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Abstract Both the rotationally asymmetric inertia
and transverse crack frequently appear in the rotor sys-
tem. The parametric excitations induced by this two
features cause instability and severe vibration under
certain operating conditions. Thus, the parametric in-
stability of a Jeffcott rotor with asymmetric disk and
open transverse crack is studied analytically. The vi-
bration equations of four degrees-of-freedom of the
system are established, and the stiffness coefficients
of cracked rotor shaft are derived based upon the com-
pliance method and strain energy release rate method.
Then, utilizing the harmonic balance method and Tay-
lor expansion technique, the unstable widths of simple
and combination instability regions (SIR and CIR) are
solved approximately. For a practical rotor system, the
approximate unstable widths are verified by the Flo-
quet numerical analysis. The effects of crack depth
and position upon the unstable widths are discussed,
and the conditions for zero unstable points (ZUPs) are
given: Besides the asymmetric angle should be π/2
(for SIR) or 0 (for CIR), the relationships between
the inertia asymmetry and crack parameters (depth
and position) are also presented analytically. These
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results would be useful for crack detection and insta-
bility control of the asymmetric rotor-bearing system.

Keywords Parametric instability · Jeffcott rotor ·
Inertia asymmetric disk · Transverse crack

1 Introduction

Rotary inertia inequality is a common feature of the
rotor system. A two-blade propeller, a fan or pump
impeller, a teetered wind turbine, a cam shaft, and a
rotary plow all have unequal rotary inertia about two
principal axes of the rotating disk. Transverse cracks
frequently appear in rotating machinery due to man-
ufacturing flaws or cyclic loading. Either the asym-
metric inertia or transverse crack will cause parametric
excitations, and then alters the vibrational behavior of
the rotor. The parametric excitation from the asymmet-
ric inertia causes instability and severe vibration under
certain operating conditions. Determination of operat-
ing conditions of parametric instability is crucial to the
design and usage of the asymmetric rotor system.

Many studies focused on the instability behavior of
systems with asymmetric inertia. In the 1960s–1970s,
Crandall and Brosens [1] and Yamamoto et al. [2, 3],
respectively, carried out a series of in-depth theoret-
ical and experimental studies on the unstable vibra-
tions of a rotating shaft carrying an unsymmetrical ro-
tor. Ardayfio and Frohrib [4] extended the four degree-
of-freedom rotor system of Yamamoto and Ota [2] to
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include flexibility in the bearing supports. During this
period, the lumped parameter model was mainly con-
sidered. In the 1980s–1990s, Genta [5] first derived
the finite element equations of motion for the general
asymmetric rotor system. Then, both deviatoric inertia
and stiffness due to the asymmetry of flexible shaft and
multiple disks were considered in the finite element
model by Kang et al. [6]. The effects of asymmetric
disks were included to study the transition curves of
stable and unstable regions of a rotating asymmetric
shaft supported by isotropic bearings [7]. Takashi and
Murakami [8] considered the influence of flexible base
on the dynamic stability of an asymmetric rotor sys-
tem near the major and secondary critical speeds. Re-
cently, Nriot et al. [9] applied stochastic methods deal-
ing with uncertain inertia parametric excitation to ro-
tating machines with constant rotating speed subjected
to a base translational motion. Ishida and Lin [10] pro-
posed a simple passive control method utilizing dis-
continuous spring characteristics to eliminate the un-
stable ranges of an inertia asymmetrical rotor system.
Hsieh et al. [11] developed an extended transfer matrix
method for analyzing the coupled lateral and torsional
vibration responses of asymmetric rotor-bearing sys-
tem.

The parametric instability induced by the transverse
crack also has been concerned for many years. The
stability and the stability degree of a cracked Jeffcott
rotor supported on different kinds of journal bearings
were investigated by Meng and Gasch [12]. Gasch [13]
presented an overview stability diagram of a Laval ro-
tor having a transverse crack. Nonlinear dynamic sta-
bility analysis of a rotating shaft-disk system with a
transverse crack was conducted by Fu et al. [14], Dai
and Chen [15] and Chen et al. [16], respectively. In
their model, the mass of elastic shaft, the additional
displacements caused by the crack, the geometric non-
linearity of the shaft, and asymmetrical viscoelas-
tic supports were taken into account based upon the
energy theorem and Lagrange equation. Simple sys-
tems with few degrees-of-freedom were utilized in the
above analysis. With the widespread adoption of finite
element model in rotor dynamic analysis, the paramet-
ric instability analysis was also extended to finite ele-
ment cracked rotor-bearing systems [17–19]. Sekhar
and Dey [17] studied the variation of the first stability
threshold limit with crack parameters and shaft inter-
nal damping. Sinou [18] conducted the stability anal-
ysis by applying a perturbation to the non-linear peri-
odic solution, and analyzed the effect of crack on the

first three instability regions. Ricci and Pennacchi [19]
evaluated the stability of a steam turbo generator rotor
for different values of rotating speed and crack depth.

As the above literature shows, extensive efforts
have been devoted to study the parametric instability
behaviors of rotor-bearing systems with asymmetric
disks or transverse cracks separately. When both of
them appear in a rotor system, the dynamic charac-
teristics of the system have not gained sufficient at-
tention. A complex modal analysis for the asymmetric
rotor system consider a transverse crack on the shaft
was proposed by Han [20], and the reverse frequency
response functions were defined to identify the trans-
verse crack. Very recently, based upon the finite ele-
ment model, the effect of transverse crack upon para-
metric instability of a rotor-bearing system with an
asymmetric disk was analyzed by the authors [21]. It is
shown that the interaction of both asymmetric disk and
transverse crack certainly brings significant influence
on the parametric instability of the rotor system. Due
to the utilization of finite element model, it is difficult
to conduct parametric analysis. Moreover, the analyti-
cal expressions for describing the effects of two para-
metric excitations upon the unstable regions are not
given.

Thus, in this paper, a Jeffcott rotor model with rota-
tionally asymmetric inertia and open transverse crack
is established. The stiffness coefficients of cracked
rotor shaft are derived based upon the compliance
method and strain energy release rate method. Then,
utilizing the harmonic balance method and Taylor ex-
pansion technique, the unstable widths for various un-
stable regions are solved approximately. For a practi-
cal rotor system, the approximate unstable widths are
verified by the Floquet numerical analysis. The effects
of crack depth and position upon the unstable widths
are discussed. Finally, some useful conclusions are ob-
tained.

2 Equations of motion for the asymmetric rotor
with transverse crack

A simply supported rotor system, as shown in Fig. 1(a),
consists of a light shaft and an asymmetric disk with-
out any static and dynamic unbalance. The angular ro-
tating velocity is Ω . Without considering the axial and
torsional vibrations, the x, y, θy, θx are respectively
utilized to describe the transversal and angle vibration
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Fig. 1 Schematic diagram of the rotor bearing system with
asymmetric disk and open transverse crack (a) and the relative
position between the disk and crack in the circumference direc-
tion (b)

displacements of the asymmetric disk. Thus, the vibra-
tory system has four degrees-of- freedom. L, ld, and lc
denote the rotor span and the distances to the disk and
crack from the left support of the shaft. The relative
position between the asymmetric and transverse crack
in the circumference is shown in Fig. 1(b). The angles
between the major axes of the disk/crack and the shaft
are denoted by φd and φc. Without loss of generality,
the φd is assumed to be zero, and the φc = φ is also
called the asymmetric angle in the paper. In the fol-
lowing, one would see that the asymmetric angle φ is
an important factor in the parametric instability of the
rotor system.

2.1 Asymmetric disk

The nodal displacement vector of the asymmetric disk
is q = [x y θy θx]T . The mass of the disk is md. Be-
sides, three (one polar and two diametral) moments
of inertia about the z-coordinate, x-coordinate, and

y-coordinates are represented by Idp , Idx , and Idy .
For the inertia unsymmetrical disk, Idx �= Idy . With-
out considering the mass unbalance and self-gravity
force, the equation of motion of the disk in the fixed
coordinates is written as [6]

(
md + md

c cos 2Ωt + md
s sin 2Ωt

)
q̈

+ (
gd − 2Ωmd

c sin 2Ωt + 2Ωmd
s cos 2Ωt

)
q̇ = 0

(1)

in which md and gd are the classical mass and gyro-
scopic matrices of the disk without unsymmetrical in-
ertia, md

c and md
s are the coefficient matrices due to

the inertia asymmetry. By introducing the mean value
of the diametral moments of inertia Id = (Idx + Idy)/2
and the relative inertia asymmetry of the disk Δd =
Idx−Idy

2Id
, these matrices could be written as follows:

md =

⎡

⎢⎢
⎣

md 0 0 0
0 md 0 0
0 0 Id 0
0 0 0 Id

⎤

⎥⎥
⎦ ,

gd = IdpΩ

⎡

⎢⎢
⎣

0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

⎤

⎥⎥
⎦ ,

(2a)

md
c = Δd

⎡

⎢⎢
⎣

0 0 0 0
0 0 0 0
0 0 −Id 0
0 0 0 Id

⎤

⎥⎥
⎦ ,

md
s = Δd

⎡

⎢⎢
⎣

0 0 0 0
0 0 0 0
0 0 0 Id

0 0 Id 0

⎤

⎥⎥
⎦

(2b)

Obviously, due to the inertia asymmetry, the mass and
gyroscopic matrices of the disk are all sinusoidal time-
periodic, and the frequency is twice of the rotating
speed.

2.2 Massless shaft with an open transverse crack

The massless shaft is modeled by Euler–Bernoulli
beam. The elastic restoring forces induced by the
massless shaft could be expressed as

v = RT f−1Rq (3)
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in which R is the transformation matrix. Considering
the asymmetric angle, it could be expressed as

R =

⎡

⎢⎢
⎣

cos(Ωt + φ) sin(Ωt + φ) 0 0
− sin(Ωt + φ) cos(Ωt + φ) 0 0

0 0 cos(Ωt + φ) sin(Ωt + φ)

0 0 − sin(Ωt + φ) cos(Ωt + φ)

⎤

⎥⎥
⎦ (4)

f is the flexibility matrix in the rotating reference
frame, and one has [22]

f =

⎡

⎢⎢
⎣

a11 0 0 a14

0 a22 a23 0
0 a32 a33 0

a41 0 0 a44

⎤

⎥⎥
⎦ (5)

where

a11 = f11 + c11 + c44(0.5L − lc)
2 (6a)

a14 = a41 = f14 + c44(0.5L − lc) (6b)

a22 = f22 + c22 + c33(0.5L − lc)
2 (6c)

a23 = a32 = −f23 − c33(0.5L − lc) (6d)

a33 = f33 + c33 (6e)

a44 = f44 + c44 (6f)

The fij (i, j = 1,2, . . . ,4) denote the elements of
compliance matrix of an uncracked engineering Euler
beam, and are computed as

fij =
∫

z

M0
j (z)M0

i (z)

EIs
dz (7)

where M0
i (z) and M0

j (z) are the bending moment dis-
tributions due to the unit load at the ith and j th nodes,
respectively. The Young’s modulus and moment of in-
ertia of the shaft cross-section are denoted by E and Is.
The M0

i (z) and M0
j (z) for a simply supported beam

under concentrated force or bending moment are eas-
ily obtained, and the fij could be solved. The cij

(i = j = 1,2,3,4) denote the additional flexibility co-
efficients due to the transverse crack for the shaft un-
der shear force and bending moments. The cracked
shaft cross-section with radius R and crack depth a

is shown in Fig. 2. The nondimensional crack depth is
defined as σ = a/R. According to the strain energy

Fig. 2 Cross-section of the open transverse crack for flexibility
computations

release rate method (SERR), the cij are determined
by [23]

c11 = 4(1 − ν2)

πER

∫ b̄

0

∫ ā

0
ξ̄F 2

II dμ̄dξ̄ (8a)

c22 = 4(1 − ν2)

πER

∫ b̄

0

∫ ā

0
ξ̄F 2

III dμ̄dξ̄ (8b)

c33 = 64(1 − ν2)

πER3

∫ b̄

0

∫ ā

0
ξ̄
(
1 − μ̄2)F 2

2 dμ̄dξ̄ (8c)

c44 = 32(1 − ν2)

πER3

∫ b̄

0

∫ ā

0
ξ̄ μ̄2F 2

1 dμ̄dξ̄ (8d)

in which F1, F2, FII, FIII are the geometrical factors
for the stress intensity factors (SIFs) when the crack
is in Mode I (opening mode), Mode II (sliding mode),
and Mode III (tearing mode). The dimensionless pa-
rameters: ξ̄ = ξ/R, μ̄ = μ/R where ξ and μ are given
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in Fig. 2. The double integration limits are expressed
as: ā =

√
1 − ξ̄2 − 1 + σ and b̄ = √

1 − (1 − σ)2.
Considering Eqs. (4–8d), the stiffness matrix of

a rotating shaft with fully open transverse crack is
rewritten as

RT f−1R

=

⎡

⎢⎢
⎣

ktt 0 0 ktm

0 ktt −ktm 0
0 −ktm kmm 0

ktm 0 0 kmm

⎤

⎥⎥
⎦

+

⎡

⎢
⎢
⎣

Δktt 0 0 Δktm

0 −Δktt Δktm 0
0 Δktm −Δkmm 0

Δktm 0 0 Δkmm

⎤

⎥
⎥
⎦

× cos
(
2(Ωt + φ)

)

+

⎡

⎢⎢
⎣

0 −Δktt Δktm 0
−Δktt 0 0 −Δktm

Δktm 0 0 Δkmm

0 −Δktm Δkmm 0

⎤

⎥⎥
⎦

× sin
(
2(Ωt + φ)

)
(9)

where

ktt ,Δktt = 1

2

(
a44/(a11a44 − a14a41)

± a33/(a22a33 − a23a32)
)

(10a)

ktm,Δktm = 1

2

(−a14/(a11a44 − a14a41)

± a23/(a22a33 − a23a32)
)

(10b)

kmm,Δkmm = 1

2

(
a11/(a11a44 − a14a41)

± a22/(a22a33 − a23a32)
)

(10c)

In these equations, the “+” is for the former variable
and “−” for the latter one.

2.3 Nondimensional equation

A reference displacement and angular velocity are
introduced as xs t = √

Id/md and ωs t = √
ktt /md.

Then the transverse displacements, time, and ro-
tating velocity could be written in nondimensional
forms as: x′ = x/xs t , y′ = y/xs t , t ′ = ωs t t , and
Ω ′ = Ω/ωs t . For convenience sake, the primes on

the dimensionless quantities are omitted in the follow-
ing.

By substituting the above dimensionless quantities
into Eq. (1), Eq. (3), and Eq. (9), and defining some
parameters, including: inertia ratio β = Idp/Id, time-
invariant stiffness coefficients γ = ktm/(mdxs tω

2
s t ),

and δ = kmm/(Idω
2
s t ), and relative amplitudes of time-

varying stiffness due to the open transverse crack
ε1 = Δktt/(mdω

2
s t ), ε2 = Δkmm/kmm, and ε12 =

Δktm/ktm, one gets the dimensionless form of the vi-
brational differential equations for the cracked rotor
system

(m̂ + m̂c cos 2Ωt + m̂s sin 2Ωt)q̈

+ (ĝ − 2Ωm̂c sin 2Ωt + 2Ωm̂s cos 2Ωt)q̇

+ (
k̂ + k̂c cos 2(Ωt + φ) + k̂s sin 2(Ωt + φ)

)
q

= 0 (11)

where

m̂ = diag
([1 1 1 1]) (12a)

ĝ = βΩ

⎡

⎢⎢
⎣

0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

⎤

⎥⎥
⎦ ,

k̂ =

⎡

⎢
⎢
⎣

1 0 0 γ

0 1 −γ 0
0 −γ δ 0
γ 0 0 δ

⎤

⎥
⎥
⎦

(12b)

m̂c = Δd

⎡

⎢⎢
⎣

0 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 1

⎤

⎥⎥
⎦ ,

m̂s = Δd

⎡

⎢⎢
⎣

0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

⎤

⎥⎥
⎦

(12c)

k̂c =

⎡

⎢⎢
⎣

ε1 0 0 ε12γ

0 −ε1 ε12γ 0
0 ε12γ −ε2δ 0

ε12γ 0 0 ε2δ

⎤

⎥⎥
⎦ ,

k̂s =

⎡

⎢⎢
⎣

0 −ε1 ε12γ 0
−ε1 0 0 −ε12γ

ε12γ 0 0 ε2δ

0 −ε12γ ε2δ 0

⎤

⎥⎥
⎦

(12d)
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The nondimensional form of the system equation
(Eq. (11)) will be mainly considered in the following
instability analysis.

3 Parametric instability analysis

3.1 Without asymmetry and open transverse crack

Before instability analysis, the whirling characteristics
of the rotor system without asymmetric disk and trans-
verse crack should be studied. Setting Δd = ε1 = ε2 =
ε12 = 0, the frequency equation is expressed as

fn(ω) = (
1 − ω2)(δ + βΩω − ω2) − γ 2

= (ω − ω1)(ω − ω2)(ω − ω3)(ω − ω4) = 0
(13)

in which ω1 > 1 > ω2 > 0 > ω3 > −1 > ω4 and ωi

(i = 1,2,3,4) are the whirling frequencies of the sys-
tem consisting a symmetric disk and a uncracked shaft
with stiffness ktt , kmm, ktm.

There are two types of instability regions: simple
instability regions (SIRs) and combination instability
regions (CIRs). Considering the parametric frequency
of the rotor system is 2Ω , the starting points of these
instability regions in the rotating speed axis could be
expressed as [24]

{
Ω = 1

n
ωi, n = 1,2, . . . for SIRs;

Ω = 1
2m

(ωi + ωj ), i �= j , m = 1,2, . . . for CIRs

(14)

where ωi and ωj are the ith and j th whirling frequen-
cies of the time-invariant system. Only the values of
ω1 and ω2 are bigger than zero. As the instability re-
gions with n = 1 (or m = 1) would have greater ranges
compared with the other instability regions, so the SIR
with starting point of Ωs = ω2 and CIR with a starting
point of Ωc = (ω1 +ω2)/2 are mainly considered, and
denoted by Us and Uc, respectively. By putting ω = Ω

in Eq. (13) and considering the inertia ratio β > 1, one
obtains

Ω2
s

= (β − 1 − δ) + √
(β − 1 − δ)2 + 4(β − 1)(δ − γ 2)

2(β − 1)

(15)

For the starting point of CIR Ωc, Yamamoto et al. pre-
sented the analytical form as

Ω2
c = β2 + 4(2 − β)(1 + δ)

8(2 − β)2

+ (4 − β)
√

β2 + 8(2 − β)(δ − γ 2)

8(2 − β)2
(16)

In following section, the widths λs, λc of Us, and Uc

will be solved analytically.

3.2 Unstable width

Based upon the parametric instability theory and the
Taylor expansion technique, an approximate method
is introduced to compute the width of the unstable re-
gions Us and Uc. Without considering system damp-
ing, there are two frequency components ω and �

(� = 2Ω −ω) in the free response of the rotor system
due to inertia asymmetry and transverse crack. Thus,
the free response of the system could be expressed as
follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x = E1 cosωt + A1 sinωt + F1 cos�t + B1 sin�t

y = A1 cosωt − E1 sinωt + B1 cos�t − F1 sin�t

θy = G1 cosωt + C1 sinωt + H1 cos�t

+ D1 sin�t

θx = C1 cosωt − G1 sinωt + D1 cos�t

− H1 sin�t

(17)

in which A1,B1,C1,D1,E1,F1,G1,H1 are the un-
known constant coefficients. Substituting Eq. (17) into
Eq. (11) and taking the coefficients of the harmonic
function to be zero, one can obtain the linear algebraic
equations about the unknown constant coefficients as

[
A11 A12

A21 A22

]

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎢
⎣

E1

A1

G1

C1

D1

F1

H1

B1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎥
⎦

= 0 (18)

in which
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A11 =

⎡

⎢⎢
⎣

1 − ω2 0 0 γ

0 1 − ω2 −γ 0
0 −γ δ − ω2 + βΩω 0
γ 0 0 δ − ω2 + βΩω

⎤

⎥⎥
⎦ (19)

A22 =

⎡

⎢⎢
⎣

1 − � 2 0 0 γ

0 1 − � 2 −γ 0
0 −γ δ − � 2 + βΩ� 0
γ 0 0 δ − � 2 + βΩ�

⎤

⎥⎥
⎦ (20)

A12 = A21 =

⎡

⎢⎢
⎣

ε1 cos 2φ −ε1 sin 2φ ε12γ sin 2φ ε12γ cos 2φ

−ε1 cos 2φ ε12γ cos 2φ −ε12γ sin 2φ

−Δdω� − ε2δ cos 2φ ε2δ sin 2φ

Sym. Δdω� + ε2δ cos 2φ

⎤

⎥⎥
⎦ (21)

Thus, by taking the determinant of Eq. (18) to be zero,
one can obtain a equation in form of Φ2 = 0, and fi-
nally the following frequency equation is obtained as

Φ = fnf̄n − ε2
1GḠ − ε2

12γ
2(HḠ + H̄G) − ε2

2δ2HH̄

+ 2ε1ε12γ
2(G + Ḡ) + 2ε12ε2γ

2δ(H + H̄ )

− 2
(
ε1ε2δ + ε2

12γ
2)γ 2 − Δ2

dω
2� 2HH̄

+ 2Δdω�
(−ε1γ

2 + ε12γ
2(H + H̄ )

− ε2δHH̄
)

cos 2φ + (
ε1ε2δ − ε2

12γ
2)2

+ Δ2
dε

2
1ω2� 2 + 2Δdε1ω�

(
ε1ε2δ

− ε2
12γ

2) cos 2φ = 0 (22)

where

H = 1 − ω2, H̄ = 1 − � 2, G = δ − ω2 + βΩω,

Ḡ = δ − � 2 + βΩ�, fn = HG − γ 2,

f̄n = H̄ Ḡ − γ 2

(23)

After simplification, Eq. (22) can be rewritten in the
form

Φ = fnf̄n − Γ/(HH̄ ) + Ψ = 0 (24)

in which

Γ = Θ2
1 + Θ2

2 + 2Θ1Θ2 cos 2φ (25a)

Ψ = Ξ2
1 + Ξ2

2 + 2Ξ1Ξ2 cos 2φ (25b)

Θ1 = ε1γ
2 − ε12γ

2(H + H̄ ) + ε2δHH̄ (25c)

Θ2 = Δdω�HH̄, Ξ1 = ε1ε2δ − ε2
12γ

2,

Ξ2 = Δdε1ω�
(25d)

The term Ψ is of fourth-order asymmetries Δd, ε1,

ε12, ε2. Hence, it is negligibly small.
As the ωi (i = 1,2) and Ωs(c) are the forward

whirling frequency and unstable rotating speed of
the rotor system with zero asymmetries, so fn(ωi,

Ωs(c)) = 0, f̄n(ωi,Ωs(c)) = 0 and Φ(ωi,Ωs(c)) =
−Γ/(HH̄ ). When the asymmetries are greater than
zero, the unstable region is around the point (ωi,Ωs(c)).
Thus, the width of unstable region could be ob-
tained through the Taylor expansion of Φ at the point
(ω = ωi + ς,Ω = Ωs(c) + ϑ). Assuming ς,ϑ and
Δd, ε1, ε12, ε2 to be small, one has

Φ(ωi + ς,Ωs(c) + ϑ)

.= Φ(ωi,Ωs(c)) +
(

ς
∂

∂ω
+ ϑ

∂

∂Ω

)
Φ

+ 1

2

(
ς

∂

∂ω
+ ϑ

∂

∂Ω

)2

Φ = 0 (26)

From Eq. (24), one can obtain: ∂Φ
∂ω

= fn
∂f̄n

∂ω
+ f̄n

∂fn

∂ω
=

0, ∂Φ
∂Ω

= fn
∂f̄n

∂Ω
+ f̄n

∂fn

∂Ω
= 0, ∂2Φ

∂ω2 = 2 ∂fn

∂ω
∂f̄n

∂ω
, ∂2Φ

∂Ω2 =
2 ∂fn

∂Ω
∂f̄n

∂Ω
, and ∂2Φ

∂ωΩ
= ∂fn

∂ω
∂f̄n

∂Ω
+ ∂fn

∂Ω
∂f̄n

∂ω
. By substituting
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these relations into Eq. (26) and simplifying, we have

(
∂fn

∂ω

∂f̄n

∂ω

)
ς2 +

(
∂fn

∂ω

∂f̄n

∂Ω
ϑ + ∂fn

∂Ω

∂f̄n

∂ω
ϑ

)
ς

+ ∂fn

∂Ω

∂f̄n

∂Ω
ϑ2 +

(
− Γ

HH̄

)
= 0 (27)

Solving the quadratic equation about ς , one can obtain

ς =
−(

∂fn

∂ω
∂f̄n

∂Ω
ϑ + ∂fn

∂Ω
∂f̄n

∂ω
ϑ) ±

√
(
∂fn

∂ω
∂f̄n

∂Ω
ϑ − ∂fn

∂Ω
∂f̄n

∂ω
ϑ)2 − 4(

∂fn

∂ω
∂f̄n

∂ω
)(− Γ

HH̄
)

2(
∂fn

∂ω
∂f̄n

∂ω
)

(28)

When the system is in the unstable region, the ς is a complex number, whose imaginary part characterizes the
intensity of the parametric instability. The absolute value of the imaginary part of ς is denoted by κ , and

κ = 1

2

√

4

(
− Γ

HH̄

)
/

(
∂fn

∂ω

∂f̄n

∂ω

)
−

(
∂f̄n

∂Ω
/
∂f̄n

∂ω
− ∂fn

∂Ω
/
∂fn

∂ω

)2

ϑ2 (29)

When κ = 0, the system is at the unstable boundary,

and we get

ϑ0 =
√

4

(
− Γ

HH̄

)/(
∂fn

∂ω

∂f̄n

∂ω

)/∣∣∣∣
∂f̄n

∂Ω

/∂f̄n

∂ω

− ∂fn

∂Ω

/∂fn

∂ω

∣
∣∣∣ (30)

Thus, the width λs(c) of the unstable region Us(c) could

be obtained as

λs(c) = 2ϑ0 = 4

√(
− Γ

HH̄

)/(
∂fn

∂ω

∂f̄n

∂ω

)

/∣
∣∣∣
∂f̄n

∂Ω

/∂f̄n

∂ω
− ∂fn

∂Ω

/∂fn

∂ω

∣
∣∣∣ (31)

Fig. 3 Whirling
frequencies of rotor system
with ld = 0.25L
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Based upon the parametric instability and Taylor ex-
pansion technique, the widths of unstable region are
solved approximately utilizing Eq. (31).

4 Computations and discussions

The values of rotor parameters are: md = 10.43 kg,
Id = 0.1397 kgm2, Ip = 0.2096 kgm2, R = 0.01188 m,

L = 0.5045 m. Thus, the inertia ratio β = Ip/Id = 1.5.
The Young’s modulus of the shaft is E = 2.0 ×
1011 N/m2, Poisson’s ratio ν = 0.3.

4.1 Validation

The disk location is at ld = 0.25L. Without con-
sidering the inertia asymmetry and transverse crack,
Fig. 3 gives the four whirling frequencies ωi vary-

Fig. 4 Comparisons for the
unstable widths obtained by
approximate and numerical
methods: (a) widths of SIR
λs; (b) widths of CIR λc
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ing with the rotating angular velocity Ω in the range
of 0–4. According to the definitions in Eq. (14),
the intersections between the speed lines of ω = Ω ,
ω = 2Ω − ω2 and the first forward whirling fre-
quency line are just the Ωs and Ωc, as marked in
the figure. The values of these angular velocities are
gained analytically using Eq. (15) and Eq. (16), re-
spectively.

When the parametric excitations are considered,
the widths of unstable regions could be solved ap-
proximately by the harmonic balance method and
Taylor expansion technique. In order for the valida-
tion, a numerical method based upon the Floquet the-
ory is also utilized, and the detailed solution pro-
cess is presented in the Appendix. For inertia asym-
metry Δd = 0.2, crack depth σ = 0.2 and crack lo-
cation lc = 0.5L, both the approximate and numeri-
cal results of λs and λc varying with the asymmet-
ric angle φ are plotted in Fig. 4, respectively. It is
shown that the approximate results are in good agree-
ment with the numerical results. Thus, the approxi-
mate method developed in this paper is verified to be
reasonable. With the increasing of φ, the λs is sig-
nificantly reduced, and reaches the minimum value
for φ = π/2. However, the variation of λc with φ is
just opposite with that of λs, as shown in Fig. 4(b).
In this case, the minimum value of λc is obtained
at φ = 0. The effects of transverse crack parameters

upon the unstable widths are analyzed in the next sec-
tion.

4.2 Effects of transverse crack parameters

Two transverse crack parameters are considered in the
analysis: crack depth σ and crack position lc. The
stiffness coefficients of a cracked shaft varying with
a crack depth for lc = 0.5L is plotted in Fig. 5. It is
shown that the values of ε1, ε12, ε2 are increasing with
σ , while the coupled stiffness coefficient δ is slightly
reduced with the increasing of σ .

Here, the relative inertia asymmetry is fixed Δd =
0.2. With the crack position lc = 0.5L and four values
of crack depth (σ = 0.1,0.2,0.25,0.3), the variations
of λs and λc with φ are given in Fig. 6. For the smaller
crack depth (σ = 0.1), the varying of φ has little effect
upon the unstable widths. Increasing the crack depth,
i.e., σ = 0.2,0.25, increasing φ from 0 to π/2 would
reduce (for λs) or increase (for λc) the values of un-
stable width distinctly. Especially for σ = 0.25, the λs

with φ = π/2 (or λc with φ = 0) would have the min-
imum value. Continuing to increase the crack depth
(σ = 0.3), the system could not gain the minimum un-
stable widths; even the φ is adjusted to π/2 or 0. This
means that as long as the Δd and lc are given, there are
specific crack depths to make the λs and λc minimum
(even zero). The specific crack depths corresponding

Fig. 5 The stiffness
coefficients of the cracked
rotor system with
lc = 0.5L:
(a) time-invariant stiffness
γ, δ; (b) relative amplitudes
of time-varying stiffness
ε1, ε12, ε2
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to the zero unstable points (ZUPs) are of interest as
they could be used for crack identification and instabil-
ity control of an actual asymmetric rotor-bearing sys-
tem.

For the σ = 0.2, the effect of crack position (lc =
0.3L,0.4L,0.5L) upon the unstable widths is shown
in Fig. 7. One can see that with the lc moving from
the middle point of rotor span to the left support point,
the influence of transverse crack is reduced gradually.

This is explained as the following: The first whirling
mode has a greater modal deflection at the middle
point of the rotor span. At this point, the parametric
excitation induced by the open transverse crack would
bring a significant effect to the rotor system. At other
points of the rotor, the impact of the transverse crack
becomes weakened. Obviously, the crack position also
affects the values of crack depth of ZUPs. The quanti-
tative analysis will be conducted in the next section.

Fig. 6 Effects of crack
depth upon the unstable
widths: (a) widths of SIR
λs; (b) widths of CIR λc
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4.3 Zero unstable points (ZUPs)

In order to get the ZUPs, the Γ should be equal to
zero, i.e., Γ = 0, as shown in Eq. (31). For the SIR,
the Θ1 > 0,Θ2 > 0 as the ω1 > 1 > ω2. According to
Eqs. (25a)–(25d), one condition for Γ = 0 is φ = π/2.
When the CIR is considered, the Θ1 > 0 but Θ2 < 0.
In this case, the φ = 0 is the requirement of Γ = 0.
Therefore, the relationships between the inertia asym-

metry Δd and cracked shaft stiffness coefficients (de-
termined by σ and lc) for the ZUPs could be expressed
as follows:

Δd = ±(
ε1γ

2 −ε12γ
2(H +H̄ )+ε2δHH̄

)
/(ω�HH̄)

(32)

where the “+” is for the SIR and the “−” is for CIR.
Utilizing Eq. (32), the crack depth corresponding to

Fig. 7 Effects of crack
position upon the unstable
widths: (a) widths of SIR
λs; (b) widths of CIR λc



Parametric instability of a Jeffcott rotor with rotationally asymmetric inertia and transverse crack 839

Fig. 8 The relationship
between σ and Δd in order
for the ZUPs of SIR

Fig. 9 The relationship
between σ and Δd in order
for the ZUPs of CIR

ZUPs for certain inertia asymmetry could be solved
analytically. Figures 8 and 9 give the relationships be-
tween σ and Δd in order for the ZUPs of SIR and
CIR, respectively. Three values of crack position are
considered. It is shown that the Δd is nonlinear pro-
portional to the σ . With the lc varying from 0.5L

to 0.3L, the relation curve becomes flatter, and the
slops are reduced. Under certain Δd, in order for the
ZUPs, the transverse crack is required to be deeper.
It is reasonable because the parametric excitation in-

duced by transverse crack becomes weaker. Moreover,

utilizing Figs. 8 and 9, the actual value of crack depth

could be determined with certain inertia asymmetry.

For Δd = 0.2 and lc = 0.5L, just the case of Fig. 6

in the previous section, the actual values of σ corre-

sponding to the ZUPs of SIR and CIR are 0.231 and

0.265, which are marked in the figures, respectively.

Basically, the required crack depth of CIR is greater

than that of the SIR (i.e., 0.265 > 0.231), indicating
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that the CIR is more “difficult” to clear away under
the same Δd.

5 Conclusions

Based upon the harmonic balance method and Taylor
expansion technique, the unstable widths of a Jeffcott
rotor with rotationally asymmetric inertia and open
transverse crack are derived approximately and veri-
fied by Floquet numerical analysis. Two types of un-
stable regions, SIR and CIR, are considered and the
conditions for ZUPs are given. Besides, the asymmet-
ric angle should be π/2 (for SIR) or 0 (for CIR), and
the relationships between the inertia asymmetry and
crack parameters (depth and position) are also pre-
sented analytically. These results would be useful for
crack detection and instability control of the asym-
metric rotor-bearing system. In future study, the ro-
tor damping and breathing crack will be taken into ac-
count to show their effects upon the parametric insta-
bility.
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Appendix: Numerical determination of unstable
regions based upon the Floquet theory

By taking y(t) = [q̇(t) q(t)]T , Eq. (11) could be trans-
formed into the state space as

A(t)ẏ = B(t)y (33)

in which the coefficient matrices A(t) and B(t) are ex-
pressed as

A(t) =
[

0 m̄
m̄ ḡ

]
(34)

B(t) =
[

m̄ 0
0 −k̄

]
(35)

where

m̄ = (m̂ + m̂c cos 2Ωt + m̂s sin 2Ωt) (36a)

ḡ = (ĝ − 2Ωm̂c sin 2Ωt + 2Ωm̂s cos 2Ωt) (36b)

k̄ = (
k̂ + k̂c cos 2(Ωt + φ) + k̂s sin 2(Ωt + φ)

)
(36c)

The classical method to study the parametric stability
uses the Floquet theory. To avoid the additional time
domain processing and to keep the inherent advan-
tages of the frequency method (low computational cost
and speed compared with the direct integration), it is
recommended to use a frequency method for the deter-
mination of the stability. According to the Floquet the-
ory, a solution of Eq. (33) can be written as a product
of an exponential part and 2π/(2Ω) = π/Ω periodic
part. Representing the periodic part by its complex
Fourier series expansion, this solution can be written
as

y(t) = e2ρΩt

∞∑

k=−∞
yke2ikΩt (37)

where i = √−1, ρ represents the Floquet (or charac-
teristic) exponent and yk are the complex Fourier co-
efficients’ vectors. Considering the coefficient matri-
ces A(t) and B(t) are periodic with single harmonic
frequency 2Ω , thus they could be rewritten by finite
complex Fourier series

A(t) = A−2e−i2Ωt + A0 + A2ei2Ωt (38)

B(t) = B−2e−i2Ωt + B0 + B2ei2Ωt (39)

Substituting Eqs. (37)–(39) into Eq. (33), and simpli-
fying by setting the same harmonic coefficients zero,
then one can obtain the following infinite-dimensional
eigenvalue problems about ρ as

(Λ + ρΥ )Y = 0 (40)

in which

Y = [· · · yT−4 yT−3 yT−2 yT−1 yT
0 yT

1 yT
2 yT

3 yT
4 · · · ]T ,
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and

Λ =

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

...
...

...
...

...
...

...
...

...
...

...

· · · Λ
(0)
−4 Λ

(1)
−3 0 0 0 0 0 0 0 · · ·

· · · Λ
(2)
−4 Λ

(0)
−3 Λ

(1)
−2 0 0 0 0 0 0 · · ·

· · · 0 Λ
(2)
−3 Λ

(0)
−2 Λ

(1)
−1 0 0 0 0 0 · · ·

· · · 0 0 Λ
(2)
−2 Λ

(0)
−1 Λ

(1)
0 0 0 0 0 · · ·

· · · 0 0 0 Λ
(2)
−1 Λ

(0)
0 Λ

(1)
1 0 0 0 · · ·

· · · 0 0 0 0 Λ
(2)
0 Λ

(0)
1 Λ

(1)
2 0 0 · · ·

· · · 0 0 0 0 0 Λ
(2)
1 Λ

(0)
2 Λ

(1)
3 0 · · ·

· · · 0 0 0 0 0 0 Λ
(2)
2 Λ

(0)
3 Λ

(1)
4 · · ·

· · · 0 0 0 0 0 0 0 Λ
(2)
3 Λ

(0)
4 · · ·

...
...

...
...

...
...

...
...

...
...

...

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

(41)

Υ = 2Ω

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

...
...

...
...

...
...

...
...

...
...

...

· · · A0 A−2 0 0 0 0 0 0 0 · · ·
· · · A2 A0 A−2 0 0 0 0 0 0 · · ·
· · · 0 A2 A0 A−2 0 0 0 0 0 · · ·
· · · 0 0 A2 A0 A−2 0 0 0 0 · · ·
· · · 0 0 0 A2 A0 A−2 0 0 0 · · ·
· · · 0 0 0 0 A2 A0 A−2 0 0 · · ·
· · · 0 0 0 0 0 A2 A0 A−2 0 · · ·
· · · 0 0 0 0 0 0 A2 A0 A−2 · · ·
· · · 0 0 0 0 0 0 0 A2 A0 · · ·
...

...
...

...
...

...
...

...
...

...
...

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(42)

where Λ
(0)
k = −B0 + i2kΩA0, Λ

(1)
k = −B−2 +

i2kΩA−2 and Λ
(2)
k = −B2 + i2kΩA2 (k = . . . ,

−1,0,1, . . .). In order to get approximate numerical
eigenvalues for the stability analysis, Eq. (40) should
be truncated into a finite-dimensional one. In practice,
the first few harmonics are needed to meet the pre-
cision requirements. The eigenvalues of Eq. (40) are
complex. If the system is stable, the real part of all
eigenvalues ρ is negative and the exponential part di-
minishes as the time passes. On the other hand, if at
least one of the eigenvalues has a positive part, the
system is unstable.
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