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Abstract Stay cables used in cable-stayed bridge and
cable-stayed arch bridge are prone to vibration due to
their inherent susceptibility to external deflection. The
present work is devoted to the mitigation of a stay ca-
ble from the point of view of its nonlinear dynam-
ics. The Galerkin integral, multiple scales perturba-
tion method, and numerical techniques are applied to
analyze the primary and subharmonic resonances of
the stay cable. The nonlinear dynamic response of the
stay cable subjected to parametrical and forced excita-
tions is investigated numerically. The effects of some
key parameters of the stay cable, such as initial ten-
sion force, damping and inclination angle, and the ex-
citation frequency and amplitude are discussed. The
carbon fiber reinforced polymers (CFRP) cable is also
studied to understand the effect of the material prop-
erties of cable. The results show that these parameters
have a considerable effect on the dynamic behavior of
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the cable. In particular, unreasonable tension force and
inclination angle of stay cable may cause excessive vi-
bration. It is suggested that CFRP cable replaces steel
cable, which can mitigate the vibration of a stay cable.

Keywords Stay cable · Mitigation · Nonlinear
dynamics · Primary resonance · Subharmonic
resonance

1 Introduction

Cable structures play an important role in many en-
gineering fields, such as civil, ocean, and electrical
engineering. In the last decades, the span length of
cable-supported structures has considerably increased.
For example, the span lengths of some cable-stayed
bridges are over 1000 m due to new materials and
building technologies used in bridge erection [1].
However, cables are susceptible to support motion and
often exhibit large amplitude vibration due to their
large flexibility, and relatively small mass and damp-
ing. These features may make cable stress undue, pro-
duce fatigue, and also make people uncomfortable.
Therefore, understanding the dynamics of cable struc-
tures and developing mitigation method of vibration
are very important.

The dynamic behavior of cables is very compli-
cated and has attracted increasing attention in math-
ematics, mechanics, and engineering. Much work has
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been conducted in terms of nonlinear in-plane vibra-
tions of cables subjected to forced and/or paramet-
ric excitation in the past. Earlier studies [2–5] were
mainly focused on forced vibrations. Yamaguchi and
Migata [2] studied in-plane dynamic behavior of a ca-
ble under harmonic excitations. Benedettini and Rega
[3] obtained an approximate solution of the in-plane
vibration in primary resonance under harmonic ex-
citation. Rega and Benedettini [4, 5] studied the su-
perharmonic resonances and subharmonic resonances
of an elastic cable subjected to a planar forced exci-
tation. Recently, some studies [6–9] have been con-
ducted with stay cables under combined parametric
and forced excitations. The cables of cable-stayed
bridges subjected to combined parametric and forced
excitations (support motion) were studied theoreti-
cally by Uhrig [6]. Lilien and Pinto Da Costa [7] pre-
dicted that parametric excitation was probable due to
the presence of low frequencies in the girder and the
cable stays. Warnitchai et al. [8] proposed a nonlin-
ear dynamic model with quadratic and cubic nonlin-
ear couplings for a cable under small support motion.
The global and local modes were firstly used to study
the quasi-static motions and modal motions in their
work. The chaotic dynamics and global bifurcations
of a suspended elastic cable under combined paramet-
ric and forced excitations were investigated by Zhang
and Tang [9]. Recently, the dynamic behaviors of stay
cables in cable-beam structure members and cable-
stayed bridges have also been studied experimentally
and analytically [10–16]. Berlioz and Lamarque [10]
devoted to the theoretical and experimental investiga-
tions of a stay cable subjected to axial motion, and
used experimental observation to validate the theoret-
ical models for primary resonance and subharmonic
resonance. Feng and Gao [11] theoretically explored
the nonlinear vibration for coupled structure of cable-
stayed beam. Ren and Gu [12] investigated the para-
metric vibration of stayed cable-bridge deck systems,
taking into account of cable sag, gravity component
in string direction and variation of cable tension along
the cable. Subsequently, Fujino et al. [13] developed
a 3-dof model of cable-stayed-beam and studied its
auto parametric resonance. Costa et al. [14] dealt with
the oscillations of bridge stay cables by using theoret-
ical model and laboratory tests. Furthermore, Berlioz
and Lamarque [15, 16], Rega et al. [17, 18] studied the
nonlinear dynamic behavior of a stay cable by experi-
ment, which was confirmed by theoretical results of 1-,

2- and 4-dof models. Although there are many works
published, the dynamics of stay cable, especially the
nonlinear dynamics, is still not well understood and
there are few papers which provided the suggestion
for mitigation of large vibration of stay cable from the
point of view of nonlinear dynamic theory.

In the present work, we study the in-plane nonlin-
ear dynamics of a stay cable, especially, its first or-
der symmetric in-plane mode (single-mode model) in-
duced by support motion. The effects of initial ten-
sion force, material, stay angle and structural damping
of cable, excitation frequency, and amplitude on the
dynamic behavior of the stay cable subjected to com-
bined parametric and forced excitations are examined
on the condition of subharmonic resonance. Base on
the dynamic analysis of the stay cable, some meaning-
ful suggestions for vibration mitigation are also given.

2 Governing equations

The geometrical configuration of the cable-beam con-
sidered is shown in Fig. 1(a). The static configuration
of the cable can be described by a parabolic profile
y(xc) = 4f xc(l − xc)/ l2 [19], which is attained under
the influence of gravity. A Cartesian coordinate system
Oxcyc is chosen to describe the motion of the stay ca-
ble, with the origin O placed at the right support of the
cable. The dynamic model of the cable-beam structure
is shown in Fig. 1(b).

For brevity, we assume that the bending, torsion
and shear rigidities, and material nonlinearity of the
cable are neglected. In addition, it is assumed that the
motion of the beam can be simplified as a harmonic
excitation to the cables. Thus, applying Hamilton’s
principle, we can obtain the equations governing the
global motion of the cable. These equations can be
written as [20–22]
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Fig. 1 Cable-beam structure configuration: (a) static state, and
(b) dynamic model

where uc and vc are axial and in-plane transverse dis-
placements of the cable measured from the static equi-
librium at point xc and time t . The dot indicates the
differentiation with respect to time t . Equations (1)
and (2) describe the general vibration of the stay cable,
which is defined by the Young’s modulus Ec, cross
sectional area Ac , mass per unit length mc , static ca-
ble tension H , coordinate xc, and structural damping
coefficients cu and cv .

From Fig. 1, it can be seen that the boundary con-
ditions on the axial and in-plane transverse displace-
ments uc and vc can be given by

uc(lc, t) = 0, (3a)

vc(lc, t) = 0. (3b)

Assume that the vertical excitation to the stay cable,
induced by the motion of the beam, is given by

Z(t) = B cosωbt. (4)

There exist the following connection conditions be-
tween the stay cable and vertical excitation:

uc(0, t) + Z(t) cos θ = 0, (5a)

vc(0, t) − Z(t) sin θ = 0. (5b)

For real stay cables, the dynamic displacement
components uc and vc are of order O(ε̄f 2/l) and
O(ε̄f ), respectively, where ε̄ is a small parameter of
the order of the response amplitude. The interactions
between the transverse displacement vc and the longi-
tudinal displacement uc are negligible. Thus, the lon-
gitudinal inertia forces mcüc and damping force cuu̇c

can be neglected in Eq. (1). For such a case, Eq. (1)
can be written as

∂uc

∂xc

+ dy

dxc

∂vc

∂xc

+ 1

2

(
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∂xc

)2

= e(t). (6a)

After some simple manipulations and integrating both
sides of Eq. (6a), one can obtain

uc(0, t) − uc(lc, t) +
∫ lc

0

[
y′v′

c + 1
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(
v′
c
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]

= lce(t).
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Substituting Eqs. (3a, 3b) and (5a) into Eq. (6b), we
have

e(t) = Z(t)

lc
cos θ + 1

lc
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(
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]

dxc. (6c)

Equating Eqs. (6a) and (6b) leads to
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(
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c
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]

dxc. (6d)

Now, we determine the differential form of Eq. (2)
using the Galerkin method. According to the method,
the in-plane transverse displacement vc is approxi-
mated through the method of separation of variables.
Thus, one assumes that

vc(xc, t) = Z(t) sin θ(1 − xc/ lc) + sin(πxc/ lc)Q(t),

(7)

where Q(t) denotes the temporal behavior of vc. Note
that in this equation, we have taken into account the
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parametric excitation of first order symmetric in-plane
mode of the stay cable, and the connection condition
(5b) between the stay cable and vertical excitation.

Substituting Eqs. (4), (6d), and (7) into Eq. (2), we
can obtain a nonlinear ordinary differential equation

1

2
mlQ̈(t) +

(
π2H

2l
+ B2π2EA sin2 θ

8l3
+ 256f 2EA

π2l3

+ BEAπ2 cos θ
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8l3
cos 2ωbt
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Q(t)

+ 12EAf π
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8l3
Q3(t)

+
(

16BEAf
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cos θ − mlBω2

b

π
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πl3
cos 2ωbt + cvBlωb

π
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+ 1

2
cvlQ̇(t) + 4B2f EA sin2 θ

πl3
= 0, (8)

where l has been used to replace lc for brevity.
The nondimensional variables are defined as fol-

lowing:

ω0 = π

l

√
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m
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l
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l
,
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ω0
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H
,
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l
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2Hπ

√
H

m
.

(9)

Substituting them into Eq. (8) yields

q̈ + 2ζ q̇ + (
ω2

c + a1 cosΩτ + a2 cos 2Ωτ
)
q + a3q

2

+ a4q
3 + a5 cosΩτ + a6 cos 2Ωτ

+ a7 sinΩτ + a8 = 0, (10)

where
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1 + 512αλ2
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4
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) 1
2
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a1 = zα cos θ, a2 = 1

4
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a3 = 24αλ/π, a4 = 1

4
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π

(
16λα cos θ
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− Ω2 sin θ

)
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a6 = a8 = 8z2λα sin2 θ

π3
, a7 = −4zζλΩ sin θ

π
.

In Eq. (10), the effect of cv on the parametric ex-
citation has been neglected because it is very small
for the vertical excitation. This equation contains
both quadratic and cubic nonlinearities. Generally
speaking, the quadratic nonlinearity results in soften-
ing characteristics and the cubic nonlinearity induces
hardening characteristics of a cable [4]. The above
equation shows that the quadratic nonlinearity term
is a3 = 24αλ/π and the cubic nonlinearity term is
a4 = π2α/4. Quadratic nonlinearity vanishes in the
case of a very taut cable (λ → 0). It should be noted
that ω0 is the first order natural frequency of a cable
only if the cable is extremely stretched (λ = 0) and the
excitation amplitude is very small (B ≈ 0). a3 and a4

can also be expressed as 3ρgEA2l sin θ/(πH 2) and
π2EA/4H , respectively. It can be seen from these ex-
pressions that the initial tension force H and the ma-
terial constant E (elastic modulus) have an important
influence on the quadratic and cubic nonlinearities.
In addition, the inclination angle θ plays a significant
role in quadratic term. The effect of these parameters
on the nonlinear dynamics will be studied quantita-
tively by the multiple scales perturbation method in
the following sections.

3 Perturbation analysis

In this section, the method of multiple time scales is
used to obtain the modulation equations governing the
nonlinear vibration of the stay cable. Let Ti = εiτ ,
where ε is a small bookkeeping parameter. Using the
following scaling scheme,

ε2ξ = ζ, ε2f1 = a1, ε2f2 = a2,

f3 = a3, f4 = a4, ε2f5 = a5,

ε2f6 = a6, ε3f7 = a7.

Equation (10) can be written as

q̈ + 2ε2ξ q̇ + (
ω2

c + ε2f1 cosΩτ + ε2f2 cos 2Ωτ
)
q

+ f3q
2 + f4q

3 + ε2f5 cosΩτ

+ ε2f6 cos 2Ωτ + ε2f7 sinΩτ = 0. (11)
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Considering Ti = εiτ , we have the differential op-
erators

d

dτ
= D0 + εD1 + ε2D2 + · · · ,

d2

dτ 2
= D2

0 + 2εD0D1 + ε2(D2
1 + 2D0D2

)

× ε3(2D0D3 + 2D1D2) + · · · ,

(12)

where Di = ∂/∂Ti .
The solutions of Eq. (11) can be expanded in the

following form in terms of the small positive parame-
ter ε:

q(T0, T2, ε) = εq0(T0, T2) + ε2q1(T0, T2)

+ ε3q2(T0, T2) + · · · . (13)

To determine qj (j = 0,1,2), we substitute Eqs. (12)
and (13) into Eq. (11) and let the coefficients of ε1, ε2,
and ε3 be zero, respectively. Thus, one obtains

Order ε1

D2
0q0 + ω2

cq0 = 0. (14)

Order ε2

D2
0q1 + ω2

cq1 = −f3q
2
0 − f5 cosΩτ − f6 cos 2Ωτ.

(15)

Order ε3

D2
0q2 + ω2

cq2 = −2D0D2q0 − 2ξD0q0 − 2f3q1q0

− f1q0 cosΩτ − f2q0 cos 2Ωτ0

− f7 sinΩτ − f4q
3
0 . (16)

The solution of Eq. (14) for the first-order in-plane
motion can be expressed as

q0 = A(T2) exp(iωcT0) + cc, (17)

where exp(iωcT0) = eiωcT0 , and cc represents the
complex conjugate of other terms at the right- hand
side of Eq. (17).

Substituting Eq. (17) into Eq. (15) gives

q1 = f3A
2 exp(2iωcT0)/3ω2

c

− f3AĀ/ω2
c + f5Γ1 exp(iΩT0)/2

+ f6Γ2 exp(2iΩT0)/2 + cc, (18)

where Γ1 = (Ω2 − ω2
c )

−1, Γ2 = (4Ω2 − ω2
c )

−1, Ā is
the complex conjugate of A, and cc indicates the com-
plex conjugate of the preceding terms at the right-hand
side of Eq. (18).

Substituting Eqs. (17) and (18) into Eq. (16) yields

D2
0q2 + ω2

cq2

= A2Ā
(
10f 2

3 /3ω2
c + 3f4

)
exp(iωcT0)

− 2i
(
A′ + ξA

)
ωc exp(iωcT0)

+ if 7 exp(iΩT0)/2

− A3(f4 − 2f 2
3 /3ω2

c

)
exp(3iωcT0)

− A(f1/2 + Γ1f5f3) exp
[
i(Ω + ωc)T0

]
− A(f2/2 + Γ2f3f6) exp

[
i(2Ω + ωc)T0

]
− Ā(f2/2 + Γ2f3f6) exp

[
i(2Ω − ωc)T0

]
− Ā(f1/2 + Γ1f3f5) exp

[
i(Ω − ωc)T0

] + cc.
(19)

It has been well known that in a cable-stayed
bridge, the motions of the stay cable may be large
when the excitation frequency is close to the natural
frequency of the stay cable (primary resonance) or to
the twice of the natural frequency (subharmonic reso-
nance). Using Eq. (19), we can obtain the amplitudes
for the cases with the primary resonance and subhar-
monic resonance for the case considered here as fol-
lows.

Case 1 Primary resonance (Ω ≈ ωc)
To express the proximity of Ω to ωc, we introduce

a detuning parameter σ , which gives

Ω = ωc + ε2σ. (20)

Substituting Eq. (20) into Eq. (19) and eliminating
the secular terms in Eq. (19), we can obtain the solv-
ability condition

A2Ā
(
10f 2

3 /3ω2
c + 3f4

) − 2i
(
A′ + ξA

)
ωc

+ if 7 exp
(
iε2ρT0

)
/2 − Ā(f2/2 + Γ2f3f6)

× exp
(
2iε2σT0

) = 0. (21)

To solve Eq. (21), A is expressed in the polar form,
that is

A = 1

2
a exp(iβ), (22)
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where i = √−1, a and β are the amplitude and phase
angle of A, and they are the functions of T2.

Substituting Eq. (22) into Eq. (21) yields

a3(5f 2
3 /12ω2

c + 3f4/8
) + ωcaβ

′ − i
(
a′ + ξa

)
ωc

+ if 7/2 cos θ − f7/2 sin θ

− a(f2/4 + Γ2f3f6/2) cos 2θ

− ia(f2/4 + Γ2f3f6/2) sin 2θ = 0, (23)

where θ = σT2 − β , and the prime (′) indicates the
differentiation with respect to T2.

Separating the real and imaginary parts of the left
hand side of Eq. (23), and after some simple manipu-
lations, the following averaged equations are obtained:

ωca
′ = −aωcξ − a(f2/4 + Γ2f3f6/2) sin 2θ

+ f7/2 cos θ, (24)

ωca
(
σ − θ ′) = a(f2/4 + Γ2f3f6/2) cos 2θ

+ a3(5f 2
3 /12ω2

c + 3f4/8
)

+ f7/2 sin θ. (25)

The above equations are the reduced equations for
the planar motion of the stay cable, which is directly
excited by both forced excitation and parametric ex-
citation while the primary resonance occurring. For
steady state, a′ = θ ′ = 0. The corresponding nonlin-
ear algebraic equations can be solved numerically to
obtain the fixed-point of response of the system. For
single planar motion, the steady solution of Eqs. (24)
and (25) can be obtained using the continuation tech-
nique [23].

Case 2 Subharmonic resonance (Ω ≈ 2ωc)
In this case, there exists the following relation:

Ω = 2ωc + ε2σ, (26)

where σ is the detuning parameter.
Substituting Eq. (26) into Eq. (19) and eliminating

the secular terms, we obtain the following complex
equation describing the variation of complex ampli-
tude A with the scale T2:

A2Ā
(
10f 2

3 /3ω2
c + 3f4

) − 2i
(
A′ + ξA

)
ωc

− Ā(f1/2 + Γ1f3f5) exp
(
iε2σT0

) = 0. (27)

Substituting Eq. (26) into Eq. (31) yields

a3(5f 2
3 /12ω2

c + 3f4/8
) + ωcaβ

′ − i
(
a′ + ξa

)
ωc

− a(f1/4 + Γ1f3f5/2) cos θ

− ia(f1/4 + Γ1f3f5/2) sin θ = 0, (28)

where θ = σT2 − 2β .
Equating the real and imaginary parts to zero, the

following two equations are obtained:

ωca
′ = −aωcμc − a(f1/4 + Γ1f3f5/2) sin θ, (29)

ωca
(
σ − θ ′)/2 = a(f1/4 + Γ1f3f5/2) cos θ

− a3(5f 2
3 /12ω2

c − 3f4/8
)
. (30)

Equations (29) and (30) are the reduced equations
governing the planar motion of the stay cable excited
by the combined parametric and forced excitations
when the subharmonic resonance occurs.

Letting a′ = θ ′ = 0, and then solving Eqs. (29) and
(30), we can obtain the solution of the system at the
steady state

a = 0 or a =
√

σωc ± 2
√

χ2 − μ2
cω

2
c

2κ
, (31)

where κ = 3f4/8 − 5f 2
3 /12ω2

c , and χ = (f1/4 +
Γ1f3f5/2). From Eq. (31), it can be seen that the re-
sponse amplitude of the cable depends on the detuning
parameter, excitation amplitude, damping and initial
tension.

4 Stability of steady state response

Due to the nonlinearity, the response may be multi-
valued for an excitation amplitude or frequency. How-
ever, not all solutions must be stable. Therefore, it is
necessary to examine the stability of the steady state
solution. By directly perturbing the reduced equations,
one can determine the stability of the nontrivial steady
state solutions. But as the reduced equations have the
coupled term aθ ′

1, the stability of the trivial state can-
not be determined by directly perturbing equations. To
overcome this difficulty, we introduce the following
transformations:

r = a cos θ, s = a sin θ. (32)
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Table 1 Parameters of
steel cables Cable Material l (m) m (kg/m) H (kN) θ E (GPa) A (cm2)

C1 Steel 95.82 63.6 4490 π/4 195 76

C2 Steel 577 100.78 7700 π/3 195 120.46

Thus, directly perturbing the reduced equations in the
Cartesian form, one can determine the stability of the
trivial steady state solutions as the couple term is un-
coupled.

For brevity, only the stability problem for the sub-
harmonic resonance is discussed here. The primary
resonance can be tackled using the similar procedure.
Substituting Eq. (32) into Eqs. (29) and (30), the fol-
lowing equations can be obtained:

r ′ = −σs − 2μcr − 2κ

ωc

s
(
r2 + s2), (33a)

s′ = σr − 2μcs + 2χ2

μcω2
c

s + 2κ

ωc

r
(
r2 + s2). (33b)

To determine the stability, one perturbs the steady state
solution. Let

r = r10 + �r1, (34a)

s = s10 + �s1, (34b)

where r10 and s10 are the steady state solutions, �r1

and �s1 represent the perturbation values. Substitut-
ing Eqs. (34a), (34b) into Eqs. (33a), (33b) and retain-
ing linear terms in the perturbation, one obtains
{
�r ′

1,�s′
1

}T = [JC]{�r1,�s1}T, (35)

where T denotes the transpose of a matrix, and [Jc]
is the Jacobian matrix whose eigenvalues can be used
to determine the stability and bifurcation type of the
system.

5 Numerical examples and discussion

The numerical investigations are carried out to un-
derstand the nonlinear dynamic response of the stay
cable subjected to parametrical and forced excita-
tions. The frequency-response curves and excitation-
response curves in the primary resonance and subhar-
monic resonance are considered. The effects of the ini-
tial tension force, damping and inclination angle of
stay cable, and the excitation frequency and ampli-
tude on the in-plane behavior of the stay cable are dis-
cussed.

5.1 Subharmonic resonance of steel cables

In a cable-stayed bridge, the lengths of cables are dif-
ferent. So, we select a short cable (C1) and a rela-
tively long cable (C2) as specimens. Their parame-
ters are shown in Table 1. The steady state responses
of the system subjected to the primary resonance
are obtained by solving Eqs. (24) and (25) numeri-
cally using the continuation technique [24] and the
Newton–Raphson scheme. The relevant frequency-
response curves and excitations-response curves are
obtained from Eq. (31) when the subharmonic reso-
nance is considered. In the numerical computation, the
small bookkeeping parameter ε is set to 1. In the fol-
lowing figures, the solid and broken lines stand for the
stable and unstable branches, respectively.

Figure 2 shows the excitation-response curves of
cable C2 under the primary resonance and subhar-
monic resonance, respectively. It can be seen that
there exists a considerable difference between the two
excitation-response curves. When the excitation fre-
quency is close to 2.0, the subharmonic resonance can
be observed for a very small excitation quantity. The
response amplitude reaches 0.0056 when the excita-
tion is 0.000034. As the excitation is gradually in-
creased, the response amplitude rises rapidly. With the
increasing of excitation amplitude, the range of exci-
tation frequency required for the onset of subharmonic
resonance enlarges as well, which is dangerous for the
safety of stay cable. For instance, as the excitation am-
plitude increases from 0.0002 to 0.0025, the frequency
range increases to 1.85–2.15 from 1.988–2.012, as
shown in Figs. 2a and b. However, when the excita-
tion frequency is near to 1.0, the primary resonance
can occur only if the excitation amplitude reaches
0.00865, and the response amplitude is fairly small
relative to that induced by the subharmonic resonance.
With the increase of excitation, the response amplitude
increases very slowly. This indicates that the primary
resonance is not easy to occur in actual engineering.
Therefore, the subharmonic resonance of stay cable is
more dangerous than the primary resonance, and will
be discussed in more detail in the following.
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Fig. 2 Excitation-response
curves of cable C2 when
σ = 0.01 and H = 8700 kN.
(a) and (b) show the
frequency-response curves
of the subharmonic
resonance for z = 0.0002
and z = 0.0025,
respectively

To understand the effect of initial tension force on
the dynamic behaviors of the stay cable, Fig. 3 dis-
plays the frequency-response curves of cables C1 and
C2 under the subharmonic resonance with different
initial tension force. It can be observed that cable C2
exhibits a mildly softening behavior and the response
amplitude is relatively large when the initial tension
force is Hc2 (= 7700 kN, given in Table 1). When the
initial tension force is increased to 125 % Hc2, the
frequency-response curve bends to the right and ex-
hibits a severely hardening behavior. When the initial
tension force is decreased to 25 % Hc2, the frequency-
response curve does not change the direction of bend-
ing, but the response amplitude falls sharply. Cable
C1 has the similar variation trend with the change of
initial tension force. The cable exhibits a hardening
behavior initially, and changes to a severely soften-
ing one when the initial tension force is decreased to
25 % of its initial value. These results indicate that
for different initial tension force, the dynamic behav-
ior of cables in a cable-stayed bridge will be differ-
ent. Unreasonable initial tension force may result in a
mildly softening/hardening behavior and a large vibra-
tion. Therefore, in the design of stay cable, it is very
important to control the initial tension, which can be
done by adjusting the cable inclination angle and spac-
ing.

Furthermore, Fig. 3 gives the sophisticated bifur-
cation diagram when the excitation frequency ratio
Ω is used as a control parameter. For all considered
initial forces, there exist supercritical and subcriti-
cal pitchfork bifurcations. For example, for the case
with the initial forces Hc1 of cables C1, as seen in

Fig. 3a, the supercritical pitchfork bifurcation occurs
at Ω = 1.996, while the subcritical pitchfork bifur-
cation occurs at Ω = 2.004. When Ω < 1.996 only
one stable trivial solution exists. When Ω is in the
interval 1.996 < Ω < 2.004, there are a stable non-
trivial branch (i.e., the supercritical parabolic branch)
and an unstable trivial branch. When Ω > 2.004, there
coexist a stable trivial branch, a stable supercritical
parabolic branch and an unstable subcritical parabolic
branch. Corresponding to the subcritical pitchfork bi-
furcation point (at Ω = 2.004), there is a critical point
C on the supercritical parabolic branch, which divides
the supercritical parabolic branch into two sections.
The lower section is the response amplitude of large
cable vibration under subharmonic resonance in the
absence of initial deflection, which is dangerous to ca-
ble because it is easy to occur. The upper section is the
response amplitude of excessive cable vibration under
subharmonic resonance on the condition that the initial
deflection is greater than or equal to the corresponding
response amplitude. The excessive vibration may oc-
cur when the stay cable is simultaneously excited by
support motion and other excitation such as wind. For
such cases, to control the excessive vibration, paramet-
rical vibration, and wind vibration should be treated
simultaneously.

Figure 4 plots the frequency-response curves with
different inclination angles of cables C1 and C2. It
can be seen that the interval between the supercriti-
cal and subcritical pitchfork bifurcation points shrinks
with the inclination angle increasing from 55◦ to 65◦.
The influence of inclination angle on the dynamic be-
havior for short cable C1 is not susceptible as seen
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Fig. 3 Frequency-response curves for different initial tension force H when ξ = 0.001 and z = 0.0001: (a), cable C1 and (b), cable C2

Fig. 4 Frequency-response curves for different stay angle θ when ξ = 0.001 and z = 0.0001: (a), cable C1, and (b), cable C2

in Fig. 4a, whereas it is sensitive for long cable C2
as shown in Fig. 4b. With increasing inclination an-
gle, the response amplitude of the cable decreases. In
particular, when Ω = 2, the response amplitudes are
0.0607, 0.0169, and 0.0113 at θ = 55◦, 60◦ and 65◦,
respectively. The decrease of response amplitude is
due to the fact that the increase of the quadratic non-
linearity term in the governing equation. Therefore, we
can moderately change the stay angle of long cable to
suppress the large cable vibration in the design of the
inclination angle of stay cable.

Figure 5 considers the effect of damping coeffi-
cient on the dynamic behaviors of the stay cable under
the subharmonic resonance. For the two cables, when
the damping coefficient ξ is relatively low, the exci-
tation amplitude z required for the occurrence of sub-

harmonic resonance is quite low. For example, when
ξ = 0.0001, z is 0.000022 for cable C1. The response
amplitude is almost 200 times greater than the exci-
tation amplitude. When the damping coefficient in-
creases to 0.01, the threshold value of excitation am-
plitude increases to 0.0008 for cable C1. This indicates
that increasing damping can reduce the possibility of
the occurrence of subharmonic resonance. Therefore,
damping is a factor that can be used to reduce cable
vibration, which is similar to that obtained by Costa
et al. [14]. However, the efficiency of damping for
mitigating vibration of long cable C2 falls. In fact,
for the long cable C2, increasing the damping coef-
ficient from 0.0001 to 0.01 causes the threshold value
of excitation amplitude to increase to 0.0004 only. Fur-
thermore, when the excitation amplitude is relatively
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Fig. 5 Excitation–response curves for different damping coefficient ξ when σ = 0.01: (a), cable C1, and (b), cable C2

large, increasing damping cannot prevent the large am-
plitude vibrations induced by the subharmonic reso-
nance. When the damping coefficient increases from
0.0001 to 0.01, for z = 0.001 the response amplitude
of the short cable C1 decreases only a little, and that
of the long cable C2 has almost no change.

It is well known that with the span of cable-stayed
bridge increasing, the efficiency of damping for miti-
gating cable vibration is increasingly important. How-
ever, only small damping can be added if the attach-
ment point is close to bridge deck. For long cables,
the relative attachment point becomes increasingly
smaller, and passive damping may become insufficient
for reducing vibration of stay cable. Here, we propose
a suggestion that the structural damping might be in-
creased by adding some visco-elastic polymer when
the cable is manufactured.

Furthermore, it can be observed in Fig. 5 that the
saddle node bifurcations occur at points P1, P2, and
P3 when the system has different damping levels. For
given σ and ξ , the jump phenomena occur at one of
these points. As the excitation amplitude z reaches a
small threshold value, the subharmonic resonance oc-
curs and the response amplitude as of the stay cable in-
creases abruptly from zero. Taking ξ = 0.01 as an ex-
ample, as z is gradually increased from zero, the trivial
solution loses its stability at z = z2 due to a symmetry-
breaking bifurcation. Here, locally, there are no other
stable solutions for z > z2, forcing the system to jump
in a fast dynamic transient to D, then the response am-
plitude continues to increase with the growing of exci-
tation amplitude as shown in Fig. 5a. Additionally, if z

is gradually decreased from infinity, the response am-
plitude decreases until point P3, and then the system is
forced to jump from P3 to zero. There coexist a stable
nontrivial branch, a stable trivial branch and an unsta-
ble nontrivial branch in the interval z1 < z < z2. It is
interesting that point D in the stable nontrivial branch
corresponding to excitation amplitude z2 divides the
stable nontrivial branch into two parts. The lower part
is called large vibration, which depends on the ini-
tial deflection, where as the initial deflection is greater
than or equal to the corresponding response amplitude
the large vibration will occur. However, the upper sec-
tion is called excessive vibration, and it mainly de-
pends on excitation amplitude in the absence of ini-
tial deflection. Therefore, it is worth noting that the
lower section corresponding to the intermediate region
z1 < z < z2 is dangerous area since the lower excita-
tion amplitude can stimulate large vibration, and the
upper section also should be controlled by mitigating
the amplitude of deck motion because the occurrence
of subharmonic resonance is not related to the initial
deflection of cable.

5.2 Effect of material properties

Although carbon fiber reinforced polymers (CFRP)
are increasingly making their way into the field of
bridge engineering [25], there is no literature study-
ing the nonlinear dynamic behavior of the new ma-
terial cable. Here, we consider two kinds of CFRP
cables, one (CFRP1) is a material with high strength
(2550 MPa) and low Young’s modulus (160 GPa), the
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Table 2 Parameters of CFRP cables

Cable Material l (m) m (kg/m) H (kN) θ E (GPa) A (cm2)

C11 CFRP1 95.82 7.83 4490 π/4 160 44.02

C12 CFRP2 95.82 5.62 4490 π/4 400 31.6

C21 CFRP1 577 13.42 7700 π/3 160 75.5

C22 CFRP2 577 9.64 7700 π/3 400 54.2

Fig. 6 Frequency-response curves for three kinds of materials when ξ = 0.001 and z = 0.0001: (a), cable C1, and (b), cable C2

other (CFRP2) is of high strength (3550 MPa) and
high Young’s modulus (400 GPa). Their other main
parameters are the same as those of the steel cables,
being listed in Table 2. In the following figures, like
the above figures, the solid and broken lines stand for
the stable and unstable branches, respectively. Similar
to the steel cables, the dynamic behaviors of the CFRP
cables are determined using the aforementioned non-
linear dynamic theory.

Figure 6 shows frequency-response curves for steel,
CFRP1 and CFRP2 cables. For the short cable as
shown in Fig. 6a, compared with the steel cable,
CFRP1 exhibits almost similar behavior, especially
in response amplitude. CFRP2 cable has a slightly
lower excitation frequency region and a vibration with
higher response amplitude. Overall, the new material
is not competitive in reducing the cable vibration for
the short cable. However, the influence of material
on the dynamic behavior of the long stay cable un-
der the subharmonic resonance is relatively large, as
shown in Fig. 6b. When CFRP 1 or CFRP2 cable is
used to replace the steel cable, the softening character
is changed to hardening one and the response ampli-
tude has a large decline. The reason for the decline

is the decreasing of the quadratic nonlinearity term
in the governing Eq. (10). From the expression of the
quadratic nonlinear term a3 = 3ρgEA2l sin θ/(πH 2),
it is clear that, although the Young’s modulus has an
almost 100 % increase, from 210 GPa to 400 GPa, the
density of the CFRP cable declines to almost 20 %
of the steel cable, and the area of the cross section of
the cable falls 50 %, simultaneously. This makes the
system trend to have a severely hardening behavior.
Therefore, CFRP cable has a better dynamic behavior
than that of steel cable at this point, and is therefore a
good alternative of steel cable for large span bridge.

Figures 7 and 8 show the excitation-response
curves for different material cables. For the CFRP ca-
bles, the saddle node bifurcation occurs, similar to the
steel cable. For a given damping coefficient ξ = 0.001
as shown in Fig. 7a, the response amplitude of the ca-
ble jumps suddenly from zero to 0.00834 when the ex-
citation amplitude reaches 0.00075. Further increasing
the excitation amplitude leads to a continuous increas-
ing of response amplitude. In the interval between
0.00015 and 0.00075, there coexist a stable nontrivial
branch, a stable trivial branch and an unstable nontriv-
ial branch. The two types of CFRP cables have similar
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Fig. 7 Excitation-response curves for CFRP1 when σ = 0.01: (a), cable C1, and (b), cable C2

Fig. 8 Excitation-response curves for CFRP2 when σ = 0.01: (a), cable C1, and (b), cable C2

dynamic behaviors. Comparing with the steel cable,
the short CFRP cables have slightly higher response
amplitudes, and there is almost no difference for the
long one. Additionally, from Fig. 7a and Fig. 8a, it
is obvious that when the damping coefficient is in-
creased to 0.01 from 0.0001, the excitation amplitude
threshold value for the subharmonic resonance for the
CFRP cables is larger than that for the steel cable,
which would contribute to the cable vibration miti-
gation. However, compared Fig. 7b and Fig. 8b with
Fig. 5b, it can be seen that the CFRP cables in the
efficiency of damping for reducing subharmonic reso-
nance may not be good as the steel cable. This means
that the effect of damping on the large vibration or
excessive vibration of CFRP cables under paramet-

ric excitation may not be sensitive and should be paid
more attention.

6 Conclusions

In the present paper, the non-linear in-plane dynamics
of a stay cable subjected to a planar vertical excita-
tion is investigated. The effects of the key parameters
such as initial tension force, inclination angle, damp-
ing, material of cable, and excitation amplitude and
frequency are examined. Some conclusions are drawn
as follows.

• For a stay cable under parametric and forced exci-
tation, primary resonance is more difficult to occur
than subharmonic resonance. The excitation ampli-
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tude threshold value for primary resonance is rel-
atively larger than that for subharmonic resonance
regardless the influence of excitation frequency.

• The variation of cable tension may lead to the
change of the behavior of the cable: from mildly
to severely softening or hardening. On the other
hand, unreasonable tension force would cause ex-
cessive vibration. Therefore, in the design of stay
cable, it is very important to control the initial ten-
sion force. The unreasonable tension range can be
avoided by adjusting cable’s inclination angle and
spacing.

• The large and excessive vibration of stay cable and
the corresponding conditions are firstly classified
in the present paper. Actually, most of the pub-
lished works are focused on the large vibration,
few of them on the excessive vibration. Through
the present work, we note that both of them re-
garding the vibration mitigation should be paid
attention. The stay angle exhibits a considerable
effect on the dynamic behavior for large span
cable due to the fact that it is sensitive to the
quadratic nonlinearity term of the governing equa-
tion. Hence, changing the inclination angle of stay
cable can contribute to reducing the large vibra-
tion.

• Damping is a factor that can be used to reduce cable
vibration, especially, for short stay cables. Increas-
ing damping can reduce the possibility of the oc-
currence of subharmonic resonance. The efficiency
of damping in vibration mitigation for long cables
falls. Therefore, we suggest adding some visco-
elastic polymer in the manufacture process of cable
to increase its damping level.

• Based on the analysis of the dynamic behavior of
the cables with different material properties, CFRP
cable should be a good alternative of steel cable for
large span bridge. It has a lower sag, a behavior of
severely hardening character, and therefore a bet-
ter dynamic property (namely, a smaller response
amplitude).

Based on the results reported in this paper, the nonlin-
ear dynamics of stay cable is affected by many factors.
Hence, the vibration mitigation of stay cable under
vertical excitation should be conjunct with the control
of spacing, inclination, damping and material of stay
cable, wind induced vibration and deck motion.
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