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Abstract The complex nonlinear systems appear in
many important fields of physics and engineering,
which are very useful for cryptography and secure
communication. This paper investigates adaptive gen-
eralized function projective synchronization (AGFPS)
between two different dimensional chaotic complex
systems with fully or partially unknown parameters
via both reduced order and increased order. Based
on the Lyapunov stability theorem and adaptive con-
trol technique, a general adaptive controller with cor-
responding parameter update rule is constructed to
achieve AGFPS between two nonidentical chaotic
complex systems with distinct orders, and identify
the unknown parameters simultaneously. This scheme
is then applied to obtain AGFPS between the hyper-
chaotic complex Lü system and the chaotic complex
Lorenz system with fully unknown parameters, and
between the uncertain chaotic complex Chen system
and the uncertain hyperchaotic complex Lorenz sys-
tem, respectively. Corresponding simulations results
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are performed to show the feasibility and effectiveness
of the proposed synchronization method.

Keywords Chaotic complex system · Adaptive
generalized function projective synchronization
(AGFPS) · Different order · Adaptive control ·
Parameter identification

1 Introduction

In the past decades, a great variety of nonlinear dy-
namic systems with real variables have been proposed
in many fields and extensively studied due to wide-
scope potential applications in lasers, optical paramet-
ric oscillators, neuroscience, ecological systems, elec-
trical circuits, secure communications, and cryptogra-
phy [1–7]. Some natural questions arise as follows:
(1) what dynamical behaviors can a complex nonlin-
ear system exhibit, where a state complex variable in-
cludes the real part and the imaginary one? (2) How
to control and synchronize the chaotic or hyperchaotic
complex nonlinear systems? Fowler et al. [8] firstly in-
troduced the complex Lorenz system. After that, some
chaotic or hyperchaotic complex systems, such as the
chaotic complex Chen system [9], the chaotic com-
plex Lü system [10], the hyperchaotic complex Lü
system [11], the hyperchaotic complex Lorenz sys-
tem [12] and so forth, have been proposed and studied
in recent years. It was found that many physical sys-
tems can be well described with the help of the com-
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plex nonlinear dynamics. Another interesting applica-
tion is that the chaotic complex systems were utilized
for secure communication, where the complex vari-
ables could increase the contents and security of the
transmitted information [10].

So far, various types of synchronization phenom-
enon in the chaotic systems have been observed,
such as complete synchronization (CS) [13], gener-
alized synchronization (GS) [14], lag synchroniza-
tion (LS) [15], phase synchronization (PhS) [16],
Q-S synchronization [17], projective synchronization
(PS) [18], etc. Amongst all kinds of chaos synchro-
nization, projective synchronization has been espe-
cially and extensively investigated because it can ob-
tain faster communication with its proportional fea-
ture. More recently, Chen et al. [19] proposed a new
projective synchronization named function projective
synchronization (FPS), where the responses of the
synchronized dynamical states can synchronize up to
a scaling function, but not a constant. Because the
unpredictability of the scaling function in FPS can
additionally enhance the security of communication,
FPS of chaotic systems has attracted increasing atten-
tion [20–27]. In [22], a more general form of func-
tion projective synchronization, which is called mod-
ified function projective synchronization (MFPS), has
been proposed, where the master and slave systems
could be synchronized up to a scaling function ma-
trix. The novelty feature of this synchronization phe-
nomenon is that the scaling functions can be arbi-
trarily designed to different state variables by means
of control. Yu and Li [23] studied adaptive general-
ized function projective synchronization (AGFPS) be-
tween two different uncertain chaotic systems. Sud-
heer and Sabir [24] investigated MFPS between two
identical and mismatched hyperchaotic systems based
on unidirectional OPCL coupling method. Further,
they considered switched modified function projec-
tive synchronization of two identical Qi hyperchaotic
systems using adaptive control method [25]. Switched
synchronization of chaotic systems in which a state
variable of the drive system synchronize with a differ-
ent state variable of the response system is a promising
type of synchronization as it provides greater security
in secure communication. Wu et al. [26] presented two
different hyperchaotic secure communication schemes
by using generalized function projective synchroniza-
tion (GFPS). In [27], robust adaptive modified func-
tion projective synchronization between two different

hyperchaotic systems was introduced, where the exter-
nal uncertainties are considered and the scale factors
are different from each other. However, most of the ex-
isting studies mainly focus on the drive and response
systems with the same order. Unfortunately, in many
real systems, especially in biological and social sys-
tems, the synchronization phenomenon can also occur
though the oscillators have different orders. For in-
stance, the output from higher-order neurons always
drives the neurons with lower-order in the subsys-
tem [28]. Similar phenomena can be discovered in
the human cardiovascular system [29]. Therefore, it
is essential to study synchronization of strictly differ-
ent dynamical systems and different order dynamical
systems.

In [30, 31], reduced-order synchronization of two
chaotic systems with different orders was studied. The
essential feature of reduced-order synchronization is
that two different dynamical systems in a master-slave
configuration (the order of the master being higher
than that of the slave) are synchronized such that each
state of the slave system is synchronized with the cor-
responding one of the master. Zheng [32] investigated
modified function projective synchronization (MFPS)
between two different dimensional chaotic systems
with unknown parameters via increased order, which
could translate the problem of MFPS of chaotic sys-
tems with different dimensions into the MFPS of sys-
tems with identical dimensions by constructing auxil-
iary state variables. It is noted that most of the existing
methods about chaos synchronization with different
dimensions are only used for either reduced order or
increased order. In addition, all the above-mentioned
studies only involve with the chaotic systems with real
variables.

Recently, several techniques and methods are in-
troduced and applied to realize synchronization of
complex chaotic systems. For example, Mahmoud
et al. [11] introduced a new hyperchaotic complex
Lü system and used the nonlinear control method
based on Lyapunov function to synchronize the hy-
perchaotic attractors. In [33], an active control scheme
was designed and applied to phase and antiphase
synchronization of two identical hyperchaotic com-
plex Lorenz systems. At the same time, two iden-
tical n-dimensional chaotic complex nonlinear sys-
tems with uncertain parameters were synchronized un-
der an adaptive control scheme [34]. Liu et al. [35]
investigated anti-synchronization between different
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chaotic complex systems by active control and non-
linear control methods, respectively. To the best of
our knowledge, AGFPS between two different dimen-
sional chaotic complex systems with unknown param-
eters has not been considered yet to date.

Motivated by the above discussions, adaptive gen-
eralized function projective synchronization between
two different dimensional chaotic complex systems
with unknown parameters via both reduced order and
increased order is investigated in this paper. A uni-
versal adaptive controller and parameter update rule is
devised for AGFPS of uncertain chaotic complex sys-
tems with different dimensions by means of the Lya-
punov stability theory and adaptive control method.
The advised scheme is simple and theoretically rigor-
ous. Numerical simulations have shown the effective-
ness of the proposed synchronization approach.

The outline of this paper is organized as follows:
in Sect. 2, based on the Lyapunov stability theory and
adaptive control method, a general scheme of AGFPS
between two different dimensional chaotic complex
systems with uncertain parameters is proposed by both
reduced order and increased order. In Sect. 3, AGFPS
between the hyperchaotic complex Lü system and the
chaotic complex Lorenz system with fully unknown
parameters is studied by the proposed synchronization
scheme. Numerical simulations are used to show this
process. In Sect. 4, on basis of the proposed scheme,
the adaptive controllers and update parameter rules
are attained for AGFPS between the uncertain chaotic
complex Chen system and the uncertain hyperchaotic
complex Lorenz system. Numerical simulation is em-
ployed to verify the validity of the controllers. The
conclusions are finally drawn in Sect. 5.

2 A general scheme for adaptive generalized
function projective synchronization between
two uncertain chaotic complex systems with
different dimensions

Consider the chaotic complex drive (master) and re-
sponse (slave) systems given in the following form:

Ẋ(t) = F(X), (1)

Ẏ (t) = G(Y) + V (t), (2)

where X(t) = (x1, x2, . . . , xm)T ∈ Rm is an m-dimen-
sional state complex vector for the drive system (1),
Y(t) = (y1, y2, . . . , yn)

T ∈ Rn is an n-dimensional

state complex vector for the response system (2), F :
Rm → Rm and G : Rn → Rn are continuous nonlin-
ear complex vector functions, and V (t) = (v1, v2, . . . ,

vn)
T ∈ Rn is a complex controller to be designed

later. Here xj = uj1 + iuj2, yk = qk1 + iqk2, vk =
μk1 + iμk2, where i = √−1, j = 1,2, . . . ,m, and
k = 1,2, . . . , n.

Assume that there exists a real scaling function
matrix Λ(t) = (αkj (t))n×m ∈ Rn×m, where αkj (t) :
Rn → R (k = 1,2, . . . , n; j = 1,2, . . . ,m) are
continuously bounded differentiable functions, and
αkj (t) �= 0 for all t . Define the state error vector as

e = Y − Λ(t)X, (3)

where e = (e1, e2, . . . , en)
T, e = er + iei , ek = ek1 +

iek2, k = 1,2, . . . , n. Throughout this paper, the su-
perscripts ‘r’ and ‘i’ represent the real and imagi-
nary parts of a complex vector or variable, respec-
tively. Obviously, er = (er

1, e
r
2, . . . , e

r
n)

T and ei =
(ei

1, e
i
2, . . . , e

i
n)

T.

Definition 1 For the drive system (1) and the response
system (2), it is said to achieve adaptive generalized
function projective synchronization (AGFPS) if there
exists an effective adaptive controller V (t) such that

lim
t→∞‖e‖ = lim

t→∞
∥
∥Y − Λ(t)X

∥
∥ = 0

for any initial conditions X(0) and Y(0).

To investigate AGFPS between two chaotic com-
plex nonlinear systems with unknown parameters, the
drive and response systems can be rewritten as

Ẋ(t) = F1(X) + F2(X)ξ, (4)

Ẏ (t) = G1(Y ) + G2(Y )θ + V (t), (5)

where F1 : Rm → Rm and G1 : Rn → Rn are two
vectors of continuous nonlinear complex functions,
F2 : Rm → Rm×l and G2 : Rn → Rn×p are contin-
uous complex matrix functions, ξ ∈ Rl and θ ∈ Rp

are unknown real parameter vectors of systems (4)
and (5).

It is known that GFPS between the drive system
and the response system with identical dimensions,
i.e., m = n, has been well studied [19–27]. However,
when m �= n, it means that the dimension of the drive
system is not equal to that of the response system. In
the existing studies, either the reduced-order synchro-
nization [30, 31] or the increased-order synchroniza-
tion [32] was considered. In this paper, we will design
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a general scheme for AGFPS between two different
dimensional chaotic complex systems with uncertain
parameters via both reduced order and increased or-
der, i.e., m > n and m < n.

Taking the time derivative of the error vector (3)
yields the error dynamical system as follows:

ė = Ẏ − Λ̇(t)X − Λ(t)Ẋ. (6)

Substituting Eqs. (4) and (5) into Eq. (6), one can get

ė = G1(Y ) + G2(Y )θ − Λ(t)
[

F1(X) + F2(X)ξ
]

− Λ̇(t)X + V (t). (7)

The above equation can be further rewritten as

ė = ėr + iėi

= Gr
1(Y ) + Gr

2(Y )θ − Λ(t)
[

F r
1 (X) + F r

2 (X)ξ
]

− Λ̇(t)Xr + V r(t)

+ i
[

Gi
1(Y ) + Gi

2(Y )θ − Λ(t)
[

F i
1(X) + F i

2(X)ξ
]

− Λ̇(t)Xi + V i(t)
]

. (8)

Now, the problem of AGFPS between two chaotic
complex systems (4) and (5) becomes the analysis of
the asymptotical stability of zero solution of the error
complex system (8). For this end, the key problem is
how to design an effective controller V (t) and corre-
sponding parameter update rule such that system (8)
asymptotically converges to zero. In the following, we
will construct the controller and corresponding param-
eter update rules with the help of the Lyapunov sta-
bility theory and adaptive control method. The main
result is formed as Theorem 1.

Theorem 1 For given real scaling function matrix
Λ(t) and arbitrary initial values X(0), Y(0), AGFPS
between two chaotic complex nonlinear systems (4)
and (5) can be achieved and the uncertain parame-
ters ξ , θ can be identified if the adaptive controller is
designed as follows:
⎧

⎪⎪⎨

⎪⎪⎩

V (t) = Λ(t)F1(X) + Λ(t)F2(X)ξ̃ − G1(Y )

− G2(Y )θ̃ + Λ̇(t)X − Ke(t),

ηj = εj e
2
j (t), εj > 0, j = 1,2, . . . , n,

(9)

or
⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V r(t) = Λ(t)F r
1 (X) + Λ(t)F r

2 (X)ξ̃ − Gr
1(Y )

− Gr
2(Y )θ̃ + Λ̇(t)Xr − Krer (t),

V i(t) = Λ(t)F i
1(X) + Λ(t)F i

2(X)ξ̃ − Gi
1(Y )

− Gi
2(Y )θ̃ + Λ̇(t)Xi − Kiei (t),

η̇r
j = εr

j

(

er
j (t)

)2
, εr

j > 0, j = 1,2, . . . , n,

η̇i
j = εi

j

(

ei
j (t)

)2
, εi

j > 0, j = 1,2, . . . , n,

(10)

and the parameter update rules are constructed as be-
low:
⎧

⎪⎪⎨

⎪⎪⎩

˙̃
ξ = −(

F r
2 (X)

)T(

Λ(t)
)T

er (t)

− (

F i
2(X)

)T(

Λ(t)
)T

ei (t) − eξ (t),

˙̃
θ = (

Gr
2(Y )

)T
er (t) + (

Gi
2(Y )

)T
ei (t) − eθ (t),

(11)

where the control gain matrix K = diag(η1, η2, . . . ,

ηn), K = Kr + iKi , ηj = ηr
j + iηi

j , eξ = ξ̃ − ξ , and

eθ = θ̃ − θ are parameter error vectors. ξ̃ and θ̃ de-
note the parameter estimation vectors of ξ and θ , re-
spectively.

Proof We introduce a positive definite Lyapunov
function as follows:

L(t) = 1

2

(

er (t)
)T

er (t) + 1

2

(

ei (t)
)T

ei (t)

+ 1

2

(

eT
ξ (t)eξ (t) + eT

θ (t)eθ (t)
)

+ 1

2

n
∑

j=1

1

εr
j

(

ηr
j − η∗)2

+ 1

2

n
∑

j=1

1

εi
j

(

ηi
j − η�

)2
, (12)

where η∗ and η� are positive constants to be deter-
mined later.

The time derivative of L(t) along the trajectories of
the error system (8) is

L̇(t) = (

er (t)
)T

ėr (t) + (

ei (t)
)T

ėi (t) + eT
ξ (t)ėξ (t)

+ eT
θ (t)ėθ (t)

= (

er (t)
)T[

Gr
1(Y ) + Gr

2(Y )θ + V r(t)

− Λ(t)
(

F r
1 (X) + F r

2 (X)ξ
) − Λ̇(t)Xr

]

+ (

ei (t)
)T[

Gi
1(Y ) + Gi

2(Y )θ + V i(t)

− Λ(t)
(

F i
1(X) + F i

2(X)ξ
) − Λ̇(t)Xi

]
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+ eT
ξ (t) ˙̄ξ + eT

θ (t) ˙̄θ +
n

∑

j=1

(

ηr
j − η∗)(er

j (t)
)2

+
n

∑

j=1

(

ηi
j − η�

)(

ei
j (t)

)2
. (13)

Substituting Eqs. (10) and (11) into Eq. (13), one has

L̇(t) = (

er (t)
)T[−Gr

2(Y )eθ (t) + Λ(t)F r
2 (X)eξ (t)

− Krer (t)
] + (

ei (t)
)T[−Gi

2(Y )eθ (t)

+ Λ(t)F i
2(X)eξ (t) − Kiei (t)

]

+ eT
ξ (t)

[−(

F r
2 (X)

)T(

Λ(t)
)T

er (t)

− (

F i
2(X)

)T(

Λ(t)
)T

ei (t) − eξ (t)
]

+ eT
θ (t)

[(

Gr
2(Y )

)T
er (t) + (

Gi
2(Y )

)T
ei (t)

− eθ (t)
] +

n
∑

j=1

(

ηr
j − η∗)(er

j (t)
)2

+
n

∑

j=1

(

ηi
j − η�

)(

ei
j (t)

)2

= −(

er (t)
)T

Krer (t) − (

ei (t)
)T

Kiei (t)

− eT
ξ (t)eξ (t) − eT

θ (t)eθ (t)

+ (

er (t)
)T

Krer (t) − η∗(er (t)
)T

er (t)

+ (

ei (t)
)T

Kiei (t) − η�
(

ei (t)
)T

ei (t)

= −η∗(er (t)
)T

er (t) − η�
(

ei (t)
)T

ei (t)

− eT
ξ (t)eξ (t) − eT

θ (t)eθ (t)

< 0.

Since L̇(t) < 0, on the basis of the Lyapunov stabil-
ity theory, the error vectors er (t) and ei (t) asymptot-
ically converge to zero, i.e., AGFPS between systems
(4) and (5) is realized, and the parameter error vectors
eξ (t) and eθ (t) will tend to zero as the time t goes
to infinity, which indicates that the uncertain param-
eters ξ and θ are also estimated. This completes the
proof. �

Remark 1 The control gains ηj (j = 1,2, . . . , n) in
the presented method can be automatically adapted
to some suitable constants, which is different from
the linear feedback [20–22]. In the linear feedback
scheme, either the feedback gains of the controllers
require that the system parameters must be known in
advance or the fixed feedback gains are usually set
maximally as possible. Unfortunately, in practical sit-
uations, the parameters may be unknown and change

time to time, which results in difficult choosing the ap-
propriate gains to stabilize the error system in the ori-
gin. Even knowing the system parameters exactly, the
gains obtained may be so large that it is of no signifi-
cance in some real applications.

Based on Theorem 1, we can easily derive the fol-
lowing corollaries.

Corollary 1 If the parameters ξ of the drive system
(4) are known, AGFPS between the drive system (4)
and the response system (5) can occur and the uncer-
tain parameters θ can be estimated under the follow-
ing adaptive controller and parameter update rules:
⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V r(t) = Λ(t)F r
1 (X) + Λ(t)F r

2 (X)ξ − Gr
1(Y )

− Gr
2(Y )θ̃ + Λ̇(t)Xr − Krer (t),

V i(t) = Λ(t)F i
1(X) + Λ(t)F i

2(X)ξ − Gi
1(Y )

− Gi
2(Y )θ̃ + Λ̇(t)Xi − Kiei (t),

η̇r
j = εr

j

(

er
j (t)

)2
, εr

j > 0, j = 1,2, . . . , n,

η̇i
j = εi

j

(

ei
j (t)

)2
, εi

j > 0, j = 1,2, . . . , n,

(14)

˙̃
θ = (

Gr
2(Y )

)T
er (t) + (

Gi
2(Y )

)T
ei (t) − eθ (t), (15)

where the control gain matrix K = diag(η1, η2, . . . ,

ηn), K = Kr + iKi , ηj = ηr
j + iηi

j , eθ = θ̃ − θ is pa-

rameter error vector, and θ̃ stands for the parameter
estimation vector of θ .

Corollary 2 If the parameters θ in the response sys-
tem (5) are known, GFPS between the drive system (4)
and the response system (5) can be obtained and the
uncertain parameters ξ can be identified by the follow-
ing controller and parameter update rules:
⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V r(t) = Λ(t)F r
1 (X) + Λ(t)F r

2 (X)ξ̃ − Gr
1(Y )

− Gr
2(Y )θ + Λ̇(t)Xr − Krer (t),

V i(t) = Λ(t)F i
1(X) + Λ(t)F i

2(X)ξ̃ − Gi
1(Y )

− Gi
2(Y )θ + Λ̇(t)Xi − Kiei (t),

η̇r
j = εr

j

(

er
j (t)

)2
, εr

j > 0, j = 1,2, . . . , n,

η̇i
j = εi

j

(

ei
j (t)

)2
, εi

j > 0, j = 1,2, . . . , n,

(16)

˙̃
ξ = −(

F r
2 (X)

)T(

Λ(t)
)T

er (t)

− (

F i
2(X)

)T(

Λ(t)
)T

ei (t) − eξ (t), (17)

where the control gain matrix K = diag(η1, η2, . . . ,

ηn), K = Kr + iKi , ηj = ηr
j + iηi

j , eξ = ξ̃ − ξ is pa-
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rameter error vector, and ξ̃ represents the parameter
estimation vectors of ξ .

The proofs of Corollaries 1 and 2 are similar to that
of Theorem 1. Limited by the length of this paper, we
omit them here.

3 AGFPS between the hyperchaotic complex Lü
system and the chaotic complex Lorenz system
with fully unknown parameters

In this section, we employ the scheme obtained in
Sect. 2 to investigate AGFPS between the hyper-
chaotic complex Lü system and the chaotic complex
Lorenz system with fully unknown parameters via re-
duced order, i.e., m > n. Let the hyperchaotic com-
plex Lü system be the drive system with the subscript
‘d’ and the chaotic complex Lorenz system be the re-
sponse system denoted by the subscript ‘r’. The drive
and response systems are thus defined, respectively, as
follows:
⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋd = a(yd − xd) + wd,

ẏd = byd − xdzd + wd,

żd = 1/2(x̄dyd + xd ȳd) − czd,

ẇd = 1/2(x̄dyd + xd ȳd) − hwd,

(18)

and
⎧

⎪⎨

⎪⎩

ẋr = a1(yr − xr) + V1,

ẏr = b1xr − yr − xrzr + V2,

żr = 1/2(x̄ryr + xr ȳr ) − c1zr + V3,

(19)

where xd = u1 + iu2 and yd = u3 + iu4 are the state
complex variables, zd = u5 and wd = u6 are the state
real variables for system (18); xr = q1 + iq2 and yr =
q3 + iq4 are the state complex variables, zr = q5 is the
state real variable for system (19); an overbar ‘−’ de-

notes complex conjugation variables; V1 = v1 + iv2,
V2 = v3 + iv4 and V3 = v5 are complex and real con-
trol functions, respectively; a, b, c, h, a1, b1, and c1

are unknown parameters to be identified. In particu-
lar, when a = 42, b = 25, c = 6, and h = 5, the hy-
perchaotic complex Lü attractors are shown in Fig. 1.
When a1 = 18, b1 = 35, and c1 = 4, the chaotic com-
plex Lorenz system exhibits chaotic behavior, as dis-
played in Fig. 2.

Comparing systems (18) and (19) with systems (4)
and (5), one can get

F1(Xd) =

⎛

⎜
⎜
⎝

wd

−xdzd + wd

1/2(x̄dyd + xd ȳd)

1/2(x̄dyd + xd ȳd)

⎞

⎟
⎟
⎠

,

F2(Xd) =

⎛

⎜
⎜
⎝

yd − xd 0 0 0
0 yd 0 0
0 0 −zd 0
0 0 0 −wd

⎞

⎟
⎟
⎠

,

ξ =

⎛

⎜
⎜
⎝

a

b

c

h

⎞

⎟
⎟
⎠

, G1(Xr) =
⎛

⎝

0
−yr − xrzr

1/2(x̄ryr + xr ȳr )

⎞

⎠ ,

G2(Xr) =
⎛

⎝

(yr − xr) 0 0
0 xr 0
0 0 −zr

⎞

⎠ ,

θ =
⎛

⎝

a1

b1

c1

⎞

⎠ , V (t) =
⎛

⎝

V1(t)

V2(t)

V3(t)

⎞

⎠ ,

where Xd = (xd, yd, zd,wd)T and Xr = (xr , yr , zr ,

wr)
T are the state vectors, V (t) is the controller to be

determined later.
Choose arbitrarily the real scaling function matrix

as follows:

Λ(t) =
⎛

⎝

3 + sin(2t) 1 − 2 sin(t) 0 0
0 1.5 + cos(0.5t) 3 + sin(2t) 0
0 0 1 − 2 sin(t) 1.5 − cos(0.5t)

⎞

⎠ .

The error states between the response system to be
controlled and the controlling drive system can be ob-
tained as:

⎧

⎪⎨

⎪⎩

e1 = xr − [(

3 + sin(2t)
)

xd + (

1 − 2 sin(t)
)

yd

]

,

e2 = yr − [(

1.5 + cos(0.5t)
)

yd + (

3 + sin(2t)
)

zd

]

,

e3 = zr − [(

1 − 2 sin(t)
)

zd + (

1.5 − cos(0.5t)
)

wd

]

,

(20)



Adaptive generalized function projective synchronization of uncertain chaotic complex systems 1461

Fig. 1 Hyperchaotic attractors of the hyperchaotic complex Lü system (18)

Fig. 2 Chaotic attractors of the complex Lorenz system (19)

where e1 = eq1 + ieq2, e2 = eq3 + ieq4, and e3 = eq5

are complex and real error functions, respectively.
According to Eqs. (10) and (11) in Theorem 1, we

can get the following adaptive controllers:
⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v1 = (

3 + sin(2t)
)

u6 + (

1 − 2 sin(t)
)

(−u1u5 + u6)

+ (

3 + sin(2t)
)

ã(u3 − u1)

+ (

1 − 2 sin(t)
)

b̃u3 − ã1(q3 − q1)

+ 2 cos(2t)u1 − 2 cos(t)u3 − ηr
1eq1,

v2 = −(

1 − 2 sin(t)
)

u2u5

+ (

3 + sin(2t)
)

ã(u4 − u2)

+ (

1 − 2 sin(t)
)

b̃u4 − ã1(q4 − q2)

+ 2 cos(2t)u2 − 2 cos(t)u4 − ηi
1eq2,

v3 = (

1.5 + cos(0.5t)
)

(−u1u5 + u6)

+ (

3 + sin(2t)
)

(u1u3 + u2u4)

+ (

1.5 + cos(0.5t)
)

b̃u3

− (

3 + sin(2t)
)

c̃u5 − (−q3 − q1q5) − b̃1q1

− 0.5 sin(0.5t)u3 + 2 cos(2t)u5 − ηr
2eq3,

v4 = −(

1.5 + cos(0.5t)
)

u2u5

+ (

1.5 + cos(0.5t)
)

b̃u4 + (q4 + q2q5) − b̃1q2

− 0.5 sin(0.5t)u4 − ηi
2eq4,

v5 = (

2.5 − 2 sin(t) − cos(0.5t)
)

(u1u3 + u2u4)

− (

1 − 2 sin(t)
)

c̃u5 − (

1.5 − cos(0.5t)
)

h̃u6

− (q1q3 + q2q4) + c̃1q5

+ (−2 cos(t)u5 + 0.5 sin(0.5t)u6
) − ηr

3eq5,

(21)

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η̇r
1 = εr

1

(

eq1(t)
)2

,

η̇i
1 = εi

1

(

eq2(t)
)2

,

η̇r
2 = εr

2

(

eq3(t)
)2

,

η̇i
2 = εi

2

(

eq4(t)
)2

,

η̇r
3 = εr

3

(

eq5(t)
)2

,

(22)

and the parameter update rules as follows:
⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̃a = −(

3 + sin(2t)
)

(u3 − u1)eq1

− (

3 + sin(2t)
)

(u4 − u2)eq2 − ea,

˙̃
b = −(

1 − 2 sin(t)
)

(u3eq1 + u4eq2)

− (

1.5 + cos(0.5t)
)

(u3eq3 + u4eq4) − eb,

˙̃c = (

3 + sin(2t)
)

u5eq3

+ (

1 − 2 sin(t)
)

u5eq5 − ec,

˙̃
h = (

1.5 − cos(0.5t)
)

u6eq5 − eh,

˙̃a1 = (q3 − q1)eq1 + (q4 − q2)eq2 − ea1 ,

˙̃
b1 = q1eq3 + q2eq4 − eb1 ,

˙̃c1 = −q5eq5 − ec1,

(23)

where the constants εr
1 > 0, εi

1 > 0, εr
2 > 0, εi

2 > 0,
εr

3 > 0; ea = ã −a, eb = b̃−b, ec = c̃− c, eh = h̃−h,
ea1 = ã1 − a1, eb1 = b̃1 − b1, and ec1 = c̃1 − c1 are the
parameter errors, and ã, b̃, c̃, h̃, ã1, b̃1, and c̃1 are the
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Fig. 3 The time evolution of AGFPS errors between the drive system (18) and the response system (19)

Fig. 4 The estimation of
the unknown parameters for
the hyperchaotic complex
Lü system and the chaotic
complex Lorenz system

estimate variables of the uncertain parameters a, b, c,
h, a1, b1, and c1, respectively.

3.1 Numerical simulations

To verify and demonstrate the effectiveness and fea-
sibility of the presented synchronization method, the
simulation results have been performed. In the fol-
lowing simulations, the ODE45 algorithm is used to
solve the systems. The unknown parameters are cho-
sen to be a = 42, b = 25, c = 6, h = 5, a1 = 18,
b1 = 35, and c1 = 4 so that systems (18) and (19) can
behave chaotically without control. The initial condi-
tions of the drive system (18) and the response system
(19) are randomly taken as xd(0) = 1 + 0i, yd(0) =
−1 + 2i, zd(0) = −2, wd(0) = 3, xr(0) = 3 + 4i,

yr(0) = 5 + 2i, and zr (0) = 1. The initial values of all
uncertain parameters are selected randomly as 0.01.
Set εr

1 = εi
1 = εr

2 = εi
2 = εr

3 = 15. Simulation results
are displayed in Figs. 3, 4 and 5. Figure 3 shows the
time evolution of the AGFPS errors, which display the
AGFPS errors eq1(t), eq2(t), eq3(t), eq4(t), and eq5(t)

converge to zero after a short transient, respectively.
The time evolution of the uncertain parameters is plot-
ted in Fig. 4, from which one can see that the esti-
mates of the unknown parameters adapt themselves to
the true values, i.e., ã → 42, b̃ → 25, c̃ → 6, h̃ → 5,
ã1 → 18, b̃1 → 35, and c̃1 → 4 as t → ∞. The control
gains ηr

1, ηi
1, ηr

2, ηi
2, and ηr

3 are inclined to some con-
stants as the time t goes to infinity, which are shown
in Fig. 5. All these results show that AGFPS and pa-
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Fig. 5 The time evolution of the control gains

rameter estimation have been obtained by the adap-
tive control laws (21), (22), and the parameter update
rules (23).

4 AGFPS between the uncertain chaotic complex
Chen system and uncertain hyperchaotic
complex Lorenz system

To further illustrate the effectiveness of the proposed
schemes, we consider AGFPS between the uncertain
chaotic complex Chen system and the uncertain hy-
perchaotic complex Lorenz system via increased or-
der, i.e., m < n, in this section. We take the chaotic

complex Chen system as the drive system, which is
described by
⎧

⎪⎨

⎪⎩

ẋd = a(yd − xd),

ẏd = (b − a)xd + byd − xdzd,

żd = 1/2(x̄dyd + xd ȳd) − czd,

(24)

where xd = u1 + iu2 and yd = u3 + iu4 are the state
complex variables, zd = u5 is the state real variable,
a, b, and c are uncertain parameters. When a = 28,
b = 22, and c = 1, the system (24) is chaotic behavior,
as depicted in Fig. 6.

The uncertain hyperchaotic complex Lorenz sys-
tem, as the response system, is given by
⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋr = a1(yr − xr) + iwr + V1,

ẏr = b1xr − yr − xrzr + iwr + V2,

żr = 1/2(x̄ryr + xr ȳr ) − c1zr + V3,

ẇr = 1/2(x̄ryr + xr ȳr ) − h1wr + V4,

(25)

where xr = q1 + iq2 and yr = q3 + iq4 are the state
complex variables, zr = q5 and wr = q6 are the state
real variables, a1, b1, c1, and h1 are unknown param-
eters to be identified, V1 = v1 + iv2, V2 = v3 + iv4,
V3 = v5, and V4 = v6 are complex and real con-
trol functions, respectively. When a1 = 20, b1 = 40,
c1 = 5, and h1 = 13, system (25) is a hyperchaotic sys-
tem, as shown in Fig. 7.

Fig. 6 Chaotic attractors of the complex Chen system (24)

Fig. 7 Hyperchaotic attractors of the hyperchaotic complex Lorenz system (25)
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According to systems (4) and (5), from systems
(24) and (25), we can have

F1(Xd) =
⎛

⎝

0
−xdzd

1/2(x̄dyd + xd ȳd)

⎞

⎠ ,

F2(Xd) =
⎛

⎝

(yd − xd) 0 0
−xd (xd + yd) 0

0 0 −zd

⎞

⎠ ,

ξ =
⎛

⎝

a

b

c

⎞

⎠ , G1(Xr) =

⎛

⎜
⎜
⎝

iwr

−yr − xrzr + iwr

1/2(x̄ryr + xr ȳr )

1/2(x̄ryr + xr ȳr )

⎞

⎟
⎟
⎠

,

G2(Xr) =

⎛

⎜
⎜
⎝

(yr − xr) 0 0 0
0 xr 0 0
0 0 −zr 0
0 0 0 −wr

⎞

⎟
⎟
⎠

,

θ =

⎛

⎜
⎜
⎝

a1

b1

c1

h1

⎞

⎟
⎟
⎠

, V (t) =

⎛

⎜
⎜
⎝

V1(t)

V2(t)

V3(t)

V4(t)

⎞

⎟
⎟
⎠

,

where Xd = (xd, yd, zd,wd)T and Xr = (xr , yr , zr ,

wr)
T are the state vectors, V (t) is the controller to be

designed.
We take arbitrarily the following real scaling func-

tion matrix:

Λ(t) =

⎛

⎜
⎜
⎝

1 0 0
0 1 + 0.5 cos(2t) 0
0 0 1

2 − sin(5t) 0 3 − 2 cos(t)

⎞

⎟
⎟
⎠

.

Then the synchronization errors between systems (24)
and (25) can be described by

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

e1 = xr − xd,

e2 = yr − (

1 + 0.5 cos(2t)
)

yd,

e3 = zr − zd,

e4 = wr − [(

2 − sin(5t)
)

xd + (

3 − 2 cos(t)
)

zd

]

,

(26)

where e1 = eq1 + ieq2, e2 = eq3 + ieq4, e3 = eq5, and
e4 = eq6 are complex and real errors functions, respec-
tively.

From Eqs. (10) and (11) in Theorem 1, we design
the following adaptive controllers:
⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v1 = ã(u3 − u1) − ã1(q3 − q1) − ηr
1eq1,

v2 = ã(u4 − u2) − q6 − ã1(q4 − q2) − ηi
1eq2,

v3 = −(

1 + 0.5 cos(2t)
)

u1u5 − (

1 + 0.5 cos(2t)
)

ãu1

+ (

1 + 0.5 cos(2t)
)

b̃(u1 + u3)

+ q3 + q1q5 − b̃1q1 − sin(2t)u3 − ηr
2eq3,

v4 = −(

1 + 0.5 cos(2t)
)

u2u5 − (

1 + 0.5 cos(2t)
)

ãu2

+ (

1 + 0.5 cos(2t)
)

b̃(u2 + u4) + q4

+ q2q5 − q6 − b̃1q2 − sin(2t)u4 − ηi
2eq4,

v5 = (u1u3 + u2u4) − c̃u5 − q1q3 − q2q4

+ c̃1q5 − ηr
3eq5,

v6 = (

3 − 2 cos(t)
)

(u1u3 + u2u4)

+ (

2 − sin(5t)
)

ã(u3 − u1) − (

3 − 2 cos(t)
)

c̃u5

− q1q3 − q2q4 + h̃1q6 − 5 cos(5t)u1

+ 2 sin(t)u5 − ηr
4eq6,

(27)

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η̇r
1 = εr

1

(

eq1(t)
)2

,

η̇i
1 = εi

1

(

eq2(t)
)2

,

η̇r
2 = εr

2

(

eq3(t)
)2

,

η̇i
2 = εi

2

(

eq4(t)
)2

,

η̇r
3 = εr

3

(

eq5(t)
)2

,

η̇r
4 = εr

4

(

eq6(t)
)2

,

(28)

and the parameter update rules as follows:
⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̃a = −(u3 − u1)eq1 + (

1 + 0.5 cos(2t)
)

u1eq3

− (

2 − sin(5t)
)

(u3 − u1)eq6 − (u4 − u2)eq2

+ (

1 + 0.5 cos(2t)
)

u2eq4 − ea,

˙̃
b = −(

1 + 0.5 cos(2t)
)

(u1 + u3)eq3

− (

1 + 0.5 cos(2t)
)

(u2 + u4)eq4 − eb,

˙̃c = u5eq5 + (

3 − 2 cos(t)
)

u5eq6 − ec,

˙̃a1 = (q3 − q1)eq1 + (q4 − q2)eq2 − ea1 ,

˙̃
b1 = q1eq3 + q2eq4 − eb1 ,

˙̃c1 = −q5eq5 − ec1,

˙̃
h1 = −q6eq6 − eh1 ,

(29)

where the constants εr
1 > 0, εi

1 > 0, εr
2 > 0, εi

2 > 0,
εr

3 > 0, εr
4 > 0; ã, b̃, c̃, h̃, ã1, b̃1, and c̃1 are the esti-

mate variables of the unknown parameters, ea = ã−a,
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Fig. 8 The time evolution of AGFPS errors between the drive system (24) and the response system (25)

Fig. 9 The estimation of
the unknown parameters for
the chaotic complex Chen
system and the hyperchaotic
complex Lorenz system

eb = b̃ − b, ec = c̃ − c, ea1 = ã1 − a1, eb1 = b̃1 − b1,
ec1 = c̃1 −c1, and eh1 = h̃1 −h1 are the corresponding
parameter errors.

4.1 Numerical simulations

Numerical simulations are performed to verify the
validity of the proposed synchronization controllers
(27), (28), and the parameter update rules (29). The
true values of the “unknown” parameters of two un-
certain systems are set as a = 28, b = 22, c = 1,
a1 = 20, b1 = 40, c1 = 5, and h1 = 13 to ensure
the drive and response systems are chaotic if no con-
trols are applied. The corresponding initial values for
the drive and response systems are arbitrarily selected
as (xd(0), yd(0), zd(0)) = (−3 + 2i,4 + 5i,1) and
(xr (0), yr (0), zr (0),wr(0)) = (3 − 2i,−1 − 3i,5,0).

All uncertain parameters have initial values 0.001. We
take the constants εr

1 = εi
1 = εr

2 = εi
2 = εr

3 = εr
4 = 10.

Simulation results for AGFPS of the drive system (24)
and the response system (25) are illustrated in Figs. 8,
9, and 10. The evolution of the AGFPS errors is plot-
ted in Fig. 8, from which one can clearly see that the
synchronization errors eq1(t), eq2(t), eq3(t), eq4(t),
eq5(t), and eq6(t) tend to zero quickly. It implies that
the required synchronization has been realized. Fig-
ure 9 displays the estimated values of the unknown pa-
rameters for two chaotic complex systems converge to
a = 28, b = 22, c = 1, a1 = 20, b1 = 40, c1 = 5, and
h1 = 13 as t → ∞, respectively. Figure 10 depicts the
time evolution of the control gains ηr

1, ηi
1, ηr

2, ηi
2, ηr

3,
and ηr

4. As shown in these figures, AGFPS between
the chaotic complex Chen system (24) and the hyper-
chaotic complex Lorenz system (25) is obtained and
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Fig. 10 The time evolution of the control gains

all the uncertain parameters are identified successfully
by the adaptive controllers (27), (28), and the parame-
ter update rules (29).

5 Conclusions

Considering few studies concern GFPS between two
chaotic complex systems, we investigate AGFPS be-
tween two different dimensional chaotic complex sys-
tems with fully or partially unknown parameters via
both reduced order and increased order. And a general
scheme for AGFPS is proposed in our work. Based
on the Lyapunov stability theorem and adaptive con-
trol method, a universal adaptive controller with cor-
responding parameter update rule is designed. By the
presented synchronization scheme, one cannot only
achieve AGFPS between two uncertain chaotic com-
plex systems with different orders, but also estimate
the unknown parameters. Two illustrative examples,
i.e., AGFPS between the hyperchaotic complex Lü
system and the chaotic complex Lorenz system with
fully unknown parameters, and AGFPS between the
uncertain chaotic complex Chen system and the un-
certain hyperchaotic complex Lorenz system, are per-
formed to illustrate the proposed technique. All simu-
lation results have demonstrated the validity and fea-
sibility of the proposed synchronization scheme.
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