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Abstract Financial markets are complex dynamical
systems. One of the important features of market dy-
namics is the existence of cross-correlations between
financial variables. Based on the high-frequency trans-
action prices (every 5 min) data, in this study, we in-
vestigate the cross-correlations between China Secu-
rities Index 300 (CSI 300) spot and futures markets.
Qualitatively, employing a statistical test in analogy to
the Ljung-Box test, we find that the cross-correlations
are significant at the 1 % level. Quantitatively, us-
ing the multifractal detrending moving-average cross-
correlation analysis (MF-XDMA) method, we find
that the cross-correlations are strongly multifractal.
An interesting finding is that the cross-correlation ex-
ponent is larger than the averaged generalized scaling
exponent for different q, which is different from the
general conclusion. Using the method of rolling win-
dows, we find that the cross-correlations are positive
over time, which suggests that China’s securities mar-
kets are not mature and efficient markets at present.
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1 Introduction

Financial markets are complex dynamical systems
[1–5], which consist of a large number of interacting
units that can be clustered into two major groups: one
is the traders (e.g., private investors, common funds,
brokers, insurers, and banks), and the other is the as-
sets (e.g., stocks, bonds, warrants, options, and fu-
tures) [6]. These heterogeneous units interact nonlin-
early over time with each other and lead to transac-
tions mediated by the trading platform (e.g., the stock
exchange) [6, 7]. The dynamics of a financial market
are typically vague and hard to understand and de-
scribe [8]: not only because of the complexity of its
inside units, but also because of many intractable out-
side parts working on the financial market [6].

The cross-correlations between financial variables
are the important characteristics of market dynam-
ics in financial markets [9–19]. The study of cross-
correlations of a set of financial entities is very sig-
nificant for understanding and describing the mecha-
nisms and natures of financial markets [18]. Besides,
the study of cross-correlations between financial vari-
ables can improve the financial forecasting and mod-
eling of composed financial entities (e.g., stock port-
folios) [20]. That is to say, the nature and dynamical
properties of cross-correlations between financial enti-
ties are conducive to avoiding the risk of an investment
in financial markets. Therefore, it is an important and
interesting study to quantify the cross-correlation fea-
tures between financial variables.
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In previous works, there are many different ap-
proaches to study the cross-correlations between the
financial entities, such as the correlation networks
method [21–24] and the random matrix theory [25–
28], which assume that both of analyzed time series
are stationary [15]. However, in the real-world, the fi-
nancial time series are usually nonstationary and char-
acterized by a high level of heterogeneity [29]. Thus,
the above mentioned methods to investigate the cross-
correlations between the financial time series may be
not very accurate. To overcome the limitation in pre-
vious studies, many methods based on the mono and
multifractal theory are proposed to study the auto-
correlation and cross-correlations in financial markets
[11–18, 20]. For a nonstationary time series, the de-
trended fluctuation analysis (DFA) method was pro-
posed by Peng et al. [30], which can be adopted to
determine its long-range dependence and autocorrela-
tion. The detrending moving-average (DMA) method
[31] is an alternative approach of DFA, which was
also used to quantify the long-range correlations of
nonstationary time series. However, for multifractal
time series, the multifractal detrending moving aver-
age (MF-DMA) [32] is more robust than the multi-
fractal detrended fluctuation analysis (MF-DFA) [33].
Podobnik and Stanley [34] proposed detrended cross-
correlation analysis (DCCA) to quantify power-law
cross-correlations between simultaneously recorded
nonstationary time series, which is widely applied in
various fields [13, 18, 35–38]. Then, both the MF-
DFA and MF-DMA were combined with DCCA to
investigate the long-range cross-correlations between
two nonstationary time series, which are called as
multifractal detrended cross-correlation analysis (MF-
DCCA, or MF-XDFA) [39] and multifractal detrend-
ing moving-average cross-correlation analysis (MF-
XDMA) [40], respectively. The results of empirical
analysis in [40] indicated that, for the financial return
time series, the centered MF-XDMA performs better
than the MF-XDFA.

In the complex and dynamic financial markets, the
futures markets play important roles in avoiding the
systemic risk for investors and practitioners, and dis-
covering the price mechanism. On April 16, 2010,
China Financial Futures Exchange (CFFEX) launched
its decade-long awaited index futures—China Secu-
rities Index 300 (CSI 300) futures, which is a mile-
stone event in the China’s efforts to push the reform
of the capital market, and shows that the China’s cap-
ital market is entering a new period. However, the

study of cross-correlations between index spot and fu-
tures markets is rare, especially between CSI 300 spot
and futures markets. Therefore, in this study, we em-
ploy the MF-XDMA method to investigate the cross-
correlations between CSI 300 spot and futures mar-
kets. Moreover, by using the method of rolling win-
dows, we examine the evolution of cross-correlations.

The rest of this paper is organized as follows. In
the next section, we provide the methodology of MF-
XDMA. In Sect. 3, we present the data set and make
the preliminary analysis. We show the main empirical
results and some relevant discussions in Sect. 4. Fi-
nally, in Sect. 5, we draw some conclusions.

2 Methodology

MF-XDMA is used to investigate the cross-correla-
tions between two nonstationary time series, which
can be described as follows [40]:

Step 1 Consider two time series {x(t)} and {y(t)} of
the same length N , where t = 1,2, . . . ,N . We calcu-
late two sequences of cumulative sums

X(t) =
t∑

i=1

x(i),

Y (t) =
t∑

i=1

y(i), t = 1,2, . . . ,N.

(1)

Step 2 For a wind of size n, the moving average func-
tion Z̃(t) of Z ∈ {X,Y } is defined by

Z̃(t) = 1

n

�(n−1)(1−θ)�∑

k=−�(n−1)θ�
Z(t − k), (2)

where θ is the position parameter ranging from 0 to 1,
�g� and �g� are the largest integer not greater than
g and the smallest integer not smaller than g, respec-
tively. In [32, 40], the authors implied that “the mov-
ing average function considers �(n − 1)(1 − θ)� data
points in the past and �(n − 1)θ� points in the future.”
In particular, [32, 40] considered three special cases
about θ : (i) θ = 0 corresponds to the backward mov-
ing average [41], where Z̃(t) is calculated over all the
past n − 1 data points. (ii) θ = 0.5 refers to the cen-
tered moving average [41], where Z̃(t) is calculated
from half-past data points and half-future data points.
(iii) θ = 1 corresponds to the forward moving average
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[41], where Z̃(t) is calculated over all the future n − 1
data points. In this study, as suggested by Jiang et al.
[40], we only consider the case of the centered moving
average, i.e., θ = 0.5.

Step 3 By subtracting the moving average function
Z̃(i) from Z(i), we can remove the possible trends of
the time series and obtain the cross-correlation resid-
ual series ε(i) by

ε(i) = [
X(i) − X̃(i)

][
Y(i) − Ỹ (i)

]
, (3)

where n − �(n − 1)θ� ≤ i ≤ N − �(n − 1)θ�.

Step 4 The residual sequence ε(i) is subdivided into
Nn = �N/n − 1� nonoverlapping segments of equal
length n. For each nonoverlapping segment v, εv(i)

is such that εv(i) = εv(l + i) for 1 ≤ i ≤ n, where
l = (v − 1)n and 1 ≤ v ≤ Nn. The cross-correlation
fluctuation variance for each segment can be calcu-
lated by

F(n, v) = 1

n

n∑

i=1

εv(i). (4)

Step 5 The qth-order fluctuation function can be ob-
tained by averaging over all segments

Fxy(q,n) =
{

1

Nn

Nn∑

v=1

∣∣F(n, v)
∣∣q/2

}1/q

, (5)

for any real value q �= 0 and

Fxy(0, n) = exp

{
1

2Nn

Nn∑

v=1

ln
∣∣F(n, v)

∣∣
}

. (6)

Step 6 By observing the log-log plots Fxy(q,n)

versus n, we can determine the scaling behavior of
the fluctuation function. If the two time series are
long-range power-law cross-correlated, the fluctuation
function Fxy(q,n) will increase as a power-law [33]

Fxy(q,n) ∼ nhxy(q), (7)

for large values of n. The scaling exponent hxy(q) can
be obtained by observing the slope of the log-log plot
of Fxy(q,n) versus n via the method of ordinary least
squares (OLS) [14–17]. In general, the scaling expo-
nent hxy(q) depends on q , and there are three cases of
hxy(q): (i) If hxy(q) < 0.5, the cross-correlations be-
tween the two time series are antipersistent (negative).
This implies that if there is an increase of the spot

(futures) price, then the futures (spot) price is likely
to be followed by a decrease [17], and vice versa.
(ii) If hxy(q) > 0.5, the cross-correlations between the
two time series are persistent (positive). This means
that if the spot (futures) price has been an increase
or decrease, then the futures (spot) price is likely to
be increased or decreased, respectively [17]. (iii) If
hxy(q) = 0.5, there are no cross-correlations between
the two time series, and the change of one price cannot
affect the behavior of the other price [16–18].

Especially, if the time series {x(i)} is the same as
{y(i)}, the MF-XDMA method reduces to the MF-
DMA; and when q = 2, the scaling exponent hxy(q)

is equivalent to the well-known Hurst exponent H (or
denotes as hxy(2)), and the MF-DMA method is just
the DMA [15]. According to the multifractal theory,
we can use the multifractal scaling (or Rényi) expo-
nent τ(q) to characterize the multifractal nature by

τxy(q) = qhxy(q) − Df , (8)

where Df is the fractal dimension of a geometric ob-
ject [32]. In our study, Df = 1 for the time series anal-
ysis. If the multifractal scaling exponent τxy(q) in-
creases nonlinearly with q , then cross-correlation of
the two correlated series has multifractal nature [32].
Via a Legendre transform of τxy(q), the multifractal
spectrum fxy(α) is defined by

fxy(α) = αq − τxy(q), α = dτxy(q)/dq, (9)

where α is the singularity strength which can charac-
terize the singularities in a time series [16].

3 Data and preliminary analysis

The underlying asset of CSI 300 futures is CSI 300
index (spot), and CSI 300 futures are traded on the
CFFEX. The underlying index is composed with 300
largest A-shares listed on the Shanghai Stock Ex-
change and the Shenzhen Stock Exchange, which cov-
ers about 60 % of the China stock markets’ value [42].
The empirical data employed in this study consists of
high-frequency transaction prices (every 5 min) of CSI
300 spot and futures from 9:35 a.m. April 16, 2010, to
3:00 p.m. February 17, 2012, which includes 22 dom-
inant futures and 21408 high-frequency data (i.e., 446
trading days in total, and every trading day contains 48
high-frequency data). The transaction information and
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Fig. 1 Prices and returns of
CSI 300 spot and futures

Table 1 Descriptive statistics of CSI 300 spot and futures returns

CSI 300 spot CSI 300 futures

Mean (×10−6) −5.7915 −6.2389

Maximum 0.0129 0.0133

Minimum −0.0135 −0.0127

Standard deviation (×10−4) 8.5508 8.8900

Skewness −0.2743 0.7413

Kurtosis 19.3771 26.1533

Jarque-Bera (×105) 2.3945a 4.8002a

ADF −146.0682a −149.9856a

Notes: The Jarque–Bera statistic tests for the null hypothesis of normality in the sample returns distribution. ADF are the statistics of
the augmented Dickey–Fuller unit root test based on the least Akaike information criterion
aIndicates rejection of the null hypothesis at the 1 % significance level

empirical data of CSI 300 spot and futures are pro-
vided by the CFFEX (http://www.cffex.com.cn/) and
Tinysoft (http://www.tinysoft.com.cn/).

Under the high-frequency data environment, the re-
turn is calculated by a log-difference. That is, the re-
turn r(t) at time t is defined by

r(t) = lnP(t) − lnP(t − �t), (10)

where P(t) and P(t − �t) are the prices at time t

and t − �t , respectively. �t is the time interval. At
this point, �t is 5 min. The volatility is defined by
the absolute return |r(t)|. Figure 1 provides the graph-

ical representation of prices and returns of CSI 300
spot and futures. Descriptive statistics of returns of
CSI 300 spot and futures are described in Table 1.
The mean values of the two return series are close to
zero, while the standard deviations are very large. The
Jarque–Bera statistics reject the null hypothesis of the
Gaussian distribution at 1 % significance level, also
evidenced by nonzero skewness and kurtosis larger
than 3, which imply that the two return series are fat-
tailed. The statistics of the ADF unit root tests reject
the null hypothesis of a unit root at the 1 % signifi-
cance level.

http://www.cffex.com.cn/
http://www.tinysoft.com.cn/
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Fig. 2 Log-log plots of the average time interval τave(q) vs.
threshold q (in units of σ )

In order to investigate the fat-tailed distribution
of the two return series, we use a novel approach
of power-law estimation proposed by Podobnik et al.
[12], which can be briefly defined as follows. Podob-
nik et al. [12] implied that, on average, there is one
volatility above threshold q after each time interval
τave(q), then

1/τave(q) ≈
∫ ∞

q

P
(|x|)d|x|

= P
(|x| > q

) ∼ q−β. (11)

For the CSI 300 spot and futures markets, we can
calculate the average time interval τave(q) for varying
q , and acquire the estimates for β by the relationship

τave(q) ∝ qβ. (12)

Figure 2 presents the log-log plots of the average
time interval τave(q) versus threshold q . We set the
different thresholds q , ranging from 2σ to 8σ with a
fixed step of 0.25σ , where σ is the standard deviation
of the absolute return. There is a power-law relation-
ship with Podobnik’s tail exponent β = 2.9963 for the
CSI 300 spot market and with β = 2.9021 for the CSI
300 futures market. We can find that the two Podob-
nik’s tail exponents are close to 3, which are similar
to the results of [12] and confirmed the conclusion of
“inverse cubic law (β ≈ 3) [12, 43].”

Fig. 3 Log-log plots of test statistics Qcc(m) vs. degrees of
freedom m

4 Empirical results

4.1 Cross-correlations test

To quantify the cross-correlations between CSI 300
spot and futures markets, we use a new cross-correla-
tions test proposed by Podobnik et al. [44], which
is in analogy to the Ljung-Box test [45] and widely
used in the financial markets [14, 16, 17, 46–48]. For
two time series, {x(t)|t = 1,2, . . . ,N} and {y(t)|t =
1,2, . . . ,N}, the cross-correlation statistic is defined
by

Qcc(m) = N2
m∑

t=1

C2(t)

N − t
, (13)

where the cross-correlation function C(t) is defined as

C(t) =
∑N

k=t+1 x(k)y(k − t)
√∑N

k=1 x2(k)
∑N

k=1 y2(k)

. (14)

Podobnik et al. [44] indicated that, the cross-
correlation statistic Qcc(m) is approximately χ2(m)

distributed with m degrees of freedom. It can be used
to test the null hypothesis of none of the first m cross-
correlation coefficients is different from zero [44].

Figure 3 shows the log-log plots of cross-correlation
statistics Qcc(m) versus degrees of freedom m for spot
and futures return series of CSI 300, where the degrees
of freedom range from 100 to 103. In order to make a
comparison, as plotted in Fig. 3, we also provide the
critical values for the χ2(m) distribution at the 1 %
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Fig. 4 Log-log plots of fluctuation functions Fxy(q,n) vs. time
scale n for cross-correlations between CSI 300 spot and futures
markets

level of significance. We can find that all the cross-
correlation test statistics are lager than the critical val-
ues at the 1 % significance level. Hence, we can reject
the null hypothesis of no cross-correlations between
spot and futures return series of CSI 300. That is to
say, cross-correlations significantly exist between CSI
300 spot and futures markets.

4.2 Multifractal detrending moving-average
cross-correlation analysis

Podobnik et al. [44] suggested that, the cross-correla-
tions test of Eq. (13) can only be used to qualita-
tively test the presence of cross-correlations; while
MF-XDMA can test the presence of cross-correlations
quantitatively by estimating the cross-correlation ex-
ponent. Therefore, we use the MF-XDMA to investi-
gate the cross-correlations quantitatively between CSI
300 spot and futures markets. We set the wind size (or
time scale) n varying from 10 to N/10, where N is the
equal length of the two return series of CSI 300, and q

ranges from −4 to 4 with a step of 1/4. We present
the log-log plots of the cross-correlation fluctuation
function Fxy(q,n) versus time scale n in Fig. 4. As
shown in Fig. 4, it can be found that, for different q , all
the curves are linear, which indicates that there exist
power-law cross-correlations between the two return
series of CSI 300. This finding implies that, a large
price change in the CSI 300 futures market is possible
to be followed by a large price change in the CSI 300
spot market, and vice versa.

Fig. 5 The nonlinear relationship of h(q) and q between the
CSI 300 spot and futures markets

Figure 5 illustrates the relationship of cross-correla-
tion exponent hxy(q) and q between CSI 300 spot
and futures markets (the curve with delta symbols).
For a comparison, we calculate the scaling exponents
hxx(q) and hyy(q) of CSI 300 spot and futures mar-
kets by MF-DMA, respectively. In Fig. 5, the curve
with circle symbols represents CSI 300 spot market,
and the curve with square symbols stands for CSI 300
futures market. If the scaling exponent varies with dif-
ferent q , the market is multifractal; otherwise, it is
monofractal [15]. From Fig. 5, we can find that the
hxy(q) decreases from larger than 0.61 to smaller than
0.50 for varying q , i.e., for different q , there is a differ-
ent exponent. This implies that the cross-correlations
between the CSI 300 spot and futures markets have ob-
vious multifractal features. The multifractal features
can also be found in CSI 300 spot and futures mar-
kets by observing the changes of hxx(q) and hyy(q),
respectively. According to the previous studies by
Podobnik and Stanley [34] and Zhou [39], in general,
there exists the following relationship among hxy(q),
hxx(q), and hyy(q):

hxy(q) = (
hxx(q) + hyy(q)

)
/2. (15)

Therefore, we also calculate the average scaling ex-
ponents between the CSI 300 spot and futures mar-
kets by Eq. (15), and show the graphical represen-
tations in Fig. 5 (the curve with diamond symbols).
From Fig. 5, however, we can find that the cross-
correlation exponent is larger than the average scaling
exponent for different q , which suggests that cross-
correlations between CSI 300 spot and futures markets
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Fig. 6 The nonlinear relationship of τ(q) and q between the
CSI 300 spot and futures markets

are stronger than the individual market’s long range
auto-correlations (or long-term memories). This unex-
pected finding may be due to the influence of some
unknown external events that simultaneously affect
the behavior of the two markets of CSI 300. In other
words, a large price change in one market is accompa-
nied by a large price change in the other market more
often than governed by the individual market’s behav-
ior (e.g., autocorrelations).

Figure 6 plots the Rényi exponent spectra τxy(q)

between the CSI 300 spot and futures markets esti-
mated by the MF-XDMA (the curve with delta sym-
bols). In Fig. 6, the curves with circle and square
symbols stand for the Rényi exponent spectra of CSI
300 spot and futures return series estimated by the
MF-DMA, respectively. The solid line with diamond
symbols shows the monofractal region for Gaussian
noise. According to the fractal theory, the monofractal
time series generate a linear Rényi exponent spectrum
while multifractal time sequences produce nonlinear
spectrum [49]. As shown in Fig. 6, it can be seen that
the τxy(q) is nonlinearly dependent on q , and devi-
ates from the linear monofractal region, which is an-
other piece of evidence that multifractality exists in the
cross-correlations between CSI 300 spot and futures
markets.

We estimate the multifractal spectra between the
two markets and the CSI 300 spot and futures mar-
kets, respectively, and plot the results in Fig. 7. It is
widely known that if multifractal spectrum appears as
a point, it is monofractal [15]. In Fig. 7, we can see
that the multifractal spectra in the two markets are not

Fig. 7 Multifractal spectra f (α) between the CSI 300 spot and
futures markets

Table 2 Multifractality degrees �h and �α

�h �α

CSI 300 spot 0.0994 0.1680

Cross 0.1217 0.2012

CSI 300 futures 0.1454 0.2369

a point, which implies that multifractality exists sepa-
rately in the CSI 300 spot and futures markets and in
the cross-correlated markets. To quantify the strength
of multifractality, we introduce two measures [50]:

�h = h(q)max − h(q)min, (16)

�α = αmax − αmin. (17)

The numerical results of multifractality degrees are
organized in Table 2. By comparing the results in Ta-
ble 2, we can find that the multifractality strength of
cross-correlations between the two markets is greater
than that of th CSI 300 spot but smaller than that of the
CSI 300 futures. The results show once again that the
cross-correlated markets have prominent multifractal
features. One can find that the CSI 300 futures mar-
ket has the strongest multifractality degree in Table 2.
The reason may be that the CSI 300 futures market in-
cludes more noise than the CSI 300 spot market, such
as speculations.

4.3 Rolling windows analysis

To capture the dynamics of cross-correlations, we use
the method of rolling windows to investigate the evo-
lution of cross-correlations varying time. The method
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Fig. 8 Dynamics of scaling
exponents for q = 2
between the CSI 300 spot
and futures markets with
window moving. The time
window width is 20 trading
days (i.e., 960
high-frequency data), and
the window step length is
5 min (i.e., one
high-frequency data)

Fig. 9 Dynamics of scaling
exponents for q = 2
between the CSI 300 spot
and futures markets with
window moving. The time
window width is 20 trading
days (i.e., 960
high-frequency data), and
the window step length is
one trading day (i.e., 48
high-frequency data)

of rolling windows is used to investigate the tempo-
ral evolution of the Hurst (scaling) exponent hxy(2)

(when q = 2) at different scales, which is also called
as the local Hurst (scaling) exponent [51], or a rolling
test [17]. The detailed introduction of the rolling win-
dows method can be explained as follows: Suppose we
have two high-frequency (5-min by 5-min) return time
series with the same length of N (i.e., the returns se-
ries of the CSI 300 spot and futures), we use the first
L (L < N) observations of the two pairs of return se-
ries to estimate scaling exponent hxy(2) (i.e., the time
window width is L). After that, we calculate the sec-
ond exponent from the �Lth to (m + �L)th observa-
tions of the two pairs of return series (i.e., the window
step length is �L). We proceed the above steps until
both of the last �L observation(s) are used and we can
obtain the time varying scaling exponents [52].

We calculate that the number of the average busi-
ness days of the 22 dominant futures is approximately
equal to 20 (about one trading month). Hence, we set
the time window width L to be 20 trading days (i.e.,

960 high-frequency data). Figure 8 presents the time-
varying scaling exponents hxy (2) for two pairs of re-
turn series of the CSI 300 when the window step length
�L is 5 min (i.e., one high-frequency data). As il-
lustrated in Fig. 8, most of the scaling exponents are
larger than 0.5 but are very near to 0.5, which indi-
cates that the CSI 300 spot and futures markets are
positively cross-correlated at present.

For robustness, we adjust the length of the win-
dow step to be one trading day (i.e., 48 high-frequency
data) and present the results in Fig. 9. From Fig. 9,
we can get similar results with Fig. 8. That is, the
cross-correlations between the CSI 300 spot and fu-
tures returns are positive over time. The reason may
be that the variations of futures prices partly deter-
mine the long-term trend of spot prices in the fu-
tures. The cross-correlated behaviors between the CSI
300 spot and futures markets are nonlinear (multi-
fractal), which suggests that traditional linear mod-
els (e.g., vector auto-regression models (VAR)) could
not be applied to describe the dynamics of the cross-
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correlations between the two markets. A similar con-
clusion was drawn by Wang and Xie [47] who inves-
tigated the cross-correlations between the WTI crude
oil market and US stock market. As a whole, China’s
stock markets are not mature and efficient markets
and easily effected by market external factors, such
as some irregular factors imposed by the governmen-
tal authorities, financial crisis, war, and politics, which
need to improve the market efficiency and weaken the
cross-correlations between spot and futures markets.

5 Conclusions

In summary, we investigate the cross-correlations be-
tween the return series of the CSI 300 spot and futures
markets. By using a statistical test [44] in analogy to
the Ljung–Box test, which can qualitatively test the
presence of cross-correlations, we find that the cross-
correlations are significant at the 1 % level. Through
employing the MF-XDMA method, which can quanti-
tatively test the presence of cross-correlations, we find
that the cross-correlations are strongly multifractal.
We also find that cross-correlation exponents are larger
than the averaged generalized scaling exponents. Via
using the method of rolling windows, which can cap-
ture the dynamics of cross-correlations, we find that
most of the scaling exponents of cross-correlations be-
tween the two return series are larger than 0.5. This
finding indicates that the CSI 300 spot and futures
markets are positively cross-correlated at present. Fi-
nally, we also make some discussion on the cross-
correlated behaviors of the two markets.
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