into m subinter-

vals such as k−
i ≤ fi(u)

u
≤ k−

i + 1
m

(k+
i − k−

i ), k−
i +

1
m

(k+
i − k−

i ) ≤ fi (u)
u

≤ k−
i + 2

m
(k+

i − k−
i ), . . . , k−

i +
m−2
m

(k+
i − k−

i ) ≤ fi (u)
u

≤ k−
i + m−1

m
(k+

i − k−
i ), and

k−
i + m−1

m
(k+

i − k−
i ) ≤ fi(u)

u
≤ k+

i . By choosing u as
x(t), x(t − h(t)), x(t − hU), and x(t − τU ), the in-
equalities (23) are utilized in Theorem 1. This idea has
not been proposed in passivity analysis for uncertain
neural networks with mixed time-varying delays. The
advantage of this approach is that the feasible region of
passivity criterion can be enhanced as the partitioning
number m increases. It should be pointed unlike the
delay-partitioning approach, the augmented vector are
not changed. However, as m increases, the number of
decision variables becomes larger. Through three nu-
merical examples, it will be shown the feasible region
of passivity criterion introduced in Theorem 1 can be
significantly enhanced as the partitioning number m

increases.

As a special case, the networks (4) without dis-
tributed delays can be rewritten as
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ẋ(t) = −(A + �A(t)
)
x(t) + (W0 + �W0(t)

)
f
(
x(t)

)

+ (W1 + �W1(t)
)
f
(
x
(
t − h(t)

))+ u(t),

y(t) = C1f
(
x(t)

)+ C2f
(
x
(
t − h(t)

))
.

(29)

We can obtain a passivity criterion of the network (29)
by the similar method of the proof of Theorem 1. This
result will be introduced in Theorem 2. For the sake
of simplicity on matrix representation, ei ∈ R

14n×n

(i = 1, . . . ,14) are defined as block entry matrices (for
example, e2 = [0n, In,012n×n]T ). Before introducing
this, the notations of several matrices are defined as:

ζ̂ T (t) =
[
xT (t), xT

(
t − h(t)

)
, xT (t − hU), ẋT (t),

ẋT (t − hU),

∫ t

t−h(t)

xT (s) ds,

∫ t−h(t)

t−hU

xT (s) ds, f T
(
x(t)

)
,

f T
(
x
(
t − h(t)

))
, f T

(
x(t − hU)

)
,

∫ t

t−h(t)

f T
(
x(s)

)
ds,

∫ t−h(t)

t−hU

f T
(
x(s)

)
ds,uT (t),pT (t)

]
,

μT (t) = [xT (t), ẋT (t), f T
(
x(t)

)]
,

νT (t) = [xT (t), f T
(
x(t)

)]
,

Υ̂ = [−A,02n×n,−In,03n×n,W0,W1,03n×n, In,D],
(30)

Π̂1 = [e1, e3, e6 + e7, e11 + e12],
Π̂2 = [e4, e5, e1 − e3, e8 − e10],
Π̂7 = [e6, e1 − e2, e11, e7, e2 − e3, e12],
Φ̂1 = sym

{
Π̂1RΠ̂T

2

}
,

Ω̂ = ε
(−Eae

T
1 + E0e

T
8 + E1e

T
9

)T

× (−Eae
T
1 + E0e

T
8 + E1e

T
9

)− εe14e
T
14,

Ψ̂ = Φ̂1 + Φ2 + Ω̂ − sym
{
e8C

T
1 eT

13

}

− sym
{
e9C

T
2 eT

13

}− γ e13e
T
13,

where P̄1, P̄2, Πa (a = 3, . . . ,6) and Φ2 are defined
in (6).

Now, we have the following theorem.

Theorem 2 For given positive scalars hU , hD and
a positive integer m, diagonal matrices K− =
diag{k−

1 , . . . , k−
n } and K+ = diag{k+

1 , . . . , k+
n }, the

system (4) is passive for 0 ≤ h(t) ≤ hU and ḣ(t) ≤ hD ,
if there exist positive scalars ε and γ , positive diagonal
matrices Λa = diag{λa1, . . . , λan} (a = 1,2), �a =
diag{δa1, . . . , δan} (a = 1,2), Hb = diag{hb

1, . . . , h
b
n}

(b = 1,2, . . . ,3m), positive definite matrices R ∈
R

4n×4n, N ∈ R
3n×3n, M ∈ R

2n×2n, G ∈ R
2n×2n,

Q1 ∈ R
3n×3n, Q3 ∈ R

n×n and any symmetric matrix
Pa ∈ R

n×n (a = 1,2), and any matrix S1 ∈ R
3n×3n

satisfying the following LMIs with (8):

(
Υ̂ ⊥)T (Ψ̂ + Θ1j )Υ̂

⊥ < 0 (j = 1,2, . . . ,m), (31)

where Υ̂ and Ψ̂ are defined in (30), and P̄a (a = 1,2)

and Θ1j are in (6).

Proof Consider the following Lyapunov–Krasovskii
functional candidate as

V = V1 + V2 + V3 + V4 + V5, (32)

where

V1 =

⎡

⎢⎢⎢⎢
⎣

x(t)

x(t − hU)
∫ t

t−hU
x(s) ds

∫ t

t−hU
f (x(s)) ds

⎤

⎥⎥⎥⎥
⎦

T

R

⎡

⎢⎢⎢⎢
⎣

x(t)

x(t − hU)
∫ t

t−hU
x(s) ds

∫ t

t−hU
f (x(s)) ds

⎤

⎥⎥⎥⎥
⎦

,

V2 =
∫ t

t−hU

μT (s)Nμ(s) ds

+ 2
n∑

i=1

(
λ1i

∫ xi (t)

0

(
fi(s) − k−

i s
)
ds

+ δ1i

∫ xi (t)

0

(
k+
i s − fi(s)

)
ds

)

+ 2
n∑

i=1

(
λ2i

∫ xi (t−hU )

0

(
fi(s) − k−

i s
)
ds

+ δ2i

∫ xi (t−hU )

0

(
k+
i s − fi(s)

)
ds

)
,

V3 =
∫ t

t−h(t)

νT (s)Gν(s) ds,

V4 = hU

∫ t

t−hU

∫ t

s

μT (u)Q1μ(u)duds,
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Table 1 Upper bounds of
time-delay hU and τU with
different hD (Example 1)

Methods hD 0.1 0.3 0.5 0.7 0.9

Chen et al. [31] hU = τU 0.5005 0.4295 0.4282 0.4275 0.4270

Chen et al. [32] hU = τU 0.5060 0.4746 0.4742 0.4740 0.4740

Theorem 1 (m = 1) hU = τU 0.5182 0.5120 0.5103 0.5083 0.5059

Theorem 1 (m = 2) hU = τU 0.5209 0.5172 0.5160 0.5149 0.5145

Theorem 1 (m = 3) hU = τU 0.5225 0.5197 0.5188 0.5185 0.5185

Table 2 Upper bounds of
time-delay hU with fixed
τU and different hD

(Example 1)

Methods hD 0.1 0.3 0.5 0.7 0.9

τU 0.5070 0.4800 0.4800 0.4800 0.4800

Li et al. [38] (α = 0.1) hU 0.5605 0.5185 0.5134 0.5100 0.5098

Li et al. [38] (α = 0.9) hU 0.5604 0.5182 0.5132 0.5096 0.5095

Theorem 1 (m = 1) hU 0.6737 0.6381 0.6275 0.6158 0.6021

Theorem 1 (m = 2) hU 0.7006 0.6711 0.6629 0.6555 0.6523

Theorem 1 (m = 3) hU 0.7174 0.6888 0.6820 0.6787 0.6784

V5 = h2
U

2

∫ t

t−hU

∫ t

s

∫ t

u

ẋT (v)Q3ẋ(v) dv duds.

The other procedure of proof is straightforward from
the proof of Theorem 1, so it is omitted. �

4 Numerical examples

In this section, three numerical examples will be
shown to illustrate the effectiveness of the proposed
criteria. In examples, MATLAB, YALMIP 3.0, and
SeDuMi 1.3 are used to solve LMI problems.

Example 1 Consider the neural networks (1) with

A =
[

2.3 0
0 2.5

]
, W0 =

[
0.3 0.2
0.4 0.1

]
,

W1 =
[

0.5 0.7
0.7 0.4

]
, W2 =

[
0.5 −0.3
0.2 1.2

]
,

C1 = I2, C2 = 02, D = 0.2I2,

Ea = E0 = E1 = E2 = I2,

K− = 02, K+ = I2

with f (x) = 1

2

(|x + 1| − |x − 1|).

Tables 1 and 2 show the results of the upper
bound of time-delay for the above system. It can be

seen that Theorem 1 in this paper provides larger
delay bound than the previous results. Furthermore,
when the partitioning number m increases, the max-
imum delay bounds get larger. This indicates that
the presented passivity conditions relieve the con-
straint of the passivity caused by time-delay. To con-
firm one of the obtained results in Table 2 (hD = 0.1,
hU = 0.7174, τU = 0.5070), a simulation result when
x(0) = [−1,−0.5]T , h(t) = 0.7174 sin2(0.13t),
τ(t) = 0.5070 sin2(t), u(t) = 0.1 sin(2πt), �A(t) =
�W0(t) = �W1(t) = �W2(t) = 0.2 diag{sin(t),

sin(t)} are given in Fig. 1. Figure 1 shows that the sys-
tem (1) with above parameters is passive in the sense
of Definition 1.

Example 2 Consider the neural networks (29) with

A =
[

2.2 0
0 1.5

]
, W0 =

[
1 0.6

0.1 0.3

]
,

W1 =
[

1 −0.1
0.1 0.2

]
,

C1 = I2, C2 = 02, D = 0.1I2,

Ea = 0.1I2, E0 = 0.2I2, E1 = 0.3I2,

K− = 02, K+ = I2

with f (x) = 1

2

(|x + 1| − |x − 1|).
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Fig. 1 State trajectories
with hD = 0.1,
hU = 0.7174 and
τU = 0.5070 (Example 1)

Table 3 Upper bounds of
time-delay hU with
different hD (Example 2)

Methods 0.3 0.5 0.7 0.9 Unknown

Chen et al. [31] 0.4197 0.4145 0.4117 0.4082 0.3994

Chen et al. [32] 0.5624 0.5580 0.5565 0.5523 0.5420

Fu et al. [34] 0.5763 0.5679 0.5566 0.5273 0.5129

Kwon et al. [36] 0.8171 0.7581 0.7029 0.6380 0.6059

Theorem 2 (m = 1) 1.0213 0.9532 0.8910 0.8144 0.7767

Theorem 2 (m = 2) 1.1301 1.0868 1.0460 1.0008 0.9888

Theorem 2 (m = 3) 1.1921 1.1590 1.1297 1.1081 1.1008

In Table 3, the results of the upper bound of time-
delay for guaranteeing passivity are compared with
the previous results. From the results of Table 3, it
can be seen that the maximum delay bounds for guar-
anteeing the passivity of the above neural networks
are larger than those of other literature listed in Ta-
ble 3. To confirm one of the obtained result in Table 3
(hD = 0.5, hU = 1.1590), a simulation result when
x(0) = [1,−1]T , h(t) = 1.1590 sin2(0.43t), u(t) = 1,
�A(t) = 0.01 diag{sin(t), sin(t)}, �W0(t) =
0.02 diag{sin(t), sin(t)}, �W1(t) = 0.03 diag{sin(t),

sin(t)} are shown in Fig. 2. From Fig. 2, it can be
confirmed that the neural networks (29) with above
parameters when 0 ≤ h(t) ≤ 1.1590 and ḣ(t) ≤ 0.5 is
passive in the sense of Definition 1.

Example 3 Consider the neural networks (29) with

A =
[

2.2 0
0 1.8

]
, W0 =

[
1.2 1

−0.2 0.3

]
,

W1 =
[

0.8 0.4
−0.2 0.1

]
,

C1 = I2, C2 = 02, D = Ea = E1 = E2 = 02,

K− = 02, K+ = I2

with f (x) = 1

2

(|x + 1| − |x − 1|).
When hD = 0.5, the obtained upper bounds of

time-delay for guaranteeing the passivity of the above
neural networks in [33] and [35] were 0.7230 and
1.3752, respectively. By applying Theorem 2 with
m = 2, it can be obtained that the upper bound of time-
delay is 35.3121, which is much larger delay bound
than one in [33] and [35]. When hD is unknown,
the upper bound of time-delay obtained 0.6791 and
1.3027 in [33] and [35], respectively. However, by us-
ing Theorem 2 with m = 2, one can obtain the upper
bound of time-delay is 3.9715. Moreover, by utilizing
Theorem 2 with m = 1 and m = 3, the upper bounds
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Fig. 2 State trajectories
with hD = 0.5 and
hU = 1.1590 (Example 2)

Fig. 3 State trajectories
with unknown hD and
hU = 4.7368 (Example 3)

of time-delay with different hD listed in Table 4. From
the results of Table 4, it can be confirmed that Theo-
rem 2 gives larger delay bounds than those obtained
by the method of [33] and [35]. To confirm one of
the obtained result in Table 4 (hD is unknown, hU =
4.7368), a simulation result when x(0) = [0.5,1]T ,
h(t) = 4.7368| sin(t)|, u(t) = 0.1 sin(2πt) are given
in Fig. 3. From Fig. 3, it can be also verified that
the neural networks (29) with above parameters when

hU = 4.7368 and hD is unknown is passive in the
sense of Definition 1.

5 Conclusion

In this paper, the improved passivity criteria for uncer-
tain neural networks with both discrete and distributed
time-varying delays have been proposed. In order to
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Table 4 Upper bounds
of time-delay hU with
different hD (Example 3)

Methods 0.5 0.7 0.9 Unknown

Xu et al. [33] 0.7230 0.6814 0.6791 0.6791

Zeng et al. [35] 1.3752 1.3036 1.3027 1.3027

Theorem 2 (m = 1) 2.5363 2.4530 2.3539 2.2725

Theorem 2 (m = 2) 35.3121 4.2216 4.0058 3.9715

Theorem 2 (m = 3) 35.3121 9.0128 4.7568 4.7368

drive less conservative results, the suitable Lyapunov–
Krasovskii functional and decomposed conditions of
activation function divided by states are utilized to en-
hance the feasible region of passivity criteria. Three
numerical examples have been illustrated to show the
effectiveness of the proposed methods. Future works
will focus on passivity analysis and passification of
various neural networks such as fuzzy neural net-
works, static neural networks, and so on. Furthermore,
some new passivity analysis for discrete-time neural
network with time-varying delays will be investigated
in the near future.
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