
Nonlinear Dyn (2013) 73:1955–1967
DOI 10.1007/s11071-013-0916-6

O R I G I NA L PA P E R

Decoupled-architecture-based nonlinear anti-windup design
for a class of nonlinear systems

Muhammad Rehan · Keum-Shik Hong

Received: 14 January 2013 / Accepted: 17 April 2013 / Published online: 7 May 2013
© Springer Science+Business Media Dordrecht 2013

Abstract This paper presents a comprehensive study
on a dynamic nonlinear anti-windup compensator
(AWC) design for nonlinear systems. It is shown that
for asymptotically stable nonlinear systems, a full-
order internal model control (IMC)-based AWC al-
ways exists regardless of the nonlinearity type. An al-
ternative decoupled-architecture-based AWC offering
better performance is proposed, wherein the selection
of a nonlinear dynamical component plays a key role
in establishing an equivalent decoupled architecture.
Using the decoupled architecture, a quadratic Lya-
punov function, the Lipschitz condition, the sector
condition, and L2 gain reduction, a linear matrix in-
equality (LMI)-based AWC scheme is developed for
systems with global Lipschitz nonlinearities. And by
means of the local sector condition, a decoupled-
architecture-based local AWC scheme (utilizing LMIs)
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for unstable and chaotic systems, which simultane-
ously guarantees a region of stability and the closed-
loop performance for tracking-control applications, is
derived. Simulation results establishing the effective-
ness of the proposed AWC schemes are provided.
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1 Introduction

Nonlinear-system control, particularly in regard to sta-
bilization, tracking, observer design, chaos control and
synchronization, has been extensively studied over the
past decade, as motivated by numerous potential appli-
cations in the field of nonlinear science [1–4]. In prac-
tice, actuator nonlinearities (e.g., saturation) are often
neglected in controller design for nonlinear systems,
which can cause detrimental effects such as overshoot,
lag, and even instability [5]. Controlling nonlinear sys-
tems under actuator saturation is a challenging issue
demanding serious attention. Actuator saturation in
linear systems has been dealt with in two well-known
ways. The first method is to design a state feedback
controller that incorporates knowledge of actuator sat-
uration to deal with the linear [6–8] and the nonlinear
systems [9]. The second method is to design an anti-
windup compensator (AWC) in addition to the conven-
tional stabilizing or tracking controller [10–15]. The
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main objective of an AWC is to improve the overall
closed-loop performance in the presence of saturat-
ing actuators, specifically by utilizing the difference
between the controller output and the saturated con-
trol signal. Some preliminary results on AWC design
for feedback-linearizable and Euler–Lagrange nonlin-
ear systems have already been reported [16–18]. How-
ever, AWC design for nonlinear systems is a nontrivial
problem that remains still unsolved [5] due to the in-
herent complexity of nonlinear systems.

One of the simple AWC design techniques for
linear systems is the internal model control (IMC)-
based scheme. Although this scheme can offer poor
performance, an AWC always exists for asymptot-
ically stable plants, and it is highly applicable to
other actuator nonlinearities [10, 19, 20]. The goal of
this AWC scheme is to make the conventional nomi-
nal controllers, which are designed for unconstrained
systems, unaware of saturation effects, such that the
nominal controller must see the system composed of
AWC and saturated plant as indistinguishable from
the open-loop plant without saturation. To this end,
the IMC-based AWC for linear systems uses an exact
copy of the plant. Further, a more general decoupled-
architecture-based AWC scheme, due to its perfor-
mance, robustness, and wide applicability to uncertain,
time-delay, unstable, and cascade plants, also has been
found to be interesting for linear systems (see, for ex-
ample, [5, 14, 15], and [21]).

Recently, a preliminary analytical study was con-
ducted to evaluate applicability of IMC- and decoup-
led-architecture-based AWC schemes to dynamic-
inversion-based feedback-linearizable Lipschitz
nonlinear systems [22]. However, the nonlinear IMC-
based AWC scheme is not able to construct the map-
ping between controller output and controller input
same as the nominal plant model. Based on an a priori
assumption of the existence of decoupled architecture,
the possibility of a so-called decoupling AWC scheme
that uses nonlinear matrix inequalities for globally
Lipschitz nonlinear systems is discussed in the same
work, although a decoupling architecture is not as-
sured. Nevertheless, in order to explore less conserva-
tive AWC architectures, to address AWC design for a
variety of nonlinear systems, to develop synthesis con-
ditions for unstable and oscillatory systems, and to in-
vestigate noncomplex design methodologies with less
parameter tuning effort, further studies are required.

Based on the works [17] and [23], an IMC-based
AWC scheme for nonlinear systems is proposed in this

paper, which achieves a mapping between the output
and the input of a nominal controller same as the nom-
inal plant. It is further shown that a nonlinear IMC-
based AWC always exists for asymptotically stable
nonlinear systems, regardless of the nonlinearity type.
For better performance, a novel full-order decoupling
AWC architecture for nonlinear systems is proposed.
This study shows that a proper selection of the nonlin-
ear component in the dynamics of a full-order AWC
plays a key role in establishing an equivalent decou-
pled architecture. By means of the proposed decoupled
architecture, the Lipschitz condition, a quadratic Lya-
punov function, the sector condition, and L2 gain re-
duction, a linear matrix inequality (LMI)-based global
full-order AWC scheme for asymptotically stable sys-
tems with global Lipschitz nonlinearities is developed.
To the best of the authors’ knowledge, a global non-
linear full-order LMI-based AWC scheme for asymp-
totically stable Lipschitz nonlinear systems, by which
the optimal AWC parameters can be obtained by solv-
ing standard LMI routines, is proposed for the first
time. Due to the potential for wide applicability in the
field of nonlinear science, a decoupled-architecture-
based local AWC scheme for unstable and chaotic
systems, which can simultaneously guarantee the re-
gion of stability and the closed-loop performance, is
derived. The authors believe that this type of local
treatment, utilizing LMIs, is applied for the first time
to decoupled-architecture-based AWC schemes. The
proposed AWC schemes are validated through numer-
ical simulations for controlling a chaotic Chua’s cir-
cuit.

The remainder of this paper is organized as follows.
Section 2 describes the system, and Sect. 3 discusses
the nonlinear IMC-based AWC scheme. Section 4 il-
lustrates the proposed full-order AWC architecture and
its equivalent decoupled architecture. Section 5 treats
the decoupled-architecture-based AWC design. Sec-
tion 6 provides the numerical simulation results for
the proposed methodology. Finally, Sect. 7 presents
the conclusions of this study.

Notation Standard notation is used throughout the
paper. The L2 gain from d to z is defined as

sup‖d‖2 �=0(‖z‖2/‖d‖2), where ‖ · ‖2 =
√∫ ∞

0 ‖ · ‖2 dt

denotes the L2 norm and ‖ · ‖ represents the Eu-
clidean norm of vector d or z. A symmetric positive
(or semi-positive) definite matrix X is represented by
X > 0 (or X ≥ 0). For the ith-diagonal entry xi for
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i = 1,2, . . . ,m, diag(x1, x2, . . . , xm) represents a di-
agonal matrix. For a matrix A, A(i) denotes the ith
row of the matrix. For u ∈ Rm, the saturation func-
tion is defined as sat(u) = sign(u(i))min(ū(i), |u(i)|),
where ū(i) > 0 is the ith bound on the saturation.

2 System description

Consider a class of nonlinear systems given by

dxp

dt
= f (xp) + Axp + Busat,

(1)
y = Cxp + Dusat,

where xp ∈ Rn, usat = sat(u) ∈ Rm, u ∈ Rm, and
y ∈ Rp represent the state, the saturated control input,
the control input, and the output vectors, respectively.
The nonlinear function f (xp) ∈ Rn stands for a time-
varying vector. The matrices A ∈ Rn×n, B ∈ Rn×m,
C ∈ Rp×n, and D ∈ Rp×m are constant. The nominal
open-loop system is defined as

dxn

dt
= f (xn) + Axn + Bun,

(2)
yn = Cxn + Dun,

where xn ∈ Rn, un ∈ Rm, and yn ∈ Rp are the nominal
plant state, the nominal plant input, and the nominal
plant output of the system, respectively, in the absence
of saturation (i.e., by taking un = u = usat). Suppose
that an output feedback nominal tracking controller,
designed for the nominal open-loop system, has the
form

ẋc = fc(xc, yn, r, t)

un = gc(xc, yn, r, t)

}
K(r, yn), (3)

where r ∈ Rp and xc ∈ Rq are the desired output ref-
erence signal and the controller state vector, respec-
tively. The time-varying nonlinearities fc(·) and gc(·),
representing the controller dynamics, are of appropri-
ate dimensions. The closed-loop system formed by (2)
and (3) is called a nominal closed-loop system.

Assumption 1 The nominal closed-loop system is
well-posed and asymptotically stable if r = 0, and has
the desired tracking performance if r �= 0.

For a diagonal positive definite matrix W ∈ Rm×m,
the classical global sector condition is given by

Dz(u)T W
[
u − Dz(u)

] ≥ 0, (4)

where Dz(u) = u − sat(u) represents the dead-zone
nonlinearity.

3 IMC-based AWC design

The proposed IMC-based AWC parameterization is
given by

dxaw

dt
= fIMC(xp, xaw) + Axaw + Bũ,

yd = Cxaw + Dũ, (5)

ũ = u − usat = un − usat,

where xaw ∈ Rn and yd ∈ Rp represent the vectors
for the AWC state and output, respectively. The func-
tion fIMC(xp, xaw) ∈ Rn is the nonlinear component
of the IMC-based AWC to be determined. The over-
all closed-loop system with the IMC-based AWC (by
assigning u = un) is schematized in Fig. 1. The AWC
block has two inputs, xp and ũ, and provides one out-
put, yd , to recover the nominal plant output yn as

Fig. 1 Proposed
IMC-based AWC for
asymptotically stable
nonlinear systems
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yn = y + yd . The main objective of the IMC-based
AWC is to achieve the same mapping from un to yn as
in the nominal state space model (2), in order that the
controller (3) becomes unaware of the saturation ef-
fects [10, 19]. To find the nonlinearity fIMC(xp, xaw),
the open-loop system (1) under saturation is rewritten
for ũ = un − usat as

dxp

dt
= f (xp) + Axp + B(un − ũ),

(6)
y = Cxp + D(un − ũ).

Using (5), (6), yn = y + yd , and xn = xp + xaw, we
obtain the state space model for the nonlinear mapping
from un to yn as

dxn

dt
= f (xp) + fIMC(xp, xaw) + Axn + Bun,

(7)
yn = Cxn + Dun.

The mapping (7) for the IMC-based AWC case will
be exactly the same as for the nominal open-loop sys-
tem (2) if

fIMC(xp, xaw) = f (xn) − f (xp)

= f (xp + xaw) − f (xp). (8)

Hence, to obtain an appropriate nonlinear IMC-based
AWC, the function fIMC(xp, xaw) must be selected as
in (8). For asymptotically stable systems under As-
sumption 1, the open-loop system (1), the mapping
from un to yn given by (2), and the nominal closed-
loop system formed by (2)–(3) are stable. It implies
that the output of the IMC-based AWC, given by yd ,
will remain bounded. Consequently, a stable IMC-
based AWC, given by (5) and (8), ensuring the map-
ping from un to yn same as the nominal plant, always
exists for asymptotically stable nonlinear systems, no
matter what type of nonlinear function f (·) is used in
the plant dynamics.

Remark 1 The present work shows that an IMC-based
nonlinear AWC for nonlinear systems always exists re-
gardless of the type of nonlinearity f (xp). Hence, the
selection of fIMC(xp, xaw), as in [17] and [23], can be
used to design a dynamic AWC for a broader class of
nonlinear systems.

4 Proposed decoupled AWC architecture

It is well known from the literature (see, for example,
[14] and [20]) that the IMC-based AWC schemes are
not preferable due to slow response from the AWC.
Therefore, a more general nonlinear AWC architec-
ture and its equivalent decoupled architecture for non-
linear systems are developed in this section. The pro-
posed parameterization for decoupled-architecture-
based nonlinear AWC is given by

dxaw

dt
= f (xp + xaw) − f (xp) + (A + BF)xaw + Bũ,

ud = Fxaw,

(9)
yd = (C + DF)xaw + Dũ,

ũ = u − usat = Dz(u),

where xaw ∈ Rn, ud ∈ Rm, and yd ∈ Rp are the state,
the input, and the output of the AWC, respectively, and
F ∈ Rm×n is a constant matrix to be determined. The
initial condition of AWC can be taken as xaw(0) = 0.
Note that the IMC-based AWC parameterization (5) is
a special case of the proposed decoupled-architecture-
based AWC parameterization (9) for F = 0. A schema
of the overall closed-loop system formed by plant (1),
controller (3), and AWC (9) is shown in Fig. 2. The
proposed AWC, as in the IMC-based AWC scheme,
has two inputs ũ and xp . For compensation of the sat-
uration nonlinearity, the nonlinear AWC provides two
signals, ud and yd , in order to modify the controller
output un as u = un − ud and the constrained plant
output yd as yn = y + yd , respectively.

Figure 3 shows a decoupled architecture equivalent
to that in Fig. 2. The overall closed-loop system con-
sists of two components, which are shown separated
by a dashed line. The lower component is the nominal
nonlinear closed-loop system, and the upper part is the
uncertain decoupled nonlinear component. A two-step
procedure that is provided shows that the nonlinear
mappings Γn : un → yn and Γd : un → yd are equiva-
lent for the two architectures. First, consider the map-
ping Γn : un → yn in Fig. 2. Applying ũ = u − usat

and u = un − ud to the nonlinear system (1) yields

dxp

dt
= f (xp) + Axp + B(un − ud − ũ),

(10)
y = Cxp + D(un − ud − ũ).
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Fig. 2 Proposed decoupled-architecture-based AWC for nonlinear systems

Fig. 3 Equivalent
decoupled architecture of
Fig. 2, which can be used
for selection of the
unknown component of the
AWC

Using ud = Fxaw, the state and output equations for
xaw and yd , respectively, can be rewritten as

dxaw

dt
= f (xp + xaw) − f (xp) + Axaw + B(ud + ũ),

(11)
yd = Cxaw + D(ud + ũ).

Applying the transformations yn = y + yd and xn =
xp + xaw and using (9) and (11) yields the mapping
Γn : un → yn for Fig. 2 as given by (2), which is iden-
tical to the state space description for the mapping
Γn : un → yn shown in Fig. 3. Next, consider the map-
ping Γd : un → yd , described by (9) and u = un − ud ,
for the architecture shown in Fig. 2. Using u = un −ud

and ũ = Dz(u) yields ũ = Dz(un −ud). Further, using
ũ = Dz(un − ud) and xp = xn − xaw in (9) affords

dxaw

dt
= f (xn) − f (xn − xaw) + (A + BF)xaw + Bũ,

ud = Fxaw,

(12)
yd = (C + DF)xaw + Dũ,

ũ = Dz(un − ud),

which is the same as the state space representation for
the mapping Γd : un → yd in Fig. 3. Hence, it follows
that the architectures shown by Figs. 2 and 3 are equiv-
alent. However, the decoupled architecture shown in
Fig. 3 can be used for the selection of the AWC design
requirements. By minimizing the L2 gain of the non-
linear mapping Γd : un → yd , we can achieve the per-
formance of the overall closed-loop system with AWC
closer to the nominal performance.

Remark 2 The term Fxaw in the state equation of
AWC (9) can be utilized for multiple performance ob-
jectives to ensure the robustness, disturbance rejection,
enlargement of the region of stability, and fast conver-
gence rate in contrast to [17] and the IMC-based AWC
scheme in the previous section. Furthermore, the pro-
posed AWC architecture is less conservative than [22],
for the selection of AWC design objectives, due to ex-
istence of a decoupled architecture because of the pro-
posed selection of the function f (xp + xaw) − f (xp)

as a nonlinear AWC component. Owing to these fea-
tures, a full-order decoupled AWC architecture for
more complex nonlinear systems is provided in Ap-
pendix A, which can be helpful in future.
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5 AWC design

In this section, the LMI-based AWC design for non-
linear systems by means of the proposed decoupled ar-
chitecture is described. We take the following assump-
tion.

Assumption 2 The nonlinearity f (x) for all
x, x̄ ∈ Rn satisfies the following Lipschitz condition:

∥∥f (x) − f (x̄)
∥∥ ≤ ∥∥L(x − x̄)

∥∥, (13)

where L is a matrix of suitable dimensions.

Note that the AWC architectures proposed in the
previous sections are general and applicable to a non-
linear system (1), even if Assumption 2 is not satisfied.

A nonlinear matrix inequality-based treatment for lo-
cally Lipschitz and non-Lipschitz systems will be ad-
dressed later. Now, we provide an LMI-based condi-
tion for designing AWC by minimizing the L2 gain of
the mapping Γd : un → yd .

Theorem 1 Consider that the overall closed-loop sys-
tem in Fig. 2 (with architecture equivalent to that in
Fig. 3), comprised of plant (1), controller (3), and
AWC (9), satisfies Assumptions 1–2. The optimization

minγ

such that

γ > 0, Q > 0, U > 0, (14)

and

Φ1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

QAT + AQ + MT BT + BM BU − MT I 0 QLT QCT + MT DT

∗ −2U 0 I 0 UDT

∗ ∗ −I 0 0 0
∗ ∗ ∗ −γ I 0 0
∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ −γ I

⎤
⎥⎥⎥⎥⎥⎥⎦

< 0, (15)

where γ is a scalar, U ∈ Rm×m and Q ∈ Rn×n are
diagonal and symmetric matrices, respectively, and
M ∈ Rm×n is a constant matrix, ensures the follow-
ing:

(i) the asymptotic stability of the decoupled nonlin-
ear component Γd : un → yd if un = 0

(ii) the L2 gain of the nonlinear mapping Γd : un →
yd less than γ (that is, ‖yd‖2/‖un‖2 < γ ) if
un �= 0

Moreover, the optimal value of parameter F can be
obtained from F = MQ−1.

Proof As stated earlier, the goal of AWC design is to
minimize the L2 gain γ for the nonlinear mapping Γd :
un → yd in Fig. 3. Accordingly, consider a quadratic
Lyapunov function given by

V (xaw, t) = xT
awγPxaw, (16)

with P = P T > 0 and γ > 0. Defining

J1 = (
V̇ + yT

d yd − γ 2uT
n un

)
/γ < 0 (17)

and integrating from 0 to T → ∞ yields

∫ T

0
J1 dt = (

V (xaw, T ) − V (xaw,0)
)
/γ

+ 1

γ

∫ T

0
yT
d yd dt

− γ

∫ T

0
uT

n un dt < 0, (18)

which implies the following:

(a) if un = 0, (17) implies that V̇ < 0 and the de-
coupled nonlinear component becomes asymptot-
ically stable;

(b) given xaw(0) = 0, V (xaw,0) = 0, and
V (xaw, T ) > 0, (18) ensures that ‖yd‖2

2 <



Decoupled-architecture-based nonlinear anti-windup design for a class of nonlinear systems 1961

γ 2‖un‖2
2, that is, the L2 gain of mapping Γd :

un → yd is less than γ .

For simplicity, we define

Ā = A + BF, C̄ = C + DF. (19)

Taking the time-derivative of (16) along the state equa-
tion in (9), using the resultant and (19), and substitut-
ing yd = (C + DF)xaw + Dũ into (17), we obtain

J1 = xT
awĀT Pxaw + xT

awP Āxaw + (
f (xn) − f (xn − xaw)

)T
Pxaw + xT P

(
f (xn) − f (xn − xaw)

) + xT
awPBũ

+ ũT BT Pxaw + (1/γ )xT
awC̄T C̄xaw + (1/γ )xT

awC̄T Dũ + (1/γ )ũT DT C̄xaw

+ (1/γ )ũT DT Dũ − γ uT
n un < 0. (20)

Using inequality (13) and (20), we obtain J1 ≤ ZT Π1Z < 0, where

Z = [
xT

aw ũT (f (xn) − f (xn − xaw))T uT
n

]T
, (21)

Π1 =

⎡
⎢⎢⎣

ĀT P + P Ā + LT L + (1/γ )C̄T C̄ PB + (1/γ )C̄T D P 0
∗ (1/γ )DT D 0 0
∗ ∗ −I 0
∗ ∗ ∗ −γ I

⎤
⎥⎥⎦ < 0. (22)

Sector condition (4) yields ũT W [un − Fxaw − ũ] ≥ 0 for a diagonal matrix W > 0, which can be rewritten as
ZT Π2Z ≥ 0, where

Π2 =

⎡
⎢⎢⎣

0 −FT W 0 0
∗ −2W 0 W

∗ ∗ 0 0
∗ ∗ ∗ 0

⎤
⎥⎥⎦ ≥ 0. (23)

Combining (22) and (23) through the S-procedure, Π = Π1 + εΠ2 < 0, for a scalar ε > 0, taking v = εW and,
further, applying the Schur complement and (19), we obtain

⎡
⎢⎢⎢⎢⎢⎢⎣

(AT + FT BT )P + P(A + BF) PB − FT v P 0 LT (C + DF)T

∗ −2v 0 v 0 DT

∗ ∗ −I 0 0 0
∗ ∗ ∗ −γ I 0 0
∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ −γ I

⎤
⎥⎥⎥⎥⎥⎥⎦

< 0. (24)

Applying the congruence transform by pre- and post-
multiplying the inequality (24) with diag(P −1, v−1, I,

I, I, I ), and taking P −1 = Q > 0, v−1 = U > 0, and
M = FQ, the LMIs (14)–(15) are obtained, which
completes the proof of Theorem 1. �

The LMI-based condition developed in Theorem 1,
by utilizing the global sector condition, can be used for
global AWC design of asymptotically stable systems.

If a nonlinear system (e.g., an unstable or a chaotic
system) does not verify the asymptotic stability as-
sumption, obtaining global results is difficult owing
to infeasibility of the synthesis condition. Therefore,
the local sector condition [24] (see also [25]) can be
used to design a local decoupled-architecture-based
full-order AWC. The main advantage of this type of
local sector condition is its utility to enlarge the region
of stability for systems under input saturation. Con-
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sider a region

S(ū) = {
w ∈ Rm;−ū ≤ u − w ≤ ū

}
, (25)

where ū ∈ Rm is a constant vector representing a
bound on saturation. If (25) is satisfied, the local sector
condition

ũT W [w − ũ] ≥ 0 (26)

is ensured by application of Lemma 1 (in [24]) to the
dead-zone nonlinearity of the architecture in Fig. 3. By
selecting w = un + Gxaw, (25)–(26) can be rewritten
as

S(ū) = {
w ∈ Rm;−ū ≤ (−F − G)xaw ≤ ū

}
, (27)

ũT W [un + Gxaw − ũ] ≥ 0. (28)

Now, we propose an LMI-based sufficient condition
for designing a local decoupled-architecture-based
AWC for a nonlinear system (1).

Theorem 2 Consider the overall closed-loop system
of Fig. 2 (with architecture equivalent to that in Fig. 3),
comprised of plant (1), controller (3), and AWC (9),
which satisfies Assumptions 1–2. Suppose that the
LMIs

σ > 0, δ > 0, Q > 0, U > 0, (29)

[
Q −MT

(i) − HT
(i)

∗ δū2
(i)

]
≥ 0, i = 1, . . . ,m, (30)

and

Φ3 =

⎡
⎢⎢⎢⎢⎢⎢⎣

QAT + AQ + MT BT + BM BU + HT I 0 QLT QCT + MT DT

∗ −2U 0 I 0 UDT

∗ ∗ −I 0 0 0
∗ ∗ ∗ −I 0 0
∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ −σI

⎤
⎥⎥⎥⎥⎥⎥⎦

< 0 (31)

are satisfied, where σ is a scalar, δ−1 is the accept-
able bound on the L2 norm of un, U ∈ Rm×m and
Q ∈ Rn×n are diagonal and symmetric matrices, re-
spectively, and M ∈ Rm×n and H ∈ Rm×n are con-
stant matrices. Then the following are ensured:

(i) the decoupled nonlinear component is asymptoti-
cally stable with region of convergence
xT

awδQ−1xaw ≤ 1 if un = 0;
(ii) the AWC state remains bounded by

xT
awδQ−1xaw ≤ 1, ∀t > 0, and the L2 gain for the

mapping Γd : un → yd is less than γ = √
σ , that

is, ‖yd‖2/‖un‖2 < γ .

Moreover, the parameter F can be determined by
F = MQ−1.

Proof To minimize the L2 gain γ , for the nonlin-
ear mapping Γd : un → yd representing the decou-
pled nonlinear component shown in Fig. 3, consider
a quadratic Lyapunov function

V (xaw, t) = xT
awPxaw (32)

and P = P T > 0 with the inequality

J2 = V̇ + σ−1yT
d yd − uT

n un < 0, (33)

where scalars ε > 0 and σ = γ 2 > 0. By integrating
the inequality (33) from t = 0 to t = T > 0, it can be
seen that

(a) V (xaw, T ) <
∫ T

0 uT
n un ≤ ‖un‖2

2 < δ−1 ∀T > 0,
as V (xaw,0) = 0 for xaw(0) = 0. This shows
that the AWC state xaw remains bounded by
xT

awδPxaw < 1 for all times t ≥ 0. The LMI (30)
implies that the region xT

awδPxaw < 1 is included
in S(u0). Hence, (27)–(28) are validated.

(b) ‖yd‖2
2 < γ 2‖un‖2

2 is ensured, which can be val-
idated by taking T → ∞ as in the proof of
Theorem 1. Hence, the L2 gain of the mapping
Γd : un → yd is guaranteed to be less than γ .

Additionally, if un = 0 and xT
aw(t1)δPxaw(t1) < 1

for all t ≥ t1, the decoupled nonlinear component is
asymptotically stable as clear from (33). The LMI (31)
can be obtained using the local sector condition (28),
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and inequalities (32)–(33) are derived in a manner
similar to the proof of Theorem 1. Note that P −1 =
Q > 0, M = FQ, H = GQ, and U = (εW)−1 are
used in the derivation of LMIs (29)–(31). �

The local LMI-based AWC scheme proposed in
Theorem 2 can be used to acquire a reasonable re-
gional performance by minimizing σ for a given value
of the tolerate-able bound δ−1. Moreover, for a given
value of σ , the proposed methodology can be used
to provide the largest possible bound on the L2 norm
of un.

Remark 3 The proposed AWC design techniques by
Theorems 1 and 2 can be applied to design a global or
local AWC for nonlinear systems, which, unlike those
of [17, 18], and [22], are not necessarily feedback-
linearizable. The techniques [18] and [22] require
bounded-input bounded-state stability or exponen-
tially stability for open-loop plants. By contrast, the
local AWC treatment provided in Theorem 2 can be
used for unstable nonlinear systems to acquire a large
region of stability. In addition, more systematic ap-
proaches, than the traditional AWC schemes, are de-
veloped in Theorems 1 and 2 for selection of unknown
AWC parameters.

Remark 4 A more general parameterization than (9)
can also be selected for decoupled-architecture-based
AWC design. Motivated by [22], nonlinear matrix
inequality-based preliminary approaches for AWC de-
sign of locally Lipschitz and non-Lipschitz nonlinear
systems based on a more general parameterization are
described in Appendix B. The optimization techniques
in the work [22] (and references therein) can be used
to solve the nonlinear matrix inequalities. The inter-
esting feature of the proposed AWC scheme is its ap-
plicability to locally Lipschitz and non-Lipschitz non-
linear systems by means of a less conservative decou-
pled AWC architecture. However, further work is still
needed to investigate the AWC design for locally Lip-
schitz and non-Lipschitz nonlinear systems.

6 Simulation results

Control of chaotic systems subjected to input satura-
tion nonlinearity [26, 27] is a nontrivial problem ow-
ing to complex behavior of chaotic systems. To show

Fig. 4 Closed-loop response of chaotic Chua’s circuit with the
proposed AWC scheme under different controller parameters:
(a) KP = KI = 30, (b) KP = KI = 40, (c) KP = KI = 50

the applicability of the proposed AWC scheme to non-
linear science, the following chaotic Chua’s circuit
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(see [28]) is considered:

A =
⎡
⎣

−2.548 9.1 0
1 −1 1
0 −14.2 0

⎤
⎦ , B =

⎡
⎣

1
0
0

⎤
⎦ , (34)

C = [
1 0 0

]
, D = 0, (35)

and

f (xp) = 9.11

⎡
⎣

|xp(1) + 1| − |xp(1) − 1|
0
0

⎤
⎦ . (36)

We can select L = diag(10,0,0). Inspired by [29], the
state xp(1) can be controlled by employing a feedback-
linearizable PI controller given by

un = −9.11
(|xp(1) + 1| − |xp(1) − 1|)

+ KP (r − yn) + KI

∫ ∞

t=0
(r − yn) dt. (37)

The AWC design scheme in [22] is limited to asymp-
totically stable systems; therefore, it cannot be ap-
plied to the present case. To obtain the implementable
AWC parameter F , the values of σ = 0.1 and δ =
0.001 were fixed. The saturation limit was taken as
ū = 2. By solving the LMIs of Theorem 2, F =
[−123.037 −6.88 −0.0136] was obtained. Note that
the LMIs of Theorem 2 can also be solved for optimal
solution of the L2 gain from un to yd . The best value
of the L2 gain was obtained to be γ = 3.52 × 10−6

for δ = 0.001. Figure 4 shows the nominal closed-
loop response, the closed-loop response with satura-
tion (without an AWC), the closed-loop response with
the proposed AWC, and the closed-loop response with
the AWC [18] for a square wave reference signal with
different controller parameter KP and KI selections.
The closed-loop response with the proposed AWC
tracks the reference signal, for each selection of KP

and KI , with a higher overshoot than the nominal sys-
tem due to the input constraint, whereas the closed-
loop response with saturation exhibits an unstable be-
havior. The closed-loop response with the AWC [18]
does not track the reference signal for KP = KI = 30.
When KP = KI = 40, the performance of the AWC
is improved, though instability occurs after time t =
40 s. Upon further increasing the controller param-
eters to KP = KI = 50, the response of the AWC
[18] was reasonable, but remained inferior to the pro-
posed methodology. The response of the AWC [18] is

highly dependent on the overall closed-loop system;
this approach therefore can suffer performance limita-
tions due to the slow AWC response caused by slow
closed-loop system dynamics. However, selection of a
fast nominal controller, producing a fast closed-loop
system, can remedy these problems.

7 Conclusions

This paper explored the possibilities of a nonlinear
full-order AWC design for nonlinear systems under
actuator saturation. A nonlinear IMC-based AWC ar-
chitecture was developed to deal with asymptotically
stable nonlinear systems. A more general architec-
ture based on the transformation of an overall closed-
loop system into a decoupled architecture was de-
veloped, which can be used for stable, unstable, and
chaotic systems. Global and local LMI-based suffi-
cient conditions were developed in order to design a
decoupled-architecture-based AWC for systems with
globally Lipschitz nonlinearities. The proposed lo-
cal AWC design ensures, simultaneously, a large re-
gion of stability and a reasonable closed-loop per-
formance. The proposed AWC schemes were suc-
cessfully tested using a numerical example, and its
results were found to be supportive for resolution
of automation-industry and nonlinear science prob-
lems.
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Appendix A: AWC parameterization for complex
nonlinear systems

Consider a general nonlinear system given by

dxp

dt
= g(xp,usat),

(A.1)
y = l(xp,usat),

where the functions g(xp,usat) ∈ Rn and l(xp,usat) ∈
Rp represent time-varying nonlinearities. The decou-
pled-architecture-based AWC parameterization is given
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by

dxaw

dt
= g(xp + xaw, un)

− g
(
xp,un − ũ − Fxaw − h(xp, xaw)

)
,

ud = Fxaw + h(xp, xaw), (A.2)

yd = l(xp + xaw, un)

− l
(
xp,un − ũ − Fxaw − h(xp, xaw)

)
,

ũ = u − usat = un − ud − usat = Dz(u),

where F ∈ Rm×n and h(xp, xaw) ∈ Rm are the un-
known components of the AWC that can be selected
to achieve the desired AWC performance. This param-
eterization is determined in the same way as described
in Sect. 4. The corresponding IMC-based AWC can
be obtained by Fxaw + h(xp, xaw) = 0, which always
exists for an asymptotically stable system (A.1).

Appendix B: Nonlinear matrix inequality-based
AWC design

Consider the AWC parameterization, for a nonlinear
system (1), given by

dxaw

dt
= f (xp + xaw) − f (xp) + (A + BF)xaw

+ Bh(xp, xaw) + Bũ,

ud = Fxaw + h(xp, xaw), (B.1)

yd = (C + DF)xaw + Dh(xp, xaw) + Dũ,

ũ = u − usat = Dz(u) = un − ud − usat,

where nonlinearity h(xp, xaw) ∈ Rm represents a time-
varying vector. By replacing Fxaw with Fxaw +
h(xp, xaw) in Figs. 2 and 3, a full-order AWC architec-
ture and its equivalent decoupled architecture can be
obtained for this parameterization. To design an AWC
for a nonlinear system (1) using the parameterization
(B.1), consider a Lyapunov function

V = γ V̄ (xaw) > 0, V̄ (xaw) > 0, γ > 0, (B.2)

where γ is a constant and V̄ (xaw) ∈ R is any positive
definite function; for example, the extended quadratic
Lyapunov function provided in [22].

Theorem B.1 Consider an overall closed-loop sys-
tem, formed by plant (1), controller (3) and AWC (B.1),
satisfies Assumption 1. Suppose there exists a matrix
F ∈ Rm×n and a function h(xp, xaw) ∈ Rm. Consider
the optimization problem

minγ

such that

γ > 0, V̄ (xaw) > 0, U > 0, (B.3)

⎡
⎢⎢⎣

X1 + γ −1X2
1
2 ( ∂V̄

∂xaw
)BU − xT

awFT − h(xp, xaw)T + γ −1h(xp, xaw)T DT DU 0 xT
aw(C + DF)T

∗ −2U I UDT

∗ ∗ −γ I 0
∗ ∗ ∗ −γ I

⎤
⎥⎥⎦<0,

(B.4)

where

X1 = ∂V̄

∂xaw

[
f (xp + xaw) − f (xp) + (A + BF)xaw + Bh(xp, xaw)

]
, (B.5)

X2 = (
h(xp, xaw)T DT Dh(xp, xaw) + h(xp, xaw)T DT (C + DF)xaw + xT

aw(C + DF)T Dh(xp, xaw)
)
, (B.6)
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γ is a scalar, and matrix U ∈ Rm×m is a diagonal.
The, the following holds:

(i) There exists an AWC for an asymptotically stable

plant (1) that ensures stability and windup preven-

tion for the overall closed-loop system.
(ii) The decoupled nonlinear part from un to yd is

asymptotically stable if un = 0.
(iii) The L2 gain from un to yd is less than γ if un �= 0.

Proof If Fxaw + h(xp, xaw) = 0, then the AWC pa-
rameterization (B.1) becomes the same as the IMC-
based AWC; hence, (i) is easily followed. The inequal-
ity (17) ensures (ii) and (iii). For Lyapunov function
(B.2), the inequality (17) for AWC parameterization
(B.1) gives J1 = Z̄T Π3Z̄ < 0, where

Z̄ = [
I ũT uT

n

]T
, (B.7)

Π3 =
⎡
⎢⎣

X1 + γ −1X2 + γ −1xT
awC̄T C̄xaw

1
2 ( ∂V̄

∂xaw
)B + γ −1(xT

awC̄T D + h(xp, xaw)T DT D) 0
∗ γ −1DT D 0
∗ ∗ −γ I

⎤
⎥⎦ < 0. (B.8)

Sector condition (4) can be written as Z̄T Π4Z̄ ≥ 0,
where

Π4 =
⎡
⎣

0 −xT
awFT W − h(xp, xaw)T W 0

∗ −2W W

∗ ∗ 0

⎤
⎦ ≥ 0.

(B.9)

Combining (B8) and (B9) through the S-procedure
(Π = Π3 + εΠ4 < 0 with ε > 0), taking v = εW and
further applying the Schur complement followed by
the congruence transform with diag(I, v−1, I, I ), and
taking v−1 = U > 0, (B.3)–(B.6) are obtained. This
completes the proof of Theorem B.1. �

The results proposed in Theorem B.1 can be ex-
tended for oscillatory, unstable and chaotic locally
Lipschitz and non-Lipschitz nonlinear systems by us-
ing the local sector condition. Due to its importance in
nonlinear science, the final nonlinear matrix inequali-
ties, by using the local sector condition (25)–(26) with
u = un − Fxaw − h(xp, xaw) and w = un + Gxaw −
h(xp, xaw), are given by

σ > 0, δ > 0, U > 0, V̄ (xaw) > 0,

(B.10)
[

V̄ (xaw) −(F T
(i)

+ GT
(i)

)xaw

∗ δū2
(i)

]
≥ 0, i = 1, . . . ,m,

(B.11)

⎡
⎢⎢⎣

X1 + σ−1X2
1
2 ( ∂V̄

∂xaw
)BU + xT

awGT − h(xp, xaw)T + σ−1h(xp, xaw)T DT DU 0 xT
aw(C + DF)T

∗ −2U I UDT

∗ ∗ −I 0
∗ ∗ ∗ −σI

⎤
⎥⎥⎦ < 0,

(B.12)

which can be used for the local AWC design of a non-
linear system (1) not verifying Assumption 2. These
matrix inequalities are derived by utilizing the similar
steps as was followed for the proofs of Theorems 2
and B.1.
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