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Abstract The influence of noise on the complete
synchronization in a Morris–Lecar (ML) model neu-
ronal system is studied in this work. Two individual
ML neurons with different initial conditions can dis-
charge completely synchronously when the noise in-
tensity is large enough, and for a smaller reversal po-
tential (VCa), the uncoupled neuronal system could
be induced to a complete synchronization state un-
der smaller noise intensity. Two coupled ML neurons
could be synchronized under very small noise inten-
sity even in the case of weak coupling, the synchro-
nization characteristics of the two coupled neurons are
discussed by analyzing the Similarity Function (S(0))

of their membrane potentials, which proves that noise
can promote the complete synchronization. The criti-
cal noise intensity (Dj ) to induce complete synchro-
nization in coupled ML neurons will decrease with
the increase of VCa. This result is helpful to study the
synchronization and the code of a neural system.
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1 Introduction

Synchronization is a typical form of group motion
rhythm, which means the neurons of a system dis-
charge at the same time, or their discharge rhythms
have some kind of relationship [1, 2]. Neural syn-
chrony activities are found not only among coupled
neuron groups in the same brain region, but also
among uncoupled neuron groups in the same brain re-
gion or among different cortical areas; moreover, it
can cross over two hemispheres of the brain [3]. Syn-
chronization processes are crucially important for the
neural system; and well-coordinated synchrony within
and between neuronal populations appears to play an
important role in neuronal signaling and information
processing [4]. There are many neuroscientists who
have been mainly concentrated on the coupling sys-
tem topology and stability, as well as the parameters
for the coupled effects [5–9].

Noise is ubiquitous in linear system and electronic
engineering applications; in most cases, noise is con-
sidered harmful, especially in signal measurement
[10–12], but the phenomenon of Stochastic Resonance
(SR) makes us recognize that noise is also beneficial,
especially, the noise induced synchronization [13–16].
In different ways, the noise could influence the syn-
chronization of a nonlinear system. The known ap-
proaches are noise induced synchronization and noise
enhanced synchronization. These are very special as-
pects that noise could be utilized for a specific object.
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Neurons are living in an environment that may
be full of noise. The noise comes either from out-
side or from the inside of nerve cells, for example,
from the temperature changes outside, neuronal in-
teractions, various ion fluctuations, and so on [17].
Wang et al. [18] studied the properties of a chemical
synaptic coupled neuronal system with exterior noise
of a stochastic resonance and synchronization dynam-
ics, the results show that the coupling term can en-
hance the system’s autonomous stochastic resonance,
and when the coupling strength is big enough, the syn-
chronization could be induced. Casado et al. [19, 20]
have reported the phase synchronization of two elec-
trically coupled Hodgkin–Huxley (HH) model neu-
rons. They found that the internal noise makes two
neurons discharge synchronously, including the dis-
charge frequency and phase synchronization. Gener-
alized synchronization induced by noise or parameter
mismatch in two Hindmarsh–Rose (HR) model neu-
rons is studied in [21], which illustrated that the two
neurons can get into generalized synchronization by
introducing noise and changing another parameter in
one of the neurons. The relation between the noise in-
duced synchronization and autonomous stochastic res-
onance was also found in the coupled mismatching ex-
citable ML neurons with noise intensity as the control
parameters [22].

The influence of the complete synchronization af-
fected by noise has attracted particular attention ex-
tensively. Many independent excitatory and inhibitory
synaptic currents are usually approximated by a Gaus-
sian distribution. Zambrano et al. [23] studied the
synchronization of uncoupled excitable systems with
common noise both numerically and experimentally.
They considered two identical FitzHugh–Nagumo
(FHN) systems which display both spiking and non-
spiking behaviors in chaotic or periodic regimes. An
electronic circuit provides a laboratory implementa-
tion of these dynamics. Synchronization is tested with
both white and colored noise, showing that colored
noise is more effective in inducing synchronization of
the system.

The ML neuron model is a model for the electrical
activity in the barnacle muscle fiber; it is a simplified
version of Hodgkin–Huxley neuron model for describ-
ing the discharge and the refractory properties of real
neurons [24]. This model contains a Calcium current
generating a fast action potential and a delayed potas-
sium current, at the same time, a leakage current is

considered to maintain a constant potential at the rest
state. Dynamics of the reduced ML neuron is governed
by the following differential equations:

dV

dt
= gCam∞(V )(VCa − V ) + gKW(VK − V )

+ gL(VL − V ) − I, (1)

dW

dt
= λ(V )

(
W∞(V ) − W

)
, (2)

dI

dt
= μ(0.2 + V ), (3)

where

m∞(V ) = 0.5

(
1 + tanh

(
V − Va

Vb

))
,

W∞(V ) = 0.5

(
1 + tanh

(
V − Vc

Vd

))
,

λ(V ) = 1

3
cosh

(
V − Vc

2Vd

)

and t is the time, V is the membrane action poten-
tial of the ML neuron model, W is the probability
of potassium channel activation, I is a slow variable
which could result in rich firing patterns in a single ML
neuron model. The related parameters are: gCa = 1.2,
gK = 2.0, gL = 0.5, VK = −1.1, VL = −0.5, Va =
−0.01, Vb = 0.15, Vc = 0.1, Vd = 0.05, μ = 0.005.
Besides the noise intensity D, the reversal potential
VCa also be used as another control parameter.

2 Noise induced complete synchronization

Systems with two uncoupled ML neurons are given as
follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dV1,2

dt
= gCam∞(V1,2)(VCa − V1,2)

+ gKW(VK − V1,2) + gL(VL − V1,2)

− I1,2 + ξV (t),

dW1,2

dt
= λ(V1,2)(W∞(V1,2) − W1,2),

dI1,2

dt
= μ(0.2 + V1,2) + ξI (t).

(4)

Here indices 1 and 2 mark separate neurons with dif-
ferent initial conditions. The noises ξV (t) and ξI (t) are
added to the variable V and variable I of the ML neu-
ron model, respectively. In order to verify the degree of
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Fig. 1 Noise induced
complete synchronization:
(a) the average Maximum
Lyapunov Exponent 〈λ1〉 vs
noise intensity D with noise
in the variables V and I

under VCa = 0.925; (b) 〈λ1〉
vs noise intensity D under
VCa = 0.925 and VCa = 0.6;
(c) the average
synchronization error 〈e〉 vs
noise intensity D under
VCa = 0.925 and VCa = 0.6;
(d) the average Interspike
Interval 〈ISI〉 vs noise
intensity D under
VCa = 0.925 and VCa = 0.6

synchronization of the two neurons’ system, one real-
time error of response of the two coupled neurons is
defined as:

e = |V2 − V1| + |W2 − W1| + |I2 − I1|. (5)

In this work, we propose discussing the synchronous
behavior of the system governed by Eq. (4) in terms
of the average error 〈e〉, additionally, with the aver-
age Maximal Lyapunov Exponent 〈λ1〉, and the aver-
age Interspike Interval 〈ISI〉.

For the two uncoupled ML neurons (shown in
Eq. (4)) with different initial conditions and two fixed
reversal potentials VCa, from the view of mathematics,
with the passage of time, the behavior of the two neu-
rons does not become the same. However, if the two
identical systems use the same noise stimulation, the
two nonlinear systems will achieve complete synchro-
nization when the noise intensity is large enough after
a period of time, i.e., noise can induce synchroniza-
tion.

From Fig. 1(a), we can find that the exponent 〈λ1〉
will change from positive to negative when the noise
intensity is large enough; this means that the two
uncoupled ML neurons can get completely synchro-
nized. At the same time, compared with V , I is more
sensitive to noise because the cross-noise intensity (the
value of 〈λ1〉 from positive to negative) of I is much
less than that for V , therefore, white noise is only
added to I in the following. The reversal potential VCa

is also a sensitive parameter, which significantly af-
fects the system discharge patterns. Figures 1(b), (c),
and (d) show the joint effects of the dynamic behav-
ior with Vca and the white noise. Figure 1(b) indicates

that a smaller VCa yields a smaller 〈λ1〉 in a certain
D, which implies that it is more likely that in an un-
coupled system with smaller intensity, noise can in-
duce complete synchronization; moreover, this could
be proved by the error 〈e〉 shown in Fig. 1(c). From
Fig. 1(d), we can find that noise has a quite obvious re-
lationship with the neuronal discharge frequency; gen-
erally, the average interspike interval of a sequence de-
creased with the increase of noise intensity. What is in-
teresting is that a larger VCa corresponds to a smaller
〈ISI〉 at the same noise intensity D, however, the con-
clusion to be drawn is that D is one of the main factors
for the discharge frequency, and the strong noise could
induce more discharges and activities.

3 Noise enhanced complete synchronization

In this section, we focus on the effect of noise on a
system with two coupled ML model neurons, and the
coupling scheme is shown in the last part of the first
equation of Eq. (6):
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dV1,2

dt
= gCam∞(V1,2)(VCa − V1,2)

+ gKW(VK − V1,2) + gL(VL − V1,2)

− I1 + C(V2,1 − V1,2),

dW1,2

dt
= λ(V1,2)(W∞(V1,2) − W1,2),

dI1,2

dt
= μ(0.2 + V1,2) + ξ(t).

(6)

Here C is the coupling strength, the other variable be-
ing the same as in Eq. (4). In this work, a statistical
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Fig. 2 Noise enhanced complete synchronization: (a) the
average Maximum Lyapunov Exponent 〈λ1〉 vs noise in-
tensity D under VCa = 0.925 and VCa = 0.6 with C =
0.01; (b) the average synchronization error 〈e〉 vs noise in-
tensity D under VCa = 0.925 with C = 0.01; (c) Simi-

larity Index S(0) vs coupling strength C under noise in-
tensity D = 0 and D = 1.0 × 10−6; (d) the minimum
value of noise intensity (critical noise intensity) Dj in
ML neurons cause complete synchronization for differ-
ent VCa

index, called Similarity Function S(0), is introduced
to test complete synchronization. It is given by

S(0) =
√√√√

〈(V1(t) − V2(t))2〉
√

〈V 2
1 (t)〉 · 〈V 2

2 (t)〉
, (7)

where 〈·〉 represents the signal average value with re-
spect to time. A smaller S(0) shows greater correlation
between two signals. From the standpoint of synchro-
nization, it means that the two coupled neurons’ phase
synchronization is strengthened. The value S(0) = 0
refers to the complete synchronization for the coupled
system under identical parameters with different initial
conditions.

Under the absence of noise and with the coupling
strength C = 0.01, the coupled ML neurons described
in Eq. (6) could not be synchronized. Compared with
Fig. 1, we can find that there is even a smaller noise
intensity D for the system synchronization, shown
in Fig. 2(a), due to the coupling with noise ξ(t).
A smaller VCa results in a bigger exponent 〈λ1〉; this
situation is contrary to the case in Fig. 1(b), indicating
that the two ML neurons will be synchronized under
weak noise and weak coupling, as shown in Fig. 2(b).
The results shown in Fig. 2(c) are to examine the influ-
ence of synchronization by S(0), setting VCa = 0.925
and with C located in [0,0.065]. The coupled neuronal
system could not be synchronized when D = 0, but

the majority of the section shows complete synchro-
nization for D = 10−6, even in the part of above 0.65,
which proves that noise has a promoting effect for the
synchronization of coupled neurons. We find that the
minimum D (named the critical noise intensity Dj )
which could induce complete synchronization under
different weak coupling strength C shows different sit-
uations with the changing of VCa under noise intensity
D = 1.0 × 10−6, seen from Fig. 2(d), while with the
value of VCa ≤ 0.625, the smaller C corresponds to a
larger Dj . However, the situation is just the opposite
when VCa > 0.625; this demonstrates that the activ-
ity of ML neurons in the strong coupling system will
be reduced when VCa increases to a certain extent, the
stronger noise is needed to achieve complete synchro-
nization.

4 Conclusions

In summary, we have studied the effects of noise to the
complete synchronization of ML neurons. The inves-
tigation indicates that the slow variable I is more sen-
sitive to noise. Two uncoupled ML neurons can dis-
charge completely synchronously when the noise in-
tensity is large enough. The smaller the VCa, the more
it is likely that the weak noise can induce complete
synchronization. A bigger noise can induce more dis-
charge spikes. For a coupled neuronal system, even in
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the case of weak coupling, the two ML neurons will
be synchronized under very small noise, based on the
study of the Similarity Function S(0), which proves
that noise has a promoting effect to the synchroniza-
tion of coupled neurons, and there are different situ-
ations for critical noise intensity Dj with the change
of VCa under different coupling strength C. Anyhow,
the results prove that noise can enhance the complete
synchronization in coupled ML neurons with the co-
operation of other factors.
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