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Abstract In this paper, we use a food web model to
investigate the effects of habitat loss and species di-
versity on ecosystem spatial structure and its elastic-
ity. Our model incorporates functional responses based
on the Holling-type-II and the modified Lesie–Gower
schemes. Criteria for local stability, global stability of
the nonnegative equilibria are obtained. The perma-
nent coexistence of the three species is also discussed.
Finally, by computer simulations, we find that far-from
equilibria, environmental quality is positively corre-
lated patterns complexity communities. Knowledge of
the distribution shape of interacting communities will
allow us to make better predictions of environmental
quality.

Keywords Tritrophic system · Stability · Habitat
loss · Pattern complexity · Bifurcation analysis

1 Introduction

The investigation of relationships between organisms
and their biotic and abiotic environments is central in
describing and understanding ecological and biologi-
cal processes. The issues raised require more and more
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a solicitation of tools from complex science theories
[7, 8, 16, 38]. In particular, the issue of population in-
teractions is to understand mechanisms impacting the
dynamics of trophic food chain.

It is known that ecological communities generally
display complex structures that are challenging to in-
tegrate into a realistic model [1, 20, 21, 25, 28, 40].
This problem has been considered from the theoretical
point of view by Lotka [22–24], followed by Volterra
[37]. Lotka has introduced the first model able to eluci-
date the main features of species interactions and pop-
ulational cycles in predator–prey systems. However, to
gain some more realistic and fundamental understand-
ing of biodiversity conservation or ecosystem loss pro-
cesses, it is important to take into account spatial de-
grees of freedom.

Ecosystem loss refers to the disappearance of an
ecosystem, or an assemblage of organisms and the
physical environment in which they exchange energy
and matter. Many studies show the interactions be-
tween the effects of disturbances and habitat destruc-
tion [15, 30]. Although natural systems are hetero-
geneous, the direct influence of spatial heterogeneity
on most ecological variables is unknown [17, 29, 45].
The lack of spatially explicit, large-scale field studies
is identified as a major obstacle to the understanding of
fundamental ecological processes. Moreover, the con-
ditions of correlation between the spatial pattern shape
and the degree of ecosystem quality are not yet well
known.
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Turing [35] showed how the coupling of reaction
and diffusion can induce pattern formation. Since then,
the mechanism responsible for the spontaneous gener-
ation of spatial patterns through biological or chemical
interactions has been called diffusion instability. The
classical Lotka–Volterra type systems are very impor-
tant in the models of population dynamics. The gov-
erning equations for the population densities are de-
scribed by a system of reaction-diffusion equations,
for example, in food webs. A food web can be char-
acterized by a model of complex network, in which
a node represents a species Wang et al. [41–44] pro-
posed a class of three-species Lotka–Volterra mutu-
alism models with diffusion, time-varying delay, and
linear coupling, which are described by systems of
linear parabolic partial differential equations. Ryu and
Ahn [31] studied the dynamics of predator–prey in-
teraction systems between two species with ratio-
dependent functional responses.

In this paper, we consider a system of reaction-
diffusion equations to model the spatiotemporal dy-
namics of three species linked by a trophic food chain.
Our model is based on a modified version of the
Leslie–Gower scheme [18, 19]. Modified Leslie and
Gower versions was studied by changing the func-
tional response or by adding a third species in the
trophic chain [6, 12, 36], also by incorporation a
periodic impulsive perturbations [11]. We examine
first the mathematical model analysis in Sect. 3 in
which we explore the stability of the positive ho-
mogeneous equilibrium. Then by numerical simula-
tion in Sect. 4, we focus on complex issues related
to patterns of ecosystem loss. Through the analy-
sis of bifurcations, pattern complexity is explored
by determining the critical parameter values, which
lead to ecosystem changes in a bottom-up scenario
of control. We expect that understanding such ef-
fects, provide essential tools for the response predic-
tion of communities to global changes or for ecosys-
tem loss.

2 Materials and methods

2.1 Mathematical model

Originally, Leslie and Gower [18] have developed a
temporal trophic model without incorporating the spa-
tial dimension. Author in [12] analyzed in detail the

nonspatial modified version, which uses the equations
below:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dE1

dT
=

(

a0 − b0E1 − v0E2

E1 + d0

)

E1

dE2

dT
=

(

−a1 + v1E1

E1 + d0
− v2E3

E2 + d2

)

E2,

dE3

dT
=

(

c3 − v3E3

E2 + d3

)

E3,

(1)

with E1(0) ≥ 0, E2(0) ≥ 0, and E3(0) ≥ 0 are initial
population densities.

E1 represents the density of prey at time T . E2 is
the density of medium predator at time T and eating
E1. E3 is the density of top predator at time T and
eating E2. a0, b0, v0, d0, a1, v1, v2, d2, c3, v3, and d3

are model parameters assuming only positive values.
a0, (respectively c3) is the growth rate of prey

E1, (respectively top predator E3). b0 measures the
strength of competition among individuals of species
E1. v0 is the maximum value of the per capita reduc-
tion rate of E1 due to E2. v1 is the maximum value
of the per capita growth rate achieved by E2. v2 is the
maximum value of the per capita reduction rate of E2

due to E3. v3 is the maximum value that the decay rate
that top predator E3 can reach. d0 measures the extent
to which environment provides protection to prey E1

and middle predator E2. a1 is the natural mortality rate
of middle predator E2. d3 represents the residual loss,
caused by high predation of E2 top predator E3.

In order to incorporate into (1) the spatial complex-
ity of interactions, we naturally consider this associ-
ated reaction-diffusion system of equations,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂U1

∂T
=

(

a0 − b0U1 − v0U2

U1 + d0

)

U1 + δ1�U1,

T > 0,

∂U2

∂T
=

(

−a1 + v1U1

U1 + d0
− v2U3

U2 + d2

)

U2 + δ2�U2,

T > 0,

∂U3

∂T
=

(

c3 − v3U3

U2 + d3

)

U3 + δ3�U3, T > 0

(2)

where δi is the diffusion rate of population i, (i =
1,2,3) and � represent Laplacian operator in a
bounded domain Ω0 of R

n (n = 1,2,3). To investi-
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gate problem (2), we introduce the following scaling
transformations:

t = a0T , W1 = b0

a0
U1, W2 = b0v0

a2
0

U2,

W3 = b0v0v2

a3
0

U3,

x =
(

b0

δ1

) 1
2

X, y =
(

b0

δ1

) 1
2

Y, a = b0d0

a0
,

b = a1

a0
, c = v1

v0
,

d = b1v0

a2
0

, p = c3

a0
, q = v3

v2
,

r = b1v0d3

a2
0

, ε1 = 1, ε2 = a0δ2

v0δ1
and

ε3 = a0δ3

v0v2δ1
.

We obtain the following equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂W1

∂t
= W1(1 − W1) − W1W2

W1 + a
+ ε1�W1,

t > 0, x ∈ Ω

∂W2

∂t
= cW1W2

W1 + a
− bW2 − W2W3

W2 + d
+ ε2�W2,

t > 0, x ∈ Ω

∂W3

∂t
= pW3 − qW 2

3

W2 + r
+ ε3�W3,

t > 0, x ∈ Ω

(3)

– ∂W1
∂ν

= ∂W2
∂ν

= ∂W3
∂ν

= 0 on ∂Ω t > 0
– W1(x,0) = W01(x), W2(x,0) = W02(x),

W3(x,0) = W03(x) x ∈ Ω

where Ω is a bounded domain in R
n, n = 1,2,3, with

smooth boundary ∂Ω and � is Laplacian operator. ε1,
ε2, and ε3 are respectively the diffusion rate of prey,
medium predator, and top predator. ∂

∂ν
|∂Ω is the out-

ward normal of ∂Ω . Therefore, the three boundary
conditions imply that the region is insular.

W1(., t), W2(., t), and W3(., t) are all densities, so
only nonnegative solutions will make sense. In fact,
this can be proved by using the comparison princi-
ple as long as the initial functions are nonnegative,

[9, 33]. In order to simplify computations let us recall
that without diffusion, the scaling system is written as
follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dE1

dt
= E1(1 − E1) − E1E2

E1 + a
,

dE2

dt
= cE1E2

E1 + a
− bE2 − E2E3

E2 + d
,

dE3

dt
= pE3 − qE2

3

E2 + r
.

(4)

In the mathematical analysis section, we first study
the permanence and persistence of solutions of sys-
tems (3), then we analyze the stability of the positive
homogeneous equilibrium.

2.2 Numerical study

In the section numerical study section, we consider the
equation system (2) with positive values of U1(x,0),
U2(x,0), and U3(x,0) in domain Ω = [0 100] ×
[0 100]. We set Neumann boundary conditions and
fix the following parameter values: a0 = 0.7, b0 =
0.25, v0 = 0.3, a1 = 0.4, v1 = 0.8, v2 = 0.4, d2 =
0.4, c3 = 0.2, v3 = 0.6, δ1 = 0.04, δ2 = 0.04,
δ3 = 0.002.

Note that in system (2) environmental prey carrying
capacity K equals a0

b0
and d0 is its environmental pro-

tection. Thus, we define the percentage of protection
(pp) by the following ratio: pp = d0

K
∗ 100. This index

pp will be used as a measure of the environment qual-
ity in a bottom-up control. For a given value of pp, we
can determine d0 and have all the values system (2)
parameters.

With the software Matlab R2009b, we solve the
system (2) by implementing the combined finite dif-
ferences method and the method Runge–Kutta 4. In
our algorithm, we divide our domain Ω = [0 100] ×
[0 100] into 5002 small cells ωij , i, j = 1,2, . . . ,500.

At each time t , we compute the density U
ij
l (t) of each

species l = 1,2,3 in the cell ωij . Thus, we can quan-
tify at time t , the spatial complexity sc(t) of each
species distribution using the renormalized Shannon
index [32]. For prey population, the spatial complex-
ity sc(t) of the distribution at time t is

sc(t) = −
∑500

i,j=1(
U

ij
1 (t)

K
ln(

U
ij
1 (t)

K
))

5002 + 1



1786 B.I. Camara

The spatial complexity sc(t) ranges from 0 to 1. In
fact, when sc(t) = 0 is the completely ordered case
equivalent to a uniform spatial distribution in all cells
ωij . sc(t) = 1 is the most complex case corresponding
to the equal frequency of cells with densities varying
from 0 to K .

For a given index value pp, we determine the evo-
lution of the spatial complexity sc(t) over a period be-
tween 0 and Tmax = 4500. Then we calculate the mean
and standard deviation of the spatial complexity pro-
duced by this index pp on this observation period.

3 Mathematical results

3.1 Permanence and persistence of solutions

By standard existence theory, [2–4], it is not diffi-
cult to establish the local existence of the unique so-
lution (W1(., t),W2(., t),W3(., t)) of (3) for 0 = t <

Tmax, where Tmax is determined by W01(x), W02(x),
and W03(x). Now we establish the global existence
by proving that for any finite time T , ‖W1(., t)‖L∞ ,
‖W2(., t)‖L∞ , ‖W3(., t)‖L∞ are bounded for 0 ≤ t <

T .

Theorem 1 For any smooth nonnegative functions
W01(x) ≤ 1, W02(x), and W03(x), (3) has a unique
smooth global solution for t > 0.

Proof First, it is easily seen that W1(x, t) ≥ 0,
W2(x, t) ≥ 0, and W3(x, t) ≥ 0, since 0 is a sub-
solution of each equation of (3). We have

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂W1

∂t
≤ W1(1 − W1) + ε1�W1

∂W1

∂ν
= 0, t > 0,

W1(x,0) = W01(x) ≤ W01 ≡ max
Ω̄

W01(x), x ∈ Ω.

(5)

By the comparison principle, we have W1(x, t) ≤
W(t) ≤ 1, where W(t) = et W01

1−W01+et is the solution of

the initial value problem:

⎧
⎪⎨

⎪⎩

dW

dt
= W(1 − W),

W(0) = W01 ≤ 1,

∂W2

∂t
= cW1W2

W1 + a
− bW2 − W2W3

W2 + d
+ ε2�W2.

(6)

By the comparison principle, we deduce that

1

c

∂W2

∂t
≤ 1

c

dE2

dt

where E2 is solution of system (4) with initial value
E2(0) = maxΩ̄ W02(x). Thus, from [5, 13],

1

c

∂W2

∂t
≤ 1

c

dE2

dt
+ dE1

dt
.

Let us denote by σ = 1
c
E2 + E1,

1

c

∂W2

∂t
≤ dσ

dt

≤ 1

4
+ b − bσ.

So,

W2(x, t) ≤ c + c

4b
, for 0 ≤ t < T .

From the third equation of system (3), we have

α
∂W3

∂t
= αpW3 − αqW 2

3

W2 + r
+ αε3�W3,

with α = 4b

(b + p)2(4bc + c + 4br)
.

By the comparison principle, we deduce that

α
∂W3

∂t
≤ α

dE3

dt

where E3 is solution of system (4) with initial value
E3(0) = maxΩ̄ W03(x).

Thus,

α
∂W3

∂t
≤ α

dE3

dt
+ 1

c

dE2

dt
+ dE1

dt

≤ E1(1 − E1) − b

c
E2 − 1

c

E2E3

E2 + d
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+ α

(

p − qE3

E2 + r

)

E3

≤ 1

4
+ b − αbW3 + αbE3

+ α

(

p − qE3

E2 + r

)

E3.

So,

α
∂W3

∂t
+ αbW3 ≤ 1

4
+ b + M

where M = 1

4q
.

Finally,

W3(x, t) ≤ 1

α
+ 1

4αb
+ M

αb
for 0 ≤ t < T . �

Theorem 2 The domain

A ≡ [0,1] ×
[

0, c + c

4b

]

×
[

0,
1

α
+ 1

4αb
+ M

αb

]

,

where

α = 4b

(b + p)2(4bc + c + 4br)
,

is a positively invariant region for the global solutions
of system (3).

Proof As we can see before,

W1 ≤ E1, W2 ≤ E2, W3 ≤ E3,

and from [5, 13] we have

limt→+∞E1(t) ≤ 1,

limt→+∞
(

E1(t) + 1

c
E2(t)

)

≤ 1 + 1

4b
,

limt→+∞
(

E1(t) + 1

c
E2(t) + αE3

)

≤ 1 + 1

4b
+ M

αb
.

�

3.2 Local stability of the positive steady-state
solutions

To investigate the stability of positive equilibria, we
consider the solutions Ws(x) of system (3),

Ws(x) = (
W1s(x),W2s(x),W3s(x)

)
,

satisfying ( ∂W1
∂t

, ∂W2
∂t

,
∂W3
∂t

) = (0,0,0). Let us consider
a solution W(x, t) of system (3) having the following
form:

W(x, t) = (
W1(x, t),W2(x, t),W3(x, t)

)

= Ws(x) + Z(x, t)

= Ws + (
Z1(x, t),Z2(x, t),Z3(x, t)

)
. (7)

Let us substitute W(x, t) with the form (7) into system
(3) and then pick up all the terms which are linear in
Z:

∂Z

∂t
= D�Z + L(Ws)Z, (8)

where

D = diag(ε1, ε2, ε3),

L(Ws) =
⎛

⎝
FW1 FW2 FW3

GW1 GW2 GW3

HW1 HW2 HW3

⎞

⎠ (9)

with

FW1 = 1 − 2W1 − aW2

(W1 + a)2
,

FW2 = − W1

W1 + a
,

FW3 = 0,

GW1 = acW2

(W1 + a)2
,

GW2 = cW1

W1 + a
− b − dW3

(W2 + d)2
,

GW2 = − W2

W2 + d
,

HW1 = 0,

HW2 = qW 2
3

(W2 + d)2
,

HW3 = p − 2qW3

W2 + d
.

Theorem 3 A necessary condition for Ws to be lo-
cally stable is, at Ws ,

FW1 + GW2 + HW3 < 0,

FW1GW2 + FW1HW3 + GW2HW3 − FW2GW1
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− FW3HW1 − GW3HW2 > 0,

FW1GW3HW2 + FW2GW1HW3 + FW3GW2HW1

− FW1GW2HW3 − FW2GW3HW1 − FW3GW1HW2

> 0.

Proof Let φj denote the j th eigenfunction of −� on
Ω with homogeneous Neumann boundary condition.
That is,
⎧
⎪⎨

⎪⎩

−�φj = λjφj , in Ω

∂φj

∂ν

∣
∣
∣
∣
∂Ω

= 0
(10)

for scalar λj satisfying 0 = λ0 < λ1 < λ2 < · · · .
We expand the solution Z of Eq. (8) via

Z =
∞∑

j=0

zj (t)φj (x, y), (11)

where each zj (t) ∈ R
n. Using the form of Z given

in (11) into Eq. (8) and equating the coefficients of
each φj , we have

dzj

dt
= Cjzj ,

where Cj is the matrix

Cj = L(Ws) − λjD.

Now the solution Ws is stable if and only if each zj (t)

decays to zero. This is equivalent to the condition that
each Cj has three eigenvalues with negative real parts.
The eigenvalues ρk , k = 1,2,3, of Cj are determined
by

ρ3 + aρ2 + bρ + c = 0,

where

a = λj (ε1 + ε2 + ε3) − (FW1 + GW2 + HW3),

b = λ2
j (ε1ε2 + ε1ε3 + ε2ε3) − λj (ε1GW2 + ε1HW3

+ ε2FW1 + ε2HW3 + ε3FW1 + ε3GW2)

+ FW1GW2 + FW1HW3 + GW2HW3 − FW2GW1

− FW3HW1 + GW3HW2,

c = λ3
j ε1ε2ε3 − λ2

j (ε1ε2HW3 + ε1ε3GW2 + ε2ε3FW1)

+ λj (ε1GW2HW3 + ε2FW1HW3 + ε3FW1GW2

− ε1GW3HW2 − ε2FW3HW1 − ε3FW2GW1)

+ FW1GW3HW2 + FW2GW1HW3 + FW3GW2HW1

− FW1GW2HW3 − FW2GW3HW1 − FW3GW1HW2 .

(12)

Now the three eigenvalues all have negative real part
implies that

FW1 + GW2 + HW3 − λj (ε1 + ε2 + ε3) < 0, (13)

FW1GW2 + FW1HW3 + GW2HW3 − FW2GW1

− FW3HW1 + GW3HW2 − λj (ε1GW2

+ ε1HW3 + ε2FW1 + ε2HW3 + ε3FW1 + ε3GW2)

+ λ2
j (ε1ε2 + ε1ε3 + ε2ε3) > 0, (14)

FW1GW3HW2 + FW2GW1HW3 + FW3GW2HW1

− FW1GW2HW3 − FW2GW3HW1 − FW3GW1HW2

+ λj (ε1GW2HW3 + ε2FW1HW3 + ε3FW1GW2

− ε1GW3HW2 − ε2FW3HW1 − ε3FW2GW1)

− λ2
j (ε1ε2HW3 + ε1ε3GW2 + ε2ε3FW1)

+ λ3
j ε1ε2ε3 > 0. (15)

In particular, these three inequalities should hold for
j = 0.

For j = 0, they are reduced to

FW1 + GW2 + HW3 < 0, (16)

FW1GW2 + FW1HW3 + GW2HW3 − FW2GW1

− FW3HW1 + GW3HW2 > 0, (17)

FW1GW3HW2 + FW2GW1HW3 + FW3GW2HW1

− FW1GW2HW3 − FW2GW3HW1

− FW3GW1HW2 > 0. (18)

�

Recall the assumptions that guarantee the existence
of positive steady states are

FW2 ≤ 0, FW3 ≤ 0, GW1 ≥ 0, GW3 ≤ 0,

HW1 ≥ 0, HW2 ≥ 0.

Under these conditions, by using the Routh–Hurwitz
criteria (see [14]), we can obtain sufficient conditions
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for the stability of the positive steady state solutions.
But it is too complicated for the general situation.
If the positive steady state is constant, denoted by
(W ∗

1 ,W ∗
2 ,W ∗

3 ), we can prove the following theorem
about the sufficient conditions.

Theorem 4 Let us assume that

p < 2, b >
c

a
and a ∈ ]

7 − 4
√

3,7 + 4
√

3
[
.

The homogeneous positive steady state solution Ws =
(W ∗

1 ,W ∗
2 ,W ∗

3 ) is locally stable.

Proof From the proof of Theorem 3, we know that we
need only to prove that the solutions of

ρ3 + aρ2 + bρ + c = 0,

have negative real parts, where a, b, c are given by
(12). From the Routh–Hurwitz criteria, we know that
it is true if

a > 0, ab − c > 0, abc − c2 > 0.

To have this, we need only have a > 0, ab > c > 0.
From condition (12) , we need, for all j ≥ 0,

{
λj (ε1 + ε2 + ε3) − (FW1 + GW2 + HW3) > 0 (19)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ3
j

(
2ε1ε2ε3 + ε2

1ε2 + ε2
1ε3 + ε1ε

2
2 + ε1ε

2
3 + ε3ε

2
2

+ ε2ε
2
3

) − λ2
j

(
ε2

1GW2 + ε2
1HW3 + ε2

2FW1

+ ε2
2HW3 + ε2

3FW1 + ε2
3GW2 + 2ε1ε2FW1

)

− λ2
j (2ε1ε2HW3 + 2ε1ε3FW1 + 2ε1ε3GW2

+ 2ε1ε2GW2) − λ2
j (2ε1ε3HW3 + 2ε2ε3FW1

+ 2ε2ε3GW2 + 2ε2ε3HW3) + λj

(
ε1G

2
W2

+ ε1H
2
W3

+ ε2F
2
W1

+ ε2H
2
W3

+ ε3F
2
W1

+ ε3G
2
W2

+ 2ε1FW1GW2 + 2ε1FW1HW3

+ 2ε1GW2HW3 − ε1FW2GW1 − ε1FW3HW1

+ 2ε2FW1GW2 + 2ε2FW1HW3 + 2ε2GW2HW3

− ε2FW2GW1 − ε3GW3HW2 + 2ε3FW2uGW2v

+ 2ε3FW1HW3w + 2ε3GW2HW3 − ε3FW3HW1

− ε3GW3HW2

) − F 2
W1

GW2 − F 2
W1

HW3

− 2FW1GW2HW3 + FW1FW2GW1 + FW1FW3HW1

− FW1G
2
W2

− G2
W2

HW3 + FW2GW1GW2

+ GW2GW3HW2 + FW2GW3HW1 + FW3GW1HW2

− FW1H
2
W3

− GW2H
2
W3

+ FW3HW1HW3

+ GW3HW2HW3 > 0,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ3
j ε1ε2ε3 − λ2

j (ε1ε2HW3 + ε1ε3GW2 + ε2ε3FW1)

+ λj (ε1GW2HW3 + ε2FW1HW3 + ε3FW1GW2

− ε1GW3HW2 − ε3FW2GW1 − ε2FW3HW1)

+ FW1GW3HW2 + FW2GW1HW3 + FW3GW2HW1

− FW1GW2HW3 − FW2GW3HW1

− FW3GW1HW2 > 0.

Observing that λj ≥ 0, we need only
{
FW1 + GW2 + HW3 < 0, (20)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ2
j

(
ε2

1GW2 + ε2
1HW3 + ε2

2FW1 + ε2
2HW3 + ε2

3FW1

+ ε2
3GW2 + 2ε1ε2FW1 + 2ε1ε2HW3 + 2ε1ε3FW1

+ 2ε1ε3GW2 + 2ε1ε2GW2

+ 2ε1ε3HW3 + 2ε2ε3FW1 + 2ε2ε3GW2

+ 2ε2ε3HW3

) − λj

(
ε1G

2
W2

+ ε1H
2
W3

+ ε2F
2
W1

+ ε2H
2
W3

+ ε3F
2
W1

+ ε3G
2
W2

+ 2ε1FW1GW2

+ 2ε1FW1HW3 + 2ε1GW2HW3 − ε1FW2GW1

− ε1FW3HW1 + 2ε2FW1GW2 + 2ε2FW1HW3

+ 2ε2GW2HW3 − ε2FW2GW1 − ε3GW3HW2

+ 2ε3FW2uGW2v + 2ε3FW1HW3w

+ 2ε3GW2HW3 − ε3FW3HW1

− ε3GW3HW2

) + F 2
W1

GW2 − F 2
W1

HW3

− 2FW1GW2HW3 + FW1FW2GW1 + FW1FW3HW1

− FW1G
2
W2

− G2
W2

HW3 + FW2GW1GW2

+ GW2GW3HW2 + FW2GW3HW1 + FW3GW1HW2

− FW1H
2
W3

− GW2H
2
W3

+ FW3HW1HW3

+ GW3HW2HW3 < 0,

(21)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ2
j (ε1ε2HW3 + ε1ε3GW2 + ε2ε3FW1)

− λj (ε1GW2HW3 + ε2FW1HW3 + ε3FW1GW2

− ε1GW3HW2 − ε3FW2GW1 − ε2FW3HW1)

− FW1GW3HW2 − FW2GW1HW3 − FW3GW2HW1

+ FW1GW2HW3 + FW2GW3HW1

+ FW3GW1HW2 < 0.

(22)
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At

W ∗
1 = a(bq + p)

qc − bq − p
,

W ∗
2 = (

1 − W ∗
1

)(
W ∗

1 + a
)
,

W ∗
3 = p(W ∗

2 + r)

q
,

and thanks to the hypothesis of the theorem,

HW3 = p − 2 < 0,

GW2 = c
W ∗

1

W ∗
1 + a

− b − d

W ∗
2 + d

= (c − b)W ∗
1 − ab

W ∗
1 + a

− d

W ∗
2 + d

< 0,

and,

FW1 = 1 − 2W ∗
1 − a(1 − W ∗

1 )

W ∗
1 + a

= −2(W ∗
1 )2 + (a + 1)W ∗

1 − 2a

W ∗
1 + a

< 0.

The second and third inequalities (21) and (22)
hold because we have, FW1 < 0, FW2 < 0, FW3 = 0,
GW1 ≥ 1, GW2 < 0, GW3 < 0, HW1 = 0, HW2 > 0,
HW3 < 0.

This completes the proof of the theorem. �

3.3 Global stability of the positive steady-state
solutions

Theorem 5 Let us assume that

b < c, 1 − a < W ∗
1 <

ab

c − b
, and

W ∗
2 < d(c − b).

(23)

Then, the homogeneous positive steady state solution
(W ∗

1 ,W ∗
2 ,W ∗

3 ) is globally asymptotically stable.

Proof Let us denote by

φ(W1,W2,W3)

=
∫ W1

W ∗
1

η − W ∗
1

η
dη +

∫ W2

W ∗
2

(η − W ∗
2 )(η + d)

η
dη

+
∫ W3

W ∗
3

η − W ∗
3

η
dη, (24)

Φ(W1,W2,W3) =
∫

Ω

φ(W1,W2,W3) dx. (25)

We need to prove that Φ is a Lyapunov function, so

we have to show that
dΦ

dt
< 0.

dΦ

dt
=

∫

Ω

dφ(W1,W2,W3)

dt
dx

= I1 + I2. (26)

We have

I1 =
∫

Ω

[
W1 − W ∗

1

W1

(

W1(1 − W1) − W1W2

W1 + a

)

+ (W2 − W ∗
2 )(W2 + d)

W2

(
cW1W2

W1 + a
− bW2

− W2W3

W2 + d

)

+ W3 − W ∗
3

W3

(

pW3 − qW 2
3

W2 + r

)]

dx

=
∫

Ω

[
W1 − W ∗

1

W1 + a

(
(1 − W1)(W1 + a) − W2 + W ∗

2

− (
1 − W ∗

1

)(
W ∗

1 + a
)) + (W2 − W ∗

2 )(W2 + d)

W2
(
cW1(W2 + d) − b(W1 + a)(W2 + d)

− W3(W1 + a) − cW ∗
1

(
W ∗

2 + d
)

− b
(
W ∗

1 + a
)(

W ∗
2 + d

) − W ∗
3

(
W ∗

1 + a
))

+ (
W2 − W ∗

2

)
(

qW ∗
3

W ∗
2 + r

− qW3

W2 + r

)]

dx

= −
∫

Ω

(
W1 − W ∗

1 ,W2 − W ∗
2 ,W3 − W ∗

3

)

× B
(
W1 − W ∗

1 ,W2 − W ∗
2 ,W3 − W ∗

3

)T
dx, (27)

where
⎛

⎜
⎜
⎝

W1+W ∗
1 +a−1

W1+a

W ∗
3 −(c−b)(W ∗

2 +d)

W1+a
0

1
W1+a

ab−(c−b)W ∗
1

W1+a
− p

W2+r

0 1 q
W2+r

.

⎞

⎟
⎟
⎠ . (28)

From hypothesis (23), the matrix B is positive, and
consequently I1 < 0.

On the other hand, we have

I2 =
∫

Ω

[

ε1
W1 − W ∗

1

W1
�W1

+ ε2
(W2 − W ∗

2 )(W2 + d)

W2
�W2

+ ε3
W3 − W ∗

3

W3
�W3

]

dx
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= −ε1

∫

Ω

|∇W1|2 W ∗
1

W1
dx

− ε2

∫

Ω

|∇W2|2 W2 + dW ∗
2

W2
dx

− ε3

∫

Ω

|∇W3|2 W ∗
3

W3
dx < 0. (29)

This completes the proof. �

Fig. 1 Spatial distribution of communities of prey, medium predator, and top predator at time t = 4500, for different index values of
environmental quality, in (A) pp = 5, in (B) pp = 10, in (C) pp = 15, in (D) pp = 20
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Fig. 2 Dynamics of prey spatial complexity sc(t), for a given
proportion of protection pp = 10

4 Numerical results of far-from equilibrium
dynamics

Figure 1(A) corresponding to a percentage of protec-
tion pp = 5, shows the distribution of communities
of prey, medium predator, and top predator in the do-
main Ω at time Tmax. Thus the system is far-from-
equilibrium. Figures 1(B), (C), and (D) are obtained
for pp = 10, pp = 15, and pp = 20. Thus, variations
in the percentage of protection pp impact significantly
on the qualitative aspects of the pattern of different
communities. The pattern structures are more ordered
for lower values of pp than for higher values.

For a given percentage of protection pp, the pattern
structure produced by each community is not static
(see Fig. 2). It varies in time with a strong increase in
the spatial complexity sc(t) at the beginning of obser-
vations and with small oscillation amplitudes beyond
t = 500 (see Fig. 2). In practice, several measures are
therefore necessary for a better approximation of sc(t).

Qualitative differences of patterns (Fig. 1) induced
by the change in pp are quantified in Fig. 3. Thus, the
average value of the spatial complexity sc(t) is an in-
creasing function of the proportion of protection index
pp, with pp ∈ [1,20]. This average value of sc(t) in
neighborhoods of equilibria decreases, before to van-
ish.

5 Conclusions and discussions

In this study, we first perform the local stability anal-
ysis of the positive equilibrium homogeneous of our

Fig. 3 Mean and standard deviation of spatial complexity of
prey pattern over environment quality

spatiotemporal system modeling three species inter-
action dynamics. Then we established the conditions
for global stability of this positive equilibrium ho-
mogeneous by constructing a Lyapunov function. We
show numerically that a low prey environmental pro-
tection produces light pressure on species leading to
the extinction of prey population and medium preda-
tor population. This means the system converges to
the homogeneous equilibrium (0,0,

c3d3
v3

). However,
a high prey environmental protection makes the pop-
ulation of medium predator vulnerable and increases
the risk of extinction. Therefore, the system converges
to the homogeneous equilibrium (K,0,

c3d3
v3

). Through
direct habitat changing, bottom-up effects lead to a
cascade of fluctuations only for far-from equilibrium
ecosystems. This helps to capture and quantify the dif-
ferences between order and disorder. Moreover, this
helps to establish the conditions of positive correla-
tion between the spatial distribution complexity and
the degree of environmental protection for species.
However, the attractors of ecosystem equilibria al-
ter the correlation between environmental quality and
the spatial pattern of species. However, although our
model is composed of three species, diversity is low
and interspecies competition is not considered. These
factors can be considered in the future.

Obviously, the measurement of pattern complex-
ity is critical for understanding and preventing the
ling bursting risk from environmental quality changes.
This confirms the importance of the spatial dimension
[10, 26, 27, 34, 39] in the study of ecosystem conser-
vation and supports the work of dos Santos et al. [30],
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which state that predictions of the impacts of changing
disturbance rates on biodiversity depend on commu-
nity structure and cannot be made without knowledge
of concurrent permanent habitat destruction. A de-
tailed evaluation of ecosystem loss before restoration
and a precise understanding of the factors structuring
assemblages in the systems to be restored appear to be
prerequisites [17]. Furthermore, these measurements
can provide precision characterization and quantifica-
tion for the spatial characteristics in biomonitoring ap-
proaches.

Acknowledgement Our thanks to the anonymous referees
whose valuable comments and suggestions aided in the revision
of this paper.
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