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Abstract The goal of this work is a general assess-
ment regarding the performances of linear and non-
linear dynamic vibration absorbers (DVAs) applied to
the specific problem of moving loads or vehicles. The
problem consists of a simply supported linear Euler–
Bernoulli beam excited with a moving load/vehicle;
a DVA is connected to the beam in order to reduce the
vibrations. The moving vehicle is modeled by a sin-
gle degree of freedom mass spring system. The partial
differential equations governing the beam dynamics is
reduced to a set of ordinary differential equations by
means of the Bubnov–Galerkin method. A parametric
analysis is carried out to find the optimal parameters
of the DVA that minimize the maximum vibration am-
plitude of the beam. For the case of a moving vehicle,
the energy absorbed by the DVA is evaluated. Com-
parisons among the performances of different types of
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linear and DVAs are carried out. The goal is to clarify
if the use of nonlinearities in the DVAs can effectively
improve their performances. The study shows that the
most effective type of DVA for the test cases consid-
ered is the piecewise linear elastic restoring force.

Keywords Nonlinear vibration absorber · Moving
load · Moving vehicle

1 Introduction

The dynamic response of the beams subjected to the
passage of moving loads or moving vehicles is an in-
teresting topic for structural engineers. Trains or ve-
hicles running on bridges, trolleys of overhead travel-
ing cranes that move on their girders and the airport
runways may be modeled as loads, masses or vehicles
running on beams with or without contact with an elas-
tic ground. When excessive external loads having high
velocity move on bridges (or generically on a flexible
slender structure), the structures may suffer from large
deflections that can cause damages and danger for hu-
man life and structural integrity.

Several techniques can be considered for reduc-
ing structural vibrations; among others, the use of dy-
namic vibration absorbers is very promising.

The dynamic vibration absorbers (DVA) consist
of mass–spring–damper systems attached to the main
structure; in their simpler linear form, they are widely
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used in Engineering for reducing vibrations; in par-
ticular, they are very effective in the case of har-
monic steady excitations. DVAs are preferred to ac-
tive controls for several reasons: (i) after a good tun-
ing, DVAs work well regardless of the frequency; con-
versely, active controls are suitable for low frequen-
cies; (ii) DVAs work well regardless of the scaling
(nano to macro scale); (iii) there is no need for main-
tenance or power supply; (iv) DVAs are suitable for
big structures (bridges, buildings, skyscrapers) where
active controls would need unrealistically huge power.
The previous comments explain why in many appli-
cations DVAs represent the only way to suppress or
reduce the vibration of a structure; therefore, improve-
ments of their performances are welcome.

It is useful to point out that DVAs are called dif-
ferently in the scientific and technical literature, de-
pending on their nature and behavior: tuned mass
dampers (TMD), dynamic dampers, nonlinear energy
sinks (NES, only for special nonlinear DVAs display-
ing irreversible energy transfer from the structure to
the DVA).

In [1, 2], it is shown that DVAs can be effective also
for structures subjected to moving loads.

For the case of linear vibration absorbers and peri-
odic loading, Den Hartog [3] proved that one can find
the optimal linear spring and viscous damper coeffi-
cients in order to minimize structural deflection. We
have shown [2] that, in the case of transient moving
loads on beams, the optimal stiffness and damper co-
efficients are generally different from those obtained
by the classical approach [3] that was developed for
periodic excitations.

References [4, 5] are suggested to readers inter-
ested in a comprehensive treatise on structures excited
by moving loads; these publications report several ap-
plications.

In the past, researchers tried to find suitable DVAs
able to decrease structural deflections, in order to in-
crease the lifetime of structures subjected to moving
loads; most of them used linear vibration absorbers [6–
12]. Interesting studies, focused on the performance of
nonlinear DVAs, can be found in [13–15]; however,
such works did not consider moving loads or mov-
ing vehicles; moreover, most of them considered only
DVAs having cubic stiffness. In [16, 17], it was shown
that, under certain conditions, a local nonlinear attach-
ment, having essential nonlinear stiffness, can pas-
sively absorb energy from a linear non-conservative

(damped) structure, in essence acting as a nonlinear
energy sink (NES).

Jiang et al. [18] showed that the nonlinear DVAs
are capable of absorbing steady state vibration energy
from the linear oscillator over a relatively broad fre-
quency range [18]; they pointed out that those non-
linear DVAs behave as passive energy pumping, i.e.
a one-way irreversible transfer of energy takes place
from a linear main system to a nonlinear attachment.
Malatkar and Nayfeh [19] explored the rich dynam-
ics exhibited by a harmonically excited linear subsys-
tem coupled with an essentially nonlinear oscillator;
they did not find any occurrence of energy transfer via
modulation, as indicated in [18]. In the rebuttal [20],
Vakakis and Bergman claimed that steady state en-
ergy pumping occurs in certain frequency ranges of the
coupled system. Finally, in [21], Malatkar and Nayfeh
provided more results to disprove what was claimed
in [20], they wrote that the addition of the nonlinear
DVA leads to an increase in the amplitude of vibration
of the linear subsystem and that the name of the so-
called nonlinear energy sink (NES) is not suitable for
these passive DVAs. The issue seems to be still open.

Recently, Lee et al. [22] studied the performance of
vibro-impact DVAs in systems of coupled oscillators;
a 1-DOF primary linear oscillator was coupled with a
vibro-impact attachment acting as a non-smooth NES.
They found that the most efficient mechanism for
vibro-impact targeted energy transfers is through the
excitation of highly energetic impulsive orbits, i.e. pe-
riodic or quasi periodic orbits corresponding to zero
initial conditions, except for the initial velocities of the
linear oscillators.

Deshpande et al. [23] developed a numerical ap-
proach to optimize the performance of a piecewise
linear vibration isolation system. They found that the
optimal solution depends on the damping coefficients,
stiffness ratio, and clearance.

Rüdinger [24] studied the performance of nonlin-
ear viscous damping for DVAs attached to a single-
degree-of-freedom system excited by white noise.
They found that the structural damping has very little
influence on the optimal parameters for a DVA. More-
over, Rüdinger [24] revealed that the optimal linear
and nonlinear DVAs have practically the same effect
in terms of reducing the structural displacement.

In the present paper, the performances of linear and
nonlinear DVAs are studied; the goal is to reduce the
vibration of an Euler–Bernoulli beam under transient
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moving load or moving vehicle. The present work
completes and enlarges the analyses carried out in [1,
2]. In [2], only the cubic stiffness is considered as non-
linearity; moreover, the case of moving vehicle exci-
tation (dynamic effects of moving elements) was not
studied.

Here, the performances of different types of nonlin-
ear local passive attachments having monomial, poly-
nomial or piecewise linear stiffness are considered.
The moving vehicle is modeled considering dynamic
effects due to the suspension. The partial differential
equation (PDE) governing the beam dynamics is re-
duced to a set of ordinary differential equations (ODE)
by applying the Bubnov–Galerkin method. After ex-
panding the displacement field using the eigenfunc-
tions of the beam without attachments and loads, the
PDE is projected using a metric that takes advantage
from the orthogonality properties of the eigenfunc-
tions. The resulting ODEs, which are generally nonlin-
ear (and also non-smooth in the case of piecewise lin-
ear attachments), are studied numerically using adap-
tive step size integration method, which automatically
switches between BDF (backward differentiation for-
mulas) and Adams multistep methods, depending on
the “stiffness” of the equations (Mathematica).

Optimal parameters of linear and nonlinear DVAs
are obtained numerically using two strategies: brute
force and random search. The DVAs are classified on
the base of their performances.

The goal of this paper is to furnish a clear and
honest scenario regarding the capability of nonlinear
DVAs to reduce and damp out the vibration of a slen-
der structure under moving loads; in addition, the non-
linear DVAs are compared with the classical linear
ones, in order to clarify if the use of nonlinearities
gives effective improvements.

2 Dynamical systems and basic equations

In this section, a model of the beam subjected to a
moving vehicle or load (one DOF model, i.e. mono-
cycle) is developed; see Figs. 1 and 2. The model con-
sists of a simply supported beam connected to a small
mass through a linear or nonlinear spring and a linear
or nonlinear viscous damper. In the case of moving ve-
hicles, Fig. 1, a mass is connected to the beam through
a linear spring and a damper; this mass moves along
the beam and exerts on it a force depending on the rel-
ative motion. In the case of a moving load, Fig. 2, there

Fig. 1 A beam model subjected to a moving vehicle

Fig. 2 A beam model subjected to a fixed position transient
force, see [25]

is a constant load that travels on the beam. The latter
one is a simplified model largely used in the literature,
even though it neglects the dynamic effects of the ve-
hicle dynamics and the interaction with the beam.

2.1 Basic Equations

The beam dynamics is modeled through the Euler–
Bernoulli theory, a DVA is attached to the beam, it ex-
erts an additional action on the beam. The equations
of motion read:
1. Beam

EIy,xxxx (x, t) + ρAy,tt (x, t)

+ [
f (u) + f̃ (u,t )

]
δ(x − d) + fm(x, t;w) = 0,

x ∈ (0,L), t > 0, (1a)
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y(0, t) = 0, y(L, t) = 0, y,xx (0, t) = 0,

y,xx (L, t) = 0, (1b)

y(x,0) = 0, y,t (x,0) = 0. (1c)

2. Moving load or vehicle

fm =

⎧
⎪⎪⎨

⎪⎪⎩

{[kvw(t) + cvw,t (t)]δ(x − V t)H( L
V

− t),

moving vehicle}
−F0δ(x − V t)H( L

V
− t), moving load.

(1d)

3. DVA

m0v,tt (t) − f (u) − f̃ (u,t ) = 0,

v(0) = 0, v,t (0) = 0, t > 0, (2a)

u(t) = y(d, t) − v(t). (2b)

For the case of moving vehicle an additional differ-
ential equation must be added:

mv

(
z,tt (t) − g

) − kvw(t) − cvw,t (t) = 0,

z(0) = 0, z,t (0) = 0, 0 < t <
V

L
, (3a)

w(t) = y(d, t) − z(t). (3b)

The beam dynamics is governed by the PDE repre-
sented by (1a) with simply supported boundary condi-
tions (1b) and initial conditions (1c): the term [f (u)+
λu,t (t)]δ(x − d) represents the force exerted by the
DVA; x is the longitudinal coordinate measured from
left end of the beam; t is the time; f (u) is the elas-
tic restoring force, which can be linear or nonlinear;
f̃ (u,t ) represent the dissipative force of the DVA,
which is considered generally linear (λu,t (t)) if not
specified otherwise; F0 and V are the magnitude and
speed of the moving force, respectively. y(x, t) is the
transverse displacement field of the beam (down is
positive). E is the Young’s modulus; I is the mo-
ment of inertia of the cross-section area; ρ is the ma-
terial density and A is the cross-section area. Equa-
tion (1d) defines fm, the beam excitation for the mov-
ing vehicle or the moving load. Equation (2a) governs
the dynamics of the DVA: v(t) is the absolute posi-
tion of the vibration absorber mass m0; x = d repre-
sents the location of the DVA on the beam. δ is the
Dirac function and H(t) is the Heaviside step func-
tion; u(t) is the elongation of DVA spring, which is
defined by (2b). Equation (3a) governs the vehicle dy-
namics; mv , kv and cv are the mass, stiffness and vis-
cous damping of the vehicle suspension, respectively;

z(t) is the vertical position of the vehicle (down is pos-
itive). w is the elongation of the suspension, which is
defined by (3b); g is the acceleration of gravity. Note
that, due to the nonlinearity of the vibration absorber,
this set of partial differential equations cannot be de-
coupled.

2.2 Discretization

The dynamics of the system are analyzed by project-
ing the partial differential equation (1a) into a com-
plete and orthonormal basis. For the present problem,
the eigenfunctions of the linear operator representing
the simply supported beam without attachments can be
used, see [2] for details:

ϕr(x) = √
2/mL sin

(
rπx

L

)
,

ωr = (rπ)2
√

EI/mL4, r = 1,2,3, . . . . (4a)

ϕr(x) is the normalized eigenfunction and ωr is the
natural frequency of the r th mode. The eigenfunctions
satisfy the following orthonormality conditions,

∫ L

0
mϕi(x)ϕj (x)dx = δij ;

∫ L

0
ϕi(x)

(
EIϕ′′

j (x)
)′′ dx = ω2

j δij ,

i, j = 1,2,3, . . . , (4b)

where δij is Kronecker’s delta. The transverse vibra-
tion of the beam is expanded as follows:

y(x, t) =
∞∑

r=1

ar(t)ϕr(x), (5)

where ar(t) are unknown functions of time (modal co-
ordinates).

After projecting on the pth eigenfunction and using
the orthonormality conditions, one obtains

äp(t) + 2ξpωpȧp(t) + ω2
pap(t)

+ {
D(t) + D̃(t)

}
φp(d)

− Dv(t)H

(
L

V
− t

)
× φp(V t) = 0,

p = 1,2,3, . . . , (6a)

m0v̈(t) − D(t) − D̃(t) = 0, (6b)
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mv

(
z̈(t) − g

) +
{

kv

[

z(t) −
∞∑

r=1

ar(t)ϕr(V t)

]

+ cv

[

ż(t) −
∞∑

r=1

ȧr (t)ϕr (V t)

]}

H

(
L

V
− t

)
= 0,

(6c)

Dv(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

{kv[z(t) − ∑∞
r=1 ar(t)φr(V t)]

+ cv[ż(t) − ∑∞
r=1 ȧr (t)φr (V t)],

moving vehicle}
F(t), moving load,

(6d)

D̃(t) =

⎧
⎪⎪⎨

⎪⎪⎩

{λ[∑∞
r=1 ȧr (t)φr (d) − v̇(t)],

if not specified}
λ3[∑∞

r=1 ȧr (t)φr(d) − v̇(t)]3.

(6e)

D(t) represents the restoring force acting on the
beam due to the DVA spring:

Monomial stiffness:
{

D(t) = ci

[ ∞∑

r=1

ar(t)φr(d) − v(t)

]i

,

i = 1,3,5,7,9; (7a)

Polynomial stiffness:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

D(t) = c1[∑∞
r=1 ar(t)ϕr(d) − v(t)]

+ c3[∑∞
r=1 ar(t)ϕr (d) − v(t)]3

+ c5[∑∞
r=1 ar(t)ϕr (d) − v(t)]5

+ c7[∑∞
r=1 ar(t)ϕr (d) − v(t)]7.

(7b)

Piecewise linear stiffness:⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

D(t) = k × [(∑∞
r=1 ar(t)φr(d) − v(t)) − 
]

× H [(∑∞
r=1 ar(t)φr(d) − v(t)) − 
]

+ k × [(∑∞
r=1 ar(t)φr(d) − v(t)) + 
]

× H [−(
∑∞

r=1 ar(t)φr(d) − v(t)) − 
].

(7c)

The transient response of the ODEs represented by
Eqs. (6a)–(6e) and (7a)–(7c) is studied numerically.

3 Validation

In order to validate the present model, the case of a
beam connected with a nonlinear vibration absorber
loaded with a time transient force having fixed position
is now investigated; see [25]. Consider the system of
Fig. 2, with f (u) = Cu3, subjected to an impulsive
force, a half-sine shock with magnitude Fa ; see Fig. 3.

Fig. 3 Half-sine pulse excitation force

The portion of the input energy absorbed by DVA
is called η; the remaining portion of energy, i.e. (1 −
η), is dissipated inside the main beam structure, η is
computed by the following expression:

η = ENES

Ein
=

∫ t1
0 λ[v̇(t) − ∑n

r=1 ȧr (t)ϕr (d)]2 dt
∫ t0

0 F1[∑n
r=1 ȧr (t)ϕr(xF )]dt

. (8)

Ein represents the total input energy of the beam due
to the excitation; ENES is the energy that is passively
absorbed and locally dissipated by the DVA; t1 is as-
sumed large enough to assure that the transient dynam-
ics is damped out; and t0 = T/2 is the impulse dura-
tion.

For the present comparison, the numerical param-
eters are the following: Fa = 10.0 N, T = 0.4/π s,
EI = 1.0 Pa m4, ρA = 1.0 kg/m, 2ξpωp = 0.05 s−1,
L = 1.0 m, m0 = 0.1 kg, xF = 0.3 m, λ = 0.05 N s/m,
d = 0.65 m and C = 1.322 × 103 N/m3, five mode
shapes are taken into account in the series (5). Note
that in this model the modal damping ratio is not con-
stant for the beam, for example, ξ1 = 0.00253, ξ2 =
0.000633 . . . ; t1 is set equal to 150 s.

A comparison between the present model and re-
sults of [25] is shown in Figs. 4 and 5. Figure 4 shows
v(t), i.e. the DVA deflection. Figure 5 presents the
portion of energy dissipated by the DVA, η, versus
its stiffness coefficient. Good agreement between [25]
and the present model is found.

4 Numerical results

The following test case is considered for the numeri-
cal model: E = 206800 MPa, ρ = 7820 kg/m3, A =
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0.03 m × 0.03 m, L = 4 m, ξp = 0.01 (p = 1,2, . . .)
and m0 = 1.4076 kg. The vibration absorber is in-
stalled near the middle, d = 0.55L for linear and

Fig. 4 Transient response of DVA deflection: (—) present re-
sults, (•) [25]

Fig. 5 The portion of input energy absorbed and dissipated by
the DVA as a function of DVA stiffness (C): (—) present results,
(•) [25]

piecewise linear vibration absorber and d = 0.53L

for other kinds of nonlinearities; if not specified oth-
erwise, the damping is linear and viscous with λ =
0.1 N s/m, see [3] for explanation. The maximum de-
flection occurs at different velocities for the case of
the moving load and moving vehicle; in each case, the
optimization is carried out to find the corresponding
critical velocities.

Figure 6 shows the transient response of the beam
without attachment, as well as the beam with linear
DVA optimized in [6], V = 21.5 m/s. The vertical
green line shows the time instant for which the moving
load leaves the beam (xF = L); the maximum deflec-
tion occurs at the first peak, which happens before the
load leaves the beam.

4.1 DVA optimization under moving load excitation

The beam is now excited by a moving load with
constant magnitude, F(t) = F0 = 9.8N , the beam
presents an internal dissipation, ξp = 0.01 (p =
1,2, . . .). The maximum beam deflection occurs at
V = 21.5 m/s; for such a velocity, the maximum bare
beam deflection is 1.6042 mm, see [2].

4.1.1 Performance of the monomial stiffness

Consider a local attachment having monomial stiff-
ness; i.e. f (u) = ciu

i , i = 1,3,5,7,9, see Eq. (1a).
The linear (f (u) = c1u) and cubic (f (u) = c3u

3) stiff-
nesses have been studied in [2]; here we use such cases
for comparisons.

For each type of monomial, the nonlinear DVAs are
optimized; Figs. 7(a)–7(d) show the maximum beam

Fig. 6 Transient responses:
bare beam (- - -); beam with
linear DVA (—)
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Fig. 7 Moving loads,
optimal monomial stiffness:
(a) f (u) = c3u

3;
(b) f (u) = c5u

5;
(c) f (u) = c7u

7;
(d) f (u) = c9u

9

Table 1 Comparison of different kinds of DVA, λ = 0.1 N s/m

Case Beam and vibration
absorber condition

Stiffness Maximum deflection
[mm]

Reduction
percentage

1 Bare beam 0 1.6042 –

2 Linear vibration
absorber

c1 = 1.79(103) N/m 1.5054 6.159 %

3 Monomial cubic
vibration absorber

c3 = 6.7(109) N/m3 1.4852 7.418 %

4 Monomial fifth
power stiffness

c5 = 19.6(1015) N/m5 1.4786 7.829 %

5 Monomial seventh
power stiffness

c7 = 49(1021) N/m7 1.4750 8.054 %

6 Polynomial seventh
power stiffness

c1 = 0.0158(103) N/m 1.4757 8.010 %

c3 = 0.492(109) N/m3

c5 = 0.564(1015) N/m5

c7 = 46.58(1021) N/m7

7 Monomial ninth
power stiffness

c9 = 88(1027) N/m9 1.4737 8.135 %

8 Piecewise linear
vibration absorber

k = 37,000 N/m, 
 = 0.58 mm 1.4735 8.147 %

deflection with DVA versus the coefficient ci . The
optimal coefficients are readily obtained. Note that a
unique minimum is present. The optimal (minimum)
deflections and the corresponding stiffness coefficients
are summarized in Table 1. The reduction percentage
for each case is calculated by comparing the maximum

beam deflection with the maximum deflection of the
bare beam, i.e. Case 1 in Table 1. In [3], it was found
that the cubic stiffness shows better performance with
respect to the linear one. The results reported in Ta-
ble 1 show that using higher power for the nonlin-
ear stiffness leads to a more effective reduction of the
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Fig. 8 Moving loads, random optimization of the polynomial stiffness: (a) maximum deflection vs. c1; (b) maximum deflection vs.
c3; (c) maximum deflection vs. c5; (d) maximum deflection vs. c7

beam deflection. For example, by using a linear DVA,
one can reduce the beam deflection by 6.159 % and
using a cubic one, it is possible to reduce the beam de-
flection by 7.418 %; while if a power-nine stiffness is
used, f (u) = c9u

9 (c9 = 88 × 1027 N/m9), the DVA is
able to reduce the beam deflection up to 8.147 %.

4.1.2 Performance of the polynomial stiffness

Consider a DVA having linear viscous damping and
polynomial stiffness, f (u) = c1u + c3u

3 + c5u
5 +

c7u
7. The optimization is carried out considering a

four-parameter space: c1, c3, c5 and c7. Such parame-
ters are randomly sampled and the minimum deflec-
tion is found. The total number of random samples
(sets of parameters) is 1,720,000. The high dimension
of the parameter space makes a direct search of the
optimum impossible; however, the number of random
samples has been set big enough to have acceptable

resolution. After carrying out the random search, one
obtains a set of values of the objective function (max-
imum beam deflection) versus four parameters ci ; this
set is projected on sections of the parameter space to
allow visualization; see Figs. 8(a)–8(d).

The optimal set is found by means of a suitable
code developed for the Mathematica software. How-
ever, Figs. 8(a)–8(d) allow quickly finding the mini-
mum and the corresponding parameter set; such a set
is presented in Table 1, Case 6; it gives the maximum
beam deflection equal to 1.4757 mm (8.01 % reduction
with respect to bare beam). Similarly to the previous
cases, a linear dissipation is used, λ = 0.1 N s/m.

It turns out that the dominant part of this DVA is the
seventh power of stiffness (c7 = 46.6(1021) N/m7);
i.e. the effects of linear (c1 = 15.7 N/m), cubic
(c3 = 0.49(109) N/m3) and fifth power terms (c5 =
0.56(1015) N/m5) are negligible with respect to the
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Fig. 9 Schematic stiffness force versus stiffness deflection for
piecewise linear DVA

seventh power term. This can be proven by compar-
ing Case 6 of Table 1 with Cases 2–5. By comparing
Case 6 of Table 1 with Cases 5, 7, it turns out that a
high power monomial stiffness performs better than
a polynomial one. Figure 8 shows also that the min-
imum is located in a flat region, this means that it is
robust; moreover, no local minima are visible.

4.1.3 Performance of the piecewise linear stiffness

Now a piecewise linear stiffness for the DVA is consid-
ered. This kind of restoring force is relatively simple
to realize using linear springs with a gap; moreover,
it can be thought as a limiting case of the high power
restoring force. Figure 9 shows a schematic represen-
tation of this restoring force versus a generic elonga-
tion u. When the elongation |u| is smaller than the gap

, the restoring force is zero (2
 is the dead zone).
For |u| > 
, the restoring force varies linearly with u;
the slope is given by k.

The optimization is carried out considering two pa-
rameters: 
 and k; such parameters are regularly sam-
pled. Figure 10 depicts the maximum beam deflec-
tion versus 
 and k; the behavior is extremely regu-
lar and the optimum appears robust, the optimal pair
is k = 37,000 N/m and 
 = 0.58 mm, corresponding
to a maximum beam deflection equal to 1.4735 mm
(8.147 % reduction with respect to the bare beam).
Figure 11 is the 3D representation of Fig. 10; it con-
firms the regularity of the objective function and the
flatness of the neighborhood of the optimum. Table 1
shows that the piecewise linear DVA is the most effec-
tive for reducing the beam deflection (Case 8).

4.2 DVA optimization under moving vehicle
excitation: maximum deflection approach

A moving vehicle is considered now; the physical pa-
rameters for the beam are the same as in the case of

Fig. 10 Moving loads. Maximum deflection vs. gap 
 and
stiffness k of the piecewise linear stiffness; the optimum is
k = 37,000 N/m and 
 = 0.58 mm (1.4735 mm max deflec-
tion)

Fig. 11 Moving loads. Maximum deflection vs. gap 
 and
stiffness k of the piecewise linear stiffness: 3D presentation

a moving load. Moreover, mv = 1 kg, kv = 980 N/m
and cv = 6.26 N s/m are the mass, stiffness and vis-
cous damping of the moving vehicle, respectively, and
g = 9.81 m/s2 is the gravitational acceleration. Note
that the weight of the present moving vehicle corre-
sponds to the moving load of the previous section.

For the present case, the maximum deflection of
the beam without attachment, 2.498 mm, occurs at
V = 19.5 m/s; this velocity is slightly less than the
critical one for the case of a moving load. The max-
imum deflection is bigger with respect to the case of
the beam under moving load. This is the first proof for
the need of replacing a moving load with a more real-
istic model of the moving vehicle. Now the task is to
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find the best (optimal) DVA that is able to reduce the
beam vibration.

Having in mind the results of the previous section,
the best candidate should be the piecewise linear stiff-
ness DVA; in order to give a comprehensive view of
the performance, such a DVA is compared with those
having linear and cubic stiffness.

4.2.1 Performance of the monomial stiffness (linear
and cubic)

The optimal DVAs with linear and cubic stiffnesses are
found following the procedure outlined in the previous
section. The optimal linear DVA (location, d = 0.55L)
corresponds to k = 2120 N/m and λ = 0 N s/m (see
Fig. 12), it allows a reduction of the maximum beam
deflection by 6.35 % with respect to the bare beam,
i.e. 2.3393 mm max deflection; when the DVA is in
the middle of the beam, d = 0.50L, the optimum
is k = 2030 N/m, the maximum beam deflection is
2.3427 mm (6.22 % reduction), details are omitted for
the sake of brevity.

In [3], numerical results proved that the use of a vi-
bration absorber without dissipation leads to the best
vibration reduction (note that in [3] only moving loads
are considered); similar behaviors are found for the
moving vehicle as well, see Fig. 12.

Table 2 summarizes the results obtained assum-
ing that the viscous damping is λ = 0.1 N s/m (zero
damping is unrealistic): using a cubic nonlinear stiff-
ness, one is able to reduce the maximum beam deflec-
tion from 2.4980 mm (bare beam) to 2.3393 mm, i.e.
6.35 % reduction; the DVA is more effective compared
to the case of the beam under moving load. Figure 13
shows the optimal parameter search for nonlinear cu-
bic stiffness, the behavior is quite smooth, there is a
unique minimum and the region is flat.

Fig. 12 Moving vehicle. Verification of optimal damping for
linear absorber

Table 2 Maximum deflection approach: performance of the nonlinear DVA for the beam under moving vehicle, λ = 0.1 N s/m

Case Beam and vibration absorber condition Stiffness Maximum deflection
[mm]

Reduction
percentage

1 Bare beam 0 2.4980 –

2 Linear vibration absorber c1 = 2120 N/m 2.3393 6.35 %

3 Monomial cubic vibration absorber c3 = 3.5 × 109 N/m3 2.3031 7.80 %

4 Piecewise linear vibration absorber k = 28,000 N/m, 
 = 0.79 mm 2.2874 8.43 %

Fig. 13 Moving vehicle,
optimal cubic stiffness of
the vibration absorber
parameters: (a) optimal
stiffness; (b) optimal
location
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4.2.2 Performance of the piecewise linear stiffness

The nonlinear DVA having a piecewise linear stiffness
is now investigated. In order to find the optimal pair

 and k, a regular sampling is carried out; the posi-
tion of the attachment is d = 0.55L. Figures 14 and 15
show the maximum beam displacement versus 
 and
k; similar to the case of the beam under a moving load,

Fig. 14 Moving vehicle, maximum deflection vs. clearance 


and stiffness k of the piecewise linear stiffness; optimum set:
k = 28,000 N/m and 
 = 0.79 mm (2.2874 mm max deflection)

the piecewise linear vibration absorber is the most ef-
fective kind of DVA, with 8.43 % vibration reduction;
see Table 2 (Case 4). The behavior of the objective
function is similar to the case of a moving load (see
Fig. 10), i.e. it is regular, there are no local minima
and the optimum is located in a flat region.

4.3 Energy dissipation, optimal DVA under moving
vehicle excitation

Even though the maximum amplitude of vibration is
an extremely important indicator for evaluating the
structure lifetime, one should consider that after the
vehicle transit the structure undergoes several oscilla-
tion cycles; the number of cycles and the amplitude
depend on the dissipation; they greatly influence the
fatigue resistance.

The goal function of the present optimization is the
portion of the input energy absorbed by the DVA, η;
see (8) for definition. The excitation is a moving vehi-
cle; for the case of a moving load excitation, check [2].
Let us consider linear viscous damping and three types
of stiffness for the DVA; its location is d = 0.55L. The
moving vehicle velocity is constant, V = 19.5 m/s. In
Equation (8), t0 is L/V and t1 is set equal to 150 s,
other numerical data remain unaltered.

Fig. 15 Moving vehicle. Maximum deflection vs. clearance 
 and stiffness k of the piecewise linear stiffness; 3D representation
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Table 3 Energy approach: performance of the linear and nonlinear types of DVA stiffness for the beam under moving vehicle; damping
behavior is linear. The values inside brackets are for the case of a moving load from [3]

Case Vibration absorber
stiffness behavior

Optimal stiffness Optimal
damping

The portion of
input energy
absorbed by DVA

1 Linear stiffness c1 = 1170 N/m 6.95 N s/m 89.42 %

[900 N/m] [10.5 N s/m] [88.9 %]

2 Cubic stiffness c3 = 0.187 × 109 N/m3 17.50 N s/m 89.16 %

[c3 = 0.3 × 109 N/m3] [11 N s/m] [87.4 %]

3 Piecewise linear stiffness k = 1044 N/m, 
 = 0.205 mm 9.094 N s/m 89.49 %

Fig. 16 Moving vehicle, optimal DVA with cubic stiffness vs. η

The results of this section are summarized in Ta-
ble 3; there are two design variables: stiffness (c1 for
linear stiffness and c3 for cubic stiffness) and linear
damping, λ. For these two cases, the brute force op-

Fig. 17 Moving vehicle, optimal DVA with cubic damping
vs. η

timization is carried out. The number of samplings is
81 for each design variable. For the case of cubic stiff-
ness, the portion of input energy absorbed by the DVA,
η = η(λ, c3), is shown in Fig. 16.

In Fig. 17, the scenario for a DVA having cubic
dissipation is presented, the optimum gives 87 % of
the structural energy absorbed by the DVA when c1 =
860 N/m and λ3 = 4080 N s3/m3.

For the case of a piecewise linear stiffness, Case 3
in Table 3, there are three design variables: the stiff-
ness, k, the gap, 
, and the linear damping, λ. For this
case, the random optimization is carried out, the total
number of samplings is 20,000, details are omitted for
the sake of brevity.

The results in Table 3 show that the capabilities of
the investigated DVAs for absorbing input energy are
almost the same.
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Fig. 18 Moving vehicle, transient responses for the beam
and piecewise DVA: (dashed red line) beam deflection above
the DVA (x = 0.55L) [mm], (solid blue line) DVA mass de-
flection [mm], (dash–dot purple line) DVA spring elongation

u(t) = {y(0.55L, t)} − v [mm], (orange color) DVA mass ve-
locity (10−2) [m/s], (green and thick) DVA mass acceleration
[m/s2]; (a, c and e) under moving load; (b, d and f) under mov-
ing vehicle

5 Transient response, piecewise linear vibration
absorber

In order to give a clear explanation of the physical
behavior of the piecewise linear DVA, the transient

responses of the beam and the DVA are shown in
Fig. 18; time histories are presented both for the mov-
ing load and moving vehicle; the DVAs analyzed are:
Case 8 of Table 1, for the moving load; Case 4 of Ta-
ble 2, for the moving vehicle. Figures 18(a) and 18(b)
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show the displacement of the beam (x = 0.55L) and
the DVA mass. Details are presented in Figs. 18(c)
and 18(d); the piecewise linear spring elongations
(u(t) = y(0.55L, t) − v(t)) are shown as well. Fig-
ures 18(e) and 18(f) present the DVA mass velocities
and accelerations. Three interesting different condi-
tions deserve to be commented:

1. The absolute value of the DVA mass displacement
is less than the gap, |u| < 
 (in the case of the mov-
ing load 
 = 0.58 m and in the case of the moving
vehicle 
 = 0.79 m); there is no contact or force
acting on the mass, i.e. the system is in the dead
zone of the piecewise linear spring (note that the
damping force with respect to the stiffness force is
negligible). In this condition, the mass acceleration
(thick green line) is zero, the mass velocity (orange
line with diamonds) is constant and the mass dis-
placement (blue line) is linear.

2. The elongation u is greater than the gap, u > 
u;
the beam is moving down (down is positive), there
is contact and the DVA mass is pushed down. The
mass acceleration is positive (upward sharp peaks)
and the velocity increases suddenly.

3. When the elongation u is negative, but it exceeds
the gap (u < −
), there is contact and a force
pushes up the mass; the mass acceleration has a
downward sharp peak and the velocity decreases
suddenly.

The last two conditions happen for short periods
and the non-contact condition is dominant.

Note that at the beginning the DVA mass remains
steady (zero velocity), this is true until the elongation
reaches the gap, about t = 0.08 s. Initially, after each
contact, a subsequent contact happens in the opposite
direction, but later two similar contacts (same direc-
tion) can happen; this is due to the combination of the
beam and DVA mass dynamics, sometimes the restor-
ing force is not big enough to launch the mass across
the whole gap, the beam moves more quickly and a
“rebound” occurs. This situation is visible from mass
acceleration time history when two subsequent peaks
occur with the same direction.

6 Conclusions

In this paper, the performance of several kinds of non-
linear dynamic vibration absorbers is studied. Mono-

mial, polynomial and piecewise linear DVA are ap-
plied to a simply supported Euler–Bernoulli beam un-
der a transient moving load or a moving vehicle, in or-
der to reduce the beam stresses and increase structural
life.

Results show that, for the test cases considered,
the DVAs with essentially nonlinear stiffnesses hav-
ing higher power are more effective than the linear
one in reducing the maximum beam deflection; how-
ever, DVAs having piecewise linear stiffnesses are the
most effective both for moving loads and moving ve-
hicles. Moreover, for the case of the beam under tran-
sient moving vehicle, DVAs are slightly more effective
compared to the case of the moving load.

For the specific problem investigated in this paper,
we can claim that there is no evidence that nonlinear
DVAs are much better than linear ones, i.e. there is
an improvement, but it is not relevant for engineering
applications. It should be pointed out that the present
study is fully numeric; therefore, we cannot exclude
the possibility that in a remote and narrow region of
the parameter space or in the case of a specific kind of
excitations, the nonlinear DVAs could exhibit surpris-
ingly good performances in attenuating the vibration
of the main structure. However, our feeling is that such
a remote possibility is irrelevant from an engineering
point of view.

In the future, the present analyses could be im-
proved by considering non-symmetric nonlinear stiff-
ness and/or damping, distribution of DVAs over the
structure with a possibility of cross-interactions. Of
course, the increment of the complexity would lead to
an incommensurably larger number of test cases to an-
alyze; therefore, more sophisticated optimization tech-
niques would be needed.
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