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Abstract We consider the low energy dynamics of the
double pendulum. Low energy implies energies close
to the critical value required to make the outer pen-
dulum rotate. All the known interesting results for the
double pendulum are at high energies, that is, ener-
gies higher than that required to make both pendu-
lums rotate. We show that interesting behavior can
occur at low energies as well by which we mean en-
ergies just sufficient to make the outer pendulum ro-
tate. A harmonic balance and the Lindstedt–Poincare
analysis at the low energies establish that at small, but
finite amplitude; the two normal modes behave differ-
ently. While the frequency of the “in-phase” mode is
almost unchanged with increasing amplitude, the fre-
quency of the “out-of-phase” mode drops sharply. Nu-
merical analysis verifies this analytic result and since
the perturbation theory indicates a mode softening for
the out-of-phase mode at a critical amplitude, we did
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a careful numerical analysis of the low energy region
just above the threshold for onset of rotation for the
outlying pendulum. We find chaotic behavior, but the
chaos is a strong function of the initial condition.
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1 Introduction

The double pendulum has been widely studied in liter-
ature from different points of view [1–7], and it would
appear that its scope has been exhausted. In a large
number of the investigations carried out, the impor-
tant parameter that has been singled out is the total
energy E of the system, which is a conserved quan-
tity, and hence extremely useful. While the really low
energy dynamics where linearization holds would lead
to motion on a torus, complications will set in as the
amplitude is increased. This can lead to persistence
of the torus (KAM) or breaking of torus according to
the Poincare–Birkhoff scenario. The outcome should
be sensitive to initial conditions and has not been ex-
plored for the double pendulum in the low energy
regime. Calculations generally use canonical pertur-
bation theory in action-angle variables and is difficult
to implement for the double pendulum. Consequently,
we decided to use a more easily implementable ap-
proach (Lindstedt–Poincare method and harmonic bal-
ance) for this system to see if initial conditions do
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Fig. 1 The “in-phase” and “out-of-phase” motions of a double
pendulum

make a difference. Having found that they do, we nu-
merically integrated the full system to carry out a sys-
tematic analysis.

We would like to focus here on the two normal
modes of the double oscillator when it undergoes
small amplitude motion. These two modes are shown
in Fig. 1. These two modes, which can be designated
as “in-phase” and “out-of-phase,” will be the backbone
of our work. We will concentrate on initial conditions,
which are these normal modes even when the angu-
lar amplitude becomes large and will see in numeri-
cal integration that these two classes of initial condi-
tions have strikingly different behaviors. This is also
reflected in an analytic calculation of the amplitude de-
pendence of the normal modes which are done by both
harmonic balance and the Lindstedt–Poincare tech-
nique.

In Sect. 2, we recall the salient features of the dou-
ble pendulum and in Sect. 3 explain the harmonic
balance and the Lindstedt–Poincare technique. This
is necessary because we will adopt these techniques
for the two degree-of-freedom case that we have here.
While Sect. 4 describes our harmonic balance ap-
proach, Sect. 5 describes the Lindstedt–Poincare tech-
nique. Numerical results are presented in Sect. 6, and
a short conclusion is in Sect. 7.

2 Double pendulum recalled

In this section, we recall briefly the equations of mo-
tion of the double pendulum, which will be of con-
stant use in the subsequent sections. The double pen-
dulum consists of two masses (m1 and m2 in general)
attached to two massless rigid rods of length l1 and
l2, respectively. The rod of length l2 is attached to the
mass m1 and the rod of length l1 is attached to a fixed
support as shown in Fig. 2.

Fig. 2 A standard double
pendulum

The Lagrangian of the system is found to be

L = 1

2
(m1 + m2)l

2
1 θ̇2

1 + 1

2
m2l

2
2 θ̇2

2

+ m2l1l2θ̇1θ̇2 cos(θ1 − θ2) + m1gl1 cos θ1

+ m2gl1 cos θ1 + m2gl2 cos θ2 (2.1)

As is often the case, one simplifies the subsequent al-
gebraic complications by setting m1 = m2 = m and
l1 = l2 = l. The Lagrangian now becomes

L = ml2θ̇2
1 + 1

2
ml2θ̇2

2 + ml2 cos(θ1 − θ2)θ̇1θ̇2

+ 2mgl cos θ1 + mgl cos θ2 (2.2)

The equations of motion are

2θ̈1 + θ̈2 cos(θ1 − θ2) = −2Ω2 sin θ1 − θ̇2
2 sin(θ1 − θ2)

(2.3)

and

θ̈1 cos(θ1 − θ2) + θ̈2 = −Ω2 sin θ2 − θ̇2
1 sin(θ1 − θ2)

(2.4)

where Ω2 = g
l

is the basic frequency unit in the prob-
lem. We can cast (2.3) and (2.4) in the form

θ̈1 = 1

1 + sin2(θ1 − θ2)

[−2Ω2 sin θ1 − sin(θ1 − θ2)

× [
θ̇2

2 + θ̇2
1 cos(θ1 − θ2)

]

+ Ω2 sin θ2 cos(θ1 − θ2)
]

(2.5)

θ̈2 = 1

1 + sin2(θ1 − θ2)

[−2Ω2 sin θ2 + sin(θ1 − θ2)

× [
2θ̇2

1 + θ̇2
2 cos(θ1 − θ2)

]

+ 2Ω2 sin θ1 cos(θ1 − θ2)
]

(2.6)
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For small amplitude motion, we get the linearized
equations of motion from (2.3) and (2.4) as

2θ̈1 + θ̈2 + 2Ω2θ1 = 0 (2.7)

θ̈1 + θ̈2 + Ω2θ2 = 0 (2.8)

Trying the solution,

θ1 = A cosωt (2.9)

θ2 = B cosωt (2.10)

leads to

(
2Ω2 − 2ω2)A − ω2B = 0 (2.11)

−ω2A + (
Ω2 − ω2)B = 0 (2.12)

The consistency condition yields,

(
Ω2 − ω2) − ω4

2
= 0

and thus we get the two roots

ω2
1 = (2 − √

2)Ω2 (2.13)

ω2
2 = (2 + √

2)Ω2 (2.14)

corresponding to the two normal modes of motion. For
the mode whose frequency is ω2

1, we see from (2.11)
that

A = B√
2

(2.15)

while for the mode with frequency ω2
2, we see

A = − B√
2

(2.16)

The lower frequency mode is such that the two pendu-
lums oscillate in phase while for the higher frequency
mode the oscillations are out of phase.

At this point, it is worth pointing out that the other
fixed points of the system (±π,0), (0,±π), (π,π) are
all unstable. The fixed point (0,π) correspond to an
energy of E = 2mgl. Straightforward calculation re-
veals that it is the out of phase mode, which is un-
stable. This leads us to assume that the out of phase
mode will be sensitive to increasing amplitude of os-
cillation and with this in mind we address the issue of

what happens to these two fundamental frequencies at
higher amplitudes of motion. This will be the subject
of Sects. 4 and 5 where we use both harmonic balance
and the Lindstedt–Poincare perturbation theory to look
at the issue.

For completeness, we give the results in the Hamil-
tonian formalism as well. From the Lagrangian of
(2.2), we get the two momenta as

p1 = 2ml2θ̇1 + ml2 cos(θ1 − θ2)θ̇2 (2.17)

p2 = ml2θ̇2 + ml2 cos(θ1 − θ2)θ̇1 (2.18)

This allows us to solve for θ̇1 and θ̇2 in terms of p1 and
p2, and hence using H = p1θ̇1 + p2θ̇2 − L we get,

H =
p2

1
2 + p2

2 − p1p2 cos(θ1 − θ2)

ml2[1 + sin2(θ1 − θ2)]
− 2mgl cos θ1 − mgl cos θ2 (2.19)

In writing down the total energy of the system, one
very often adds a constant to the Hamiltonian and
writes

E =
p2

1
2 + p2

2 − p1p2 cos(θ1 − θ2)

ml2[1 + sin2(θ1 − θ2)]
+ 2mgl(1 − cos θ1) + mgl(1 − cos θ2)

= ml2θ̇2
1 + 1

2
ml2θ̇2

2 + ml2 cos(θ1 − θ2)θ̇1θ̇2

+ 2mgl(1 − cos θ1) + mgl(1 − cos θ2) (2.20)

We note that if the lower(outer) pendulum has to go
around completely, then one need a minimum en-
ergy of 2mgl, if the upper(inner) pendulum has to go
around completely then a minimum energy of 4mgl is
required and a total energy of 6mgl is required to make
both the pendulums go around.

We note that if we pass to the limit g → 0, then
the Hamiltonian depends on θ1 − θ2 instead of the two
angles θ1 and θ2. Consequently there is another “an-
gular momentum” like conservation law and with two
conserved quantities the problem is integrable in this
limit. Obviously, as shown before, it is also integrable
in the low amplitude situation. The intermediate region
is where interesting dynamics can occur. Our point in
this paper is that in the unsuspecting low energy re-
gion there will be initial conditions, which make the
dynamics nontrivial.
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3 Harmonic balance and Lindstedt–Poincare
recalled

For a single degree-of-freedom systems, harmonic bal-
ance [8], and the Lindstedt–Poincare [9] technique
yield the same answer provided the harmonic balance
is also being used in the perturbative limit. To illustrate
our point, we consider the anharmonic oscillator

ẍ + ω2x = −λx3 (3.1)

To examine the problem in the harmonic balance
method, we expand

x = A1 cosΩt + A3 cos 3Ωt + · · · (3.2)

where Ω is the unknown frequency, which needs to be
found along with the unknown coefficients A1 and A3.
In the above, cos 2Ωt is absent because of the form of
nonlinearity. Inserting the expansion in (3.1), we get

−Ω2A1 cosΩt − 9Ω2A3 cos 3Ωt + · · ·
+ ω2[A1 cosΩt + A3 cos 3Ωt + · · · ]

= −λ[A1 cosΩt + A3 cos 3Ωt + · · · ]3

= −λA3
1 cos3 Ωt − 3λA2

1A3 cos2 Ωt cos 3Ωt

− 3λA2
3A1 cos2 3Ωt cosΩt − λA3

3 cos3 3Ωt

+ · · · = −λA3
1

(
3

4
cosΩt + 1

4
cos 3Ωt

)

− 3

2
λA2

1A3(1 + cos 2Ωt) cos 3Ωt

− 3

2
λA2

3A1(1 + cos 6Ωt) cosΩt

− λ

4
A3

3(3 cos 3Ωt + cos 9Ωt) + · · · (3.3)

Equating separately the coefficient of cosΩt and
cos 3Ωt from either side of the equation, we get

(
ω2 −Ω2)A1 = −3

4
λA3

1 − 3

4
λA2

1A3 − 3

2
λA1A

2
3 (3.4)

(
ω2 − 9Ω2)A3 = −λ

4
A3

1 − 3

2
λA2

1A3 − 3

4
λA3

3 (3.5)

From (3.4), we have

Ω2 = ω2 + 3

4
λA2

1 + 3

4
λA3A1 + 3

2
λA2

3 (3.6)

and using this in (3.5), we get
[

8ω2 + 27

4
λA2

1 + 27

4
λA3A1 + 27

2
λA2

3

]
A3

= λ

4
A3

1 + 3

2
λA2

1A3 + 3

4
λA3

3 (3.7)

To make further progress, we need to write the expres-
sion for energy. This is seen to be

E = 1

2
mẋ2 + 1

2
mω2x2 + 1

4
mλx4 (3.8)

Since E is a constant of motion, it can be evaluated by
averaging over a time period, and thus

E = 1

2
m

〈
ẋ2〉 + 1

2
mω2〈x2〉 + 1

4
mλ

〈
x4〉 (3.9)

We can evaluate the average with the solutions given
in (3.2) and it follows that

E = 1

4
mΩ2A2

1 + 1

4
mω2A2

1

+ higher order terms in A1,A3, . . . (3.10)

In principle now, we have three Eqs. (3.6), (3.7), and
(3.10) in A1 and A3 expressing them in terms of E and
Ω . We eliminate A1 and A3 from these three equations
and then obtain Ω as a function of ω,λ and E. We
can keep an arbitrary number of harmonics and follow
this procedure. It should immediately be clear that for
systems with two degrees-of-freedom written as

ẍ1 = −a11x1 − a12x2 + f (x1, x2)

ẍ2 = −a21x1 − a22x2 + g(x1, x2)

where f (x1, x2) and g(x1, x2) are nonlinear functions,
we are going to have flexibility of approach in har-
monic balance since the energy E is going to be some
function of x1, x2 which is not related to f and g. The
frequencies are now no longer functions of the energy
but the individual amplitudes.

We give explicit answers for just one harmonic, i.e.,
we set A3 = 0 in (3.2). Now (3.6) becomes

Ω2 = ω2 + 3

4
λA2

1 (3.11)

and (3.10) becomes

E = 1

4
mA2

1

(
Ω2 + ω2) (3.12)

This leads to

Ω2 = ω2 + 3λE

m(Ω2 + ω2)
(3.13)
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We notice immediately that harmonic balance is ca-
pable of yielding a nonperturbative answer (albeit ap-
proximate). If we stick to the perturbative answer (i.e.,
λ � 1), then we notice that A3 is O(λ) from (3.7) and
correct to O(λ) obtained from (3.6)

Ω2 = ω2 + 3

4
λA2

1 (3.14)

This is independent of the existence of higher harmon-
ics and is an exact perturbation theory result.

We now recall the Lindstedt–Poincare technique,
which is by construction a perturbation theory. The
correct frequency Ω will have an expansion of the
form

Ω2 = ω2 + λω2
1 + λ2ω2

2 + · · · (3.15)

and in terms of Ω , (3.1) reads

ẍ + Ω2x = −λx3 + λω2
1x + λ2ω2

2x + · · · (3.16)

We now expand

x = x0 + λx1 + λ2x2 + · · · (3.17)

and inserting this in (3.16) at different order of λ ob-
tain

ẍ0 + Ω2x0 = 0 (3.18)

ẍ1 + Ω2x1 = −x3
0 + ω2

1x0 (3.19)

ẍ2 + Ω2x2 = −3x2
0x1 + ω2

1x1 + ω2x0 (3.20)

and so on. Solving for x0, we get

x0 = A cosΩt (3.21)

and inserting this in (3.19), we get

ẍ1 + Ω2x1 = −A3

4
(3 cosΩt + cos 3Ωt)

+ ω2
1A cosΩt (3.22)

The cosΩt term on the right-hand side of (3.22) intro-
duces a spurious resonance. To keep the theory finite
this resonance needs to be suppressed and this can be
done by the choice

ω2
1 = 3

4
A2 (3.23)

leading to

Ω2 = ω2 + 3

4
λA2 + O

(
λ2) (3.24)

If we are dealing with a system with more than one
degree-of-freedom [10, 11], a normal mode decom-
position would have to be done before implement-
ing this step. This is in exact agreement with the per-
turbation theory answer of (3.14) obtained from har-
monic balance. In the next section, we will apply har-
monic balance to the two degree-of-freedom system
[12–17]. It should be noted that for the two degree-
of-freedom system, the harmonic balance method and
the Lindstedt–Poincare procedure will give the same
answer only if the harmonic balance is done after
expressing the equations of motion in terms of the
normal modes. A good feature of the harmonic bal-
ance procedure is that it can be applied without going
through the exercise of shifting to normal modes.

4 Harmonic balance for the double pendulum

This section and the next will deal with perturbation
theory and for that we will restrict our discussion to
angular amplitudes θ1 and θ2, which are much smaller
than π . Noting that

sin θ ≈ θ − θ3

6

gives a 7 % error at θ = π
2 , we proceed to work to this

order to get the first correction to the linear motion.
Clearly, what we get from this procedure should be
reliable for angles up to about π

2 . With this in mind, we
expand the trigonometric function to write (2.3) and
(2.4) as

2θ̈1 + θ̈2

[
1 − (θ1 − θ2)

2

2

]
= −2Ω2

(
θ1 − θ3

1

6

)

− θ̇2
2 (θ1 − θ2) (4.1)

and

θ̈1

[
1 − (θ1 − θ2)

2

2

]
+ θ̈2 = −Ω2

(
θ2 − θ3

2

6

)

+ θ̇2
1 (θ1 − θ2) (4.2)
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A harmonic balance analysis at this point would re-
quire the expansion

θ1 = A1 cosωt + A2 cos 3ωt + · · · (4.3)

θ2 = B1 cosωt + B2 cos 3ωt + · · · (4.4)

The second harmonic is absent because of the cubic
nonlinearity. To get the first reasonable answer, we
will set A2 = B2 = 0 and work with the lowest har-
monic. We insert the assumed form of θ1 and θ2 in
(4.1) and obtain

−2ω2A cosωt − ω2B cosωt

[
1 − 1

2
(A − B)2 cos2 ωt

]

= −2Ω2
[
A cosωt − A3

6
cos3 ωt

]

− ω2B2(A − B) sin2 ωt cosωt (4.5)

As done earlier, we expand cos3 ωt in power of cosωt

and cos 3ωt and equate the coefficient of cosωt on ei-
ther side of Eq. (4.5) to obtain after some algebra

A

[
2Ω2 − 2ω2 − Ω2 A2

4
− ω2 B2

2

]

+ B

[
−ω2 + 3ω2 A2

8
+ ω2 B2

8

]
= 0 (4.6)

We now treat (4.2) identically and obtain

A

[
−ω2 + ω2 A2

8
+ 3ω2 B2

8

]

+ B

[
Ω2 − ω2 − ω2 A2

2
− Ω2 B2

8

]
= 0 (4.7)

At this point, we define our scheme for implementing
harmonic balance in this system with two degrees-of-
freedom. This is a variation of a technique described
in [10]. We look at the terms in the square brackets
in Eqs. (4.6) and (4.7) and decide to treat the ampli-
tudes appearing there as initial conditions which can
be taken to be parameters, which modify the frequency
of oscillation. Accordingly, we still treat Eqs. (4.6) and
(4.7) as two linear conditions on the amplitude of os-
cillation A and B and for consistency demand that
∣
∣
∣
∣
∣
2Ω2 − 2ω2 − Ω2 A2

4 − ω2 B2

2 −ω2 + 3ω2 A2

8 + ω2 B2

8
−ω2 + ω2 A2

8 + 3ω2 B2

8 Ω2 − ω2 − Ω2 B2

8 − ω2 A2

2

∣
∣
∣
∣
∣

= 0 (4.8)

In opening the determinant, we pay heed to the fact
that terms quartic in A and B have not been included at
the outset (two term expansion for sines and cosines),
and hence cannot be included now. Thus,

(
ω − Ω2)2 − ω4

2
= Ω4

8

(
A2 + B2)

− ω4

4

(
3A2 + 2B2) + Ω2ω2

8

(
3A2 + B2) (4.9)

We treat the right-hand side of (4.9) as small, i.e., we
want to introduce it as a first correction to the fre-
quency of the linearized motion. Writing this term as
ε, we have two possible values of ε — ε1 correspond-
ing to the linearized frequency ω2

1 = 2 − √
2 and ε2

corresponding to the linearized ω2
2 = 2 + √

2. The fre-
quencies ω1 and ω2 with the effect of amplitude in-
cluded become

ω2
1 = (2 − √

2)Ω2 − ε1√
2Ω2

(4.10)

ω2
2 = (2 + √

2)Ω2 + ε2√
2Ω2

(4.11)

and

ε1 = Ω4
[

1

8

(
A2 + B2) − (2 − √

2)2

4

(
3A2 + 2B2)

+ (2 − √
2)

8

(
3A2 + B2)

]

= Ω4
[
(21

√
2 − 29)

8
A2 + (15

√
2 − 21)

8
B2

]

(4.12)

ε2 = Ω4
[

1

8

(
A2 + B2) − (2 + √

2)2

4

(
3A2 + 2B2)

+ (2 + √
2)

8

(
3A2 + B2)

]

= Ω4
[
− (21

√
2 + 29)

8
A2

− (15
√

2 + 21)

8
B2

]
(4.13)

Thus, we find

ω2
1 = (2 − √

2) − 0.04A2 − 0.017B2 (4.14)

ω2
2 = (2 + √

2) − 5.187A2 − 3.8B2 (4.15)
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We note two important things:

1. The frequencies are determined by the initial con-
dition and not the energy. For the same energy, we
can alter the initial condition and get different fre-
quencies.

2. While the frequency of the first mode (in-phase vi-
bration) is virtually unchanged with amplitude, the
frequency of the second mode actually goes down
to zero suggesting an instability for a set of initial
conditions.

This is the picture that we get from the method of har-
monic balance. In the next section, we will look at
the problem from the point of view of the Lindstedt–
Poincare perturbation theory.

5 Lindstedt–Poincare for the double pendulum

In order to apply the Lindstedt–Poincare, it is essential
to expand the trigonometric functions in powers of the
arguments and also to use the normal coordinates. As
a first step, we will expand (2.5) and (2.6) and write up
to cubic nonlinearity.

θ̈1 = Ω2(−2θ1 + θ2) + Ω2(θ1 − θ2)
2
(

2θ1 − 3

2
θ2

)

+ Ω2
(

θ3
1

3
− θ3

2

6

)
− (

θ̇2
1 + θ̇2

2

)
(θ1 − θ2) (5.1)

and

θ̈2 = Ω2(−2θ2 + 2θ1) + Ω2(θ1 − θ2)
2(2θ2 − 3θ1)

+ Ω2

3

(
θ3

2 − θ3
1

) + (
2θ̇2

1 + θ̇2
2

)
(θ1 − θ2) (5.2)

The normal modes as explained in Sect. 2 are given by

x1 = θ1 + 1√
2
θ2 (5.3)

x2 = θ1 − 1√
2
θ2 (5.4)

from which it follows that

θ1 = 1

2
(x1 + x2) (5.5)

and

θ2 = 1√
2
(x1 − x2) (5.6)

After long and tedious algebra using (5.1), (5.2), and
(5.5), (5.6) we arrive at

ẍ1

Ω2
+ (2 − √

2)x1 = f1(x1, x2)

= (2 − √
2)

48

[
3x3

1 − 3x2
1x2 + 9x1x

2
2 − x3

2

]

− (3 − 2
√

2)

4
√

2
x1

[
(
√

2 − 1)x1 − (
√

2 + 1)x2
]2

+ 1

8Ω2

[
(3 − 2

√
2)

(
ẋ2

1 + ẋ2
2

) − 2ẋ1ẋ2
]

× [
(
√

2 − 1)x1 − (
√

2 + 1)x2
]

(5.7)

and

ẍ2

Ω2
+ (2 + √

2)x2 = f2(x1, x2)

= (2 + √
2)

48

[
3x3

2 − 3x1x
2
2 + 9x2

1x2 − x3
1

]

+ (3 + 2
√

2)

4
√

2
x2

[
(
√

2 − 1)x1 − (
√

2 + 1)x2
]2

+ 1

8Ω2

[
(3 + 2

√
2)

(
ẋ2

1 + ẋ2
2

) − 2ẋ1ẋ2
]

× [
(
√

2 − 1)x1 − (
√

2 + 1)x2
]

(5.8)

To implement the Lindstedt–Poincare technique on
this two degree-of-freedom system, we expand

x1 = x10 + x11 + x12 + · · · (5.9)

x2 = x20 + x21 + x22 + · · · (5.10)

ω2
1 = (2 − √

2) + ω2
11 + · · · (5.11)

ω2
2 = (2 + √

2) + ω2
21 + · · · (5.12)

where we have not shown in explicit expansion param-
eter, but it is implied that x11, x21 are determined by
the third power of the amplitudes, while x12, x22 are
determined by the fifth power with the amplitudes A

and B set by

x10 = A cosω1t (5.13)

x20 = A cosω1t (5.14)
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The equations of motion (5.7) and (5.8) can be written
as

ẍ1

Ω2
+ ω2

1x1 = f1(x1, x2) + ω2
11x1 + ω2

12x1 + · · ·
(5.15)

ẍ2

Ω2
+ ω2

2x2 = f2(x1, x2) + ω2
21x1 + ω2

22x1 + · · ·
(5.16)

With the expansion of Eq. (5.9) and (5.10) introduced
in the above equations and terms separated by order,
we have to the first nontrivial order

ẍ10 + ω2
1x10 = 0 (5.17)

ẍ11 + ω2
1x11 = f1(x10, x20) + ω2

11x10 (5.18)

ẍ20 + ω2
2x20 = 0 (5.19)

ẍ21 + ω2
2x21 = f2(x10, x20) + ω2

21x20 (5.20)

From (5.17) and (5.19), we obtain (5.13) and (5.14),
where we have imposed the initial conditions x1(t =
0) = A, ẋ1(t = 0) = 0, x2(t=0)=B and ẋ2(t = 0)=0.
We now turn to (5.18) and (5.20). If we evaluate
f1(x10, x20) and f2(x10, x20), we will find terms like
cosω1t , cosω2t , cos 3ω1t , cos 3ω2t , cos(2ω1 ± ω2)t ,
cos(ω1 ± 2ω2)t . If we are looking at (5.18), then the
terms on the right-hand side, which contain cosω1t are
resonance inducing, and hence dangerous, while for
(5.20), it is the terms of the form cosω2t , which are
dangerous. In order to solve for x11 and x21, we need
to remove these terms and this is done by the appro-
priate choice of ω2

11 and ω2
21. We find, after straight-

forward algebra,

ω2
1 = (2 − √

2) + 95
√

2 − 136

64
A2 + 8 − 5

√
2

32
B2

≈ (2 − √
2) − 0.03A2 + 0.03B2 (5.21)

ω2
2 = (2 + √

2) + 8 + 5
√

2

32
A2 − 95

√
2 + 136

64
B2

≈ (2 + √
2) + 0.5A2 − 4.2B2 (5.22)

In this case of two degree-of-freedom system [18], we
see that the result of the harmonic balance and the
Lindstedt-Poincare technique are not identical. How-
ever, their content are similar in that for the first mode

there is no visible effect of amplitude on the frequency
while there is a strong effect in the case of the sec-
ond mode. The primary difference between (5.22) and
(4.15) is in the coefficient of A2 term. The primary
point of Sects. 4 and 5 is that the out of phase mode
suffers an instability at a finite amplitude. The pertur-
bation theory can only be indicative. So, in the next
section, we carry out a numerical investigation to see
if this indication is true or not.

6 Numerical results

The two equations of motions (2.5) and (2.6) can be
converted into four first-order differential equations
and then solved numerically using the fourth-order
Runge–Kutta method [19]. The differential equation
is given by

θ̇1 = φ1 = f1(θ1, θ2, φ1, φ2)

θ̇2 = φ2 = f2(θ1, θ2, φ1, φ2)

φ̇1 = 1

1 + sin2(θ1 − θ2)

[−2Ω2 sin θ1 − sin(θ1 − θ2)

× [
φ2

2 + φ2
1 cos(θ1 − θ2)

]

+ Ω2 sin θ2 cos(θ1 − θ2)
]

= f3(θ1, θ2, φ1, φ2)

φ̇2 = 1

1 + sin2(θ1 − θ2)

[−2Ω2 sin θ2 + sin(θ1 − θ2)

× [
2φ2

1 + φ2
2 cos(θ1 − θ2)

]

+ 2Ω2 sin θ1 cos(θ1 − θ2)
]

= f4(θ1, θ2, φ1, φ2) (6.1)

where the parameters g and l have been taken to be 1
implying Ω = 1.

For initial condition θ1 = 0.01, θ2 = 0.01
√

2, θ̇1 =
θ̇2 = 0,E ≈ 0.02, we have Figs. 3 and 4.

For initial condition θ1 = 0.01, θ2 = −0.01
√

2,
θ̇1 = θ̇2 = 0,E ≈ 0.02, we have Figs. 5 and 6.

For initial condition θ1 = 0.8, θ2 = 0.8
√

2, θ̇1 =
θ̇2 = 0, we have Figs. 7 and 8, while for θ1 = 0.8, θ2 =
−0.8

√
2, θ̇1 = θ̇2 = 0 Figs. 9 and 10 both having en-

ergy E = 1.18.
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Fig. 3 Time series of θ2

Fig. 4 Frequency spectrum of θ2

Fig. 5 Time series of θ2

Fig. 6 Frequency spectrum of θ2

Fig. 7 Phase plot of θ2 vs. θ1

Fig. 8 Frequency spectrum of θ2
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Fig. 9 Phase plot of θ2 vs. θ1

Fig. 10 Frequency spectrum of θ2

Fig. 11 Phase plot of θ2 vs. θ1

Fig. 12 Frequency spectrum of θ2

Fig. 13 Phase plot of θ2 vs. θ1

From the above set of figures, the following facts
emerge:

1. For very low amplitudes, the motion is linearized
in the sense that a pure in-phase or out-of-phase
initial condition remains in-phase or out-of-phase
giving a periodic trace as the phase portrait. The

angular frequencies are found to be
√

2 − √
2 and√

2 + √
2 as expected.

2. As the amplitude increases, the motion even for a
“pure” initial conditions lie on a torus because the
other mode is excited through the nonlinearity. The
existence of two frequencies is seen in the spec-
trum.

3. At finite amplitudes, we see that the “in-phase”
mode frequency hardly changes with amplitude
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Fig. 14 Frequency spectrum of θ2

Fig. 15 Phase plot of θ2 vs. θ1

while frequency of the “out-of-phase” mode de-
crease in agreement with the results obtained from
the perturbative calculations. For example, the pri-
mary angular frequency for the former in Fig. 8 is
0.722 as opposed to 0.765, which is the angular fre-
quency for the linearized motion while for the latter
in Fig. 10 it is 1.099 as opposed to 1.848, which is
for the linearized motion.

For a further increase in amplitude corresponding to
an energy exceeding 2mgl, the dynamics changes
drastically and that is shown in Figs. 11 and 12,
which correspond to initial conditions θ1 = 1.16, θ2 =
1.16

√
2, θ̇1 = θ̇2 = 0, and Figs. 13 and 14, which cor-

respond to initial conditions θ1 = 1.16, θ2 = −1.16
√

2,
θ̇1 = θ̇2 = 0 with E ≈ 2.27.

Fig. 16 Frequency spectrum of θ2

The characteristics of this energy region is that dif-
ferent initial conditions with same energy show dif-
ferent dynamic behavior. The “in-phase” initial con-
ditions remain to be quasiperiodic while the “out-of-
phase” show chaotic behavior, which is evident from
the phase plot and the frequency spectrum. The Lya-
punov exponent has been found out to be almost zero
for the former initial conditions while positive (>0)
for the latter.

However, it is possible for a pure initial condition to
produce a mixed state at those amplitudes, and hence
it is possible that an “in-phase” initial condition can
lead to chaotic behavior and this is shown in Figs. 15
and 16, which corresponds to initial conditions θ1 =
1.1, θ2 = 1.1

√
2, θ̇1 = θ̇2 = 0, and in Figs. 17 and 18,

which correspond to initial conditions θ1 = 1.1, θ2 =
−1.1

√
2, θ̇1 = θ̇2 = 0 both having E ≈ 2.08

7 Conclusion

For the low energy oscillations, both harmonic balance
and the Lindstedt–Poincare techniques reveal the im-
portance of initial conditions in the dynamics of a dou-
ble pendulum. For large amplitude, the frequency of
the oscillator has amplitude dependence, which is dif-
ferent for the two modes. The frequency for the “out-
of-phase” mode has been seen to be strongly initial
condition dependent than that of the “in-phase” mode.
With the increase in amplitude the “out-of-phase”
rapidly develops small frequencies oscillations, which
makes the motion chaotic while the “in-phase” mode
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Fig. 17 Phase plot of θ2 vs. θ1

Fig. 18 Frequency spectrum of θ2

is able to sustain quasiperiodic behavior for the same
energy other than some initial conditions where the
mixing of the modes have an appreciable effect on the
dynamics causing it to behave chaotically. Numerical
investigation gives an estimate of the energy domain
to be between 2mgl and 2.5mgl for which the above
dynamics hold.

Acknowledgements Jyotirmoy Roy was supported by the
National Initiative on Undergraduate Science (NIUS) under-
taken by the Homi Bhaba Centre for Science Education—Tata
Institute of Fundamental Research (HBCSE-TIFR), Mumbai,
India.

References

1. Shinbrot, T., Grebogi, C., Wisdom, J., Yorke, J.A.: Chaos
in a double pendulum. Am. J. Phys. 60, 491–499 (1992)

2. Bender, C.M., Feinberg, J., Hook, D.W., Weir, D.J.:
Chaotic systems in a complex phase space. Pramana—J.
Phys. 73, 453–470 (2009)

3. Sartorelli, J.C., Lacarbonara, J.: Parametric resonances in a
base-excited double pendulum. Nonlinear Dyn. 69, 1679–
1692 (2012)

4. Liang, Y., Feeny, B.F.: Parametric identification of a chaotic
base-excited double pendulum experiment. Nonlinear Dyn.
52, 181–197 (2008)

5. Stachowiak, T., Okada, T.: A numerical analysis of chaos in
the double pendulum. Chaos Solitons Fractals 29, 417–422
(2006)

6. Cross, R.: A double pendulum swing experiment: in search
of a better bat. Am. J. Phys. 73, 330–339 (2005)

7. Cross, R.: A double pendulum model of tennis strokes. Am.
J. Phys. 79, 470–476 (2011)

8. Jordan, D.W., Smith, P.: Nonlinear Ordinary Differential
Equations: An Introduction for Scientists and Engineers.
Oxford University Press, Oxford (1977)

9. Landau, L.D., Lifshitz, E.M.: Mechanics. Pergamon Press,
Oxford (1960)

10. Rand, R.: Lecture notes on nonlinear vibration, ver-
sion 53, pp. 72–76. (2012). eCommons@Cornell.
http://hdl.handle.net/1813/28989

11. Chen, Y.M., Liu, J.K.: A new method based on the har-
monic balance method for nonlinear oscillators. Phys. Lett.
A 368, 371–378 (2007)

12. Chen, Y.M., Liu, J.K.: Elliptic harmonic balance method
for two degree-of-freedom self-excited oscillators. Com-
mun. Nonlinear Sci. Numer. Simul. 14, 916–922 (2009)

13. Szemplinska-Stupnicka, W.: The generalized harmonic bal-
ance method for determining the combination resonance in
the parametric dynamic systems. J. Sound Vib. 58, 347–361
(1978)

14. Hatwal, H., Mallik, A.K., Ghosh, A.: Forced nonlinear os-
cillations of an autoparametric system—part 1: periodic re-
sponses. J. Appl. Mech. 50, 657–662 (1983)

15. Hatwal, H., Mallik, A.K., Ghosh, A.: Forced nonlinear os-
cillations of an autoparametric system—part 2: chaotic re-
sponses. J. Appl. Mech. 50, 663–668 (1983)

16. Vakakis, A.F., Rand, R.: Normal modes and global dynam-
ics of a two-degree-of-freedom non-linear system—I. Low
energies. Int. J. Non-Linear Mech. 27, 861–874 (1992)

17. Vakakis, A.F., Rand, R.: Normal modes and global dy-
namics of a two-degree-of-freedom non-linear system—
II. High energies. Int. J. Non-Linear Mech. 27, 875–888
(1992)

18. Chen, S.H., Cheung, Y.K.: A modified Lindstedt–Poincare
method for a strongly non-linear two degree-of-freedom
system. J. Sound Vib. 193, 751–762 (1996)

19. Antia, H.M.: Numerical Methods for Scientists and Engi-
neers. Tata McGraw-Hill, New Delhi (1995)

http://hdl.handle.net/1813/28989

	Role of initial conditions in the dynamics of a double pendulum at low energies
	Abstract
	Introduction
	Double pendulum recalled
	Harmonic balance and Lindstedt-Poincare recalled
	Harmonic balance for the double pendulum
	Lindstedt-Poincare for the double pendulum
	Numerical results
	Conclusion
	Acknowledgements
	References


