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Abstract In this study, a simple time domain col-
location method (TDC) is applied to investigate the
third superharmonic solutions of the Duffing oscilla-
tor. Upon using the proposed scheme, the multivalued-
ness, jump phenomenon, and transitional region of the
third superharmonic response are explored. The am-
plitude frequency response curves for various values
of damping, nonlinearity, and external force are ob-
tained and compared. In addition, instead of collocat-
ing at N points so that the resulting nonlinear alge-
braic system is well determined, we extend the time
domain collocation method to a new version by collo-
cating at M > N points. The resulting over determined
system is solved by the least square method. The ex-
tended time domain collocation method can signifi-
cantly relieve the nonphysical solution phenomenon,
which may be severe in the time domain collocation
method, and its equivalent high dimensional harmonic
balance method. Finally, numerical examples confirm
the simplicity, efficiency, and accuracy of the proposed
scheme.
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1 Introduction

The harmonic balance method (HB), applied within an
appropriate period of the periodic solution is popularly
applied to solve the Duffing equation with large non-
linearity [4–6, 16, 18, 19]. Unfortunately, large num-
bers of symbolic operations are inevitable due to te-
dious Fourier expansions of the nonlinear terms.

To remedy this drawback, Thomas [17] developed a
high dimensional harmonic balance method (HDHB),
which has been successfully applied in aeroelastic
problems [10], time delay problems [11], Duffing os-
cillators [7], Van der Pol’s oscillators [9], etc. How-
ever, the HDHB may produce additional nonphysi-
cal solutions [7, 12], which make the solutions of the
HDHB sometimes unreliable.

Recently, Dai [2] proposed a time domain colloca-
tion method (TDC), and applied it to solve the har-
monic and 1/3 subharmonic solutions of the Duffing
oscillator. They demonstrated that the TDC was equiv-
alent to the HDHB, and pointed out that the HDHB is
not a modified harmonic balance method, but a time
domain collocation method (TDC) in disguise. The
TDC works in terms of the frequency domain variables
while the HDHB works in the time domain variables.
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Thus, the time domain collocation method (TDC) is
believed simpler than the HDHB in the framework of
solving the Duffing equation. Nevertheless, the TDC
also suffers from the generation of nonphysical solu-
tions as existed in the HDHB approach. In the men-
tioned work [2], using a frequency marching pro-
cedure to generate initial values for the collocation
resulting nonlinear algebraic equations (NAEs) suc-
cessfully avoids the occurrence of the nonphysical so-
lutions in finding the response curves.

Following the previous study, we apply the TDC
approach to find the superharmonic responses to the
Duffing equation in this study. In addition, we ex-
tend the original TDC to a new version by collocat-
ing at more points. Both the two versions are labeled
as TDC hereafter without distinction, unless otherwise
needed. We find that the probability of the attraction to
physical solutions increases as more collocation points
are chosen. The extended TDC with more collocation
points significantly relieves the nonphysical solution
phenomenon.

The third superharmonic oscillations of the Duff-
ing equation have been widely analyzed in litera-
ture. In the classical book by Nayfeh [14], the har-
monic, subharmonic, and superharmonic resonances
have been extensively investigated by various ver-
sions of perturbation methods. Moriguchi [13] stud-
ied the superharmonic resonances of the Duffing equa-
tion by numerical integration method, and a large va-
riety of superharmonic resonances have been detected
in their model. Rahman [15] and Hassan [3] applied
the perturbation methods to explore the bifurcation,
and stability property of the third superharmonic so-
lution of the Duffing equation. Herein, we apply the
newly developed semianalytical time domain colloca-
tion method (TDC) to solve the periodic solutions of
the Duffing equation. Moreover, we give a further de-
scription of the property of the third superharmonic
responses.

The paper is organized as follows. In Sect. 2, we
nondimensionalize a general Duffing equation to a
simpler form. In Sect. 3, the time domain colloca-
tion method is formulated to find periodic solutions
of harmonic and third superharmonic oscillations. The
equivalence between the TDC method and the HDHB
method is proved. In Sect. 4, we extend the TDC,
and investigate the nonphysical solution phenomenon.
Section 5 provides initial values to the NAEs solver.
We investigate various properties of the harmonic and

superharmonic responses of the Duffing equation in
Sect. 6, among which some properties are believed
to be first examined. In Sect. 7, the accuracy of time
domain collocation method is verified by comparing
with the harmonic balance method. Finally, we come
to some conclusions in Sect. 8.

2 The dimensionless Duffing equation

The general form of the Duffing equation is

ẍ + ξ ẋ + αx + βx3 = F cosωt. (1)

In Eq. (1), ξ is the damping parameter,
√

α is the nat-
ural frequency (denoted by ω0) of the linear system,
and β reflects the nonlinearity. By making the trans-
formations,

x∗ = α

F
x, t∗ = √

αt, ξ∗ = ξ√
α

,

β∗ = βF 2

α3
, ω∗ = ω√

α
.

Equation (1) is transformed into

d2x∗

dt∗2
+ ξ∗ dx∗

dt∗
+ x∗ + β∗x∗3 = cosω∗t∗. (2)

Therefore, ξ∗, ω∗, and β∗ are the control parameters
except for the case where β∗ = βF 2/α3 = 0. Specifi-
cally, F = 0, β �= 0; F �= 0, β = 0; and F = 0, β = 0
correspond to nonlinear free oscillation, linear forced
oscillation, and linear free oscillation, respectively. In
order to distinguish the three types of possibilities, we
investigate the Duffing equation having the following
form:

d2x∗

dt∗2
+ ξ∗ dx∗

dt∗
+ x∗ + β∗x∗3 = F ∗ cosω∗t∗. (3)

For simplicity, all ∗ notation will be omitted in the re-
mainder of this paper.

It is worth noting that ω∗ in Eq. (3) is actually the
ratio of the frequency of the impressed force ω to the
natural frequency ω0 of the linear system.

3 The formulation of the time domain collocation
method

In this section, we apply the time domain collocation
method (TDC) within a period of oscillation, for the
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periodic solutions to the Duffing equation:

ẍ + ξ ẋ + x + βx3 = F cosωt. (4)

The periodic solution of Eq. (4) is sought in the form:

x(t) = A0 +
N∑

n=1

An cosnωt + Bn sinnωt. (5)

The assumed form of x(t) can be simplified by con-
sidering the symmetrical property of the nonlinear
restoring force. First, Hayashi [6] pointed out that un-
der circumstances when the nonlinearity is symmetric,
A0 can be discarded. Second, it was demonstrated by
Urabe [20] both numerically and theoretically that the
even harmonic components in Eq. (5) are zero. There-
fore, the approximate solution is simplified to

x(t) =
N∑

n=1

An cos (2n − 1)ωt + Bn sin (2n − 1)ωt,

(6)

where N is the number of harmonics used in the de-
sired approximation. x(t) in Eq. (6) is called the N

harmonic approximation (or labeled as the N th order
approximation in the present paper).

It should be noted that, Eq. (6) is capable of captur-
ing a mth order superharmonic solution, where m =
2n − 1 (n = 1,2, . . . ,N). When the fundamental har-
monic component, i.e., n = 1, dominates x(t), the pe-
riodic solution is referred to as a harmonic solution.
When a superharmonic component, i.e., n > 1, is sig-
nificant, the solution is called a superharmonic solu-
tion.

In using the collocation method, we obtain the
residual error function R(t) by substituting the ap-
proximate solution, Eq. (6), into the following equa-
tion:

R(t) = ẍ + ξ ẋ + x + βx3 − F cosωt �= 0. (7)

For obtaining the harmonic/superharmonic solution,
the collocation method is performed over a period of
oscillation. Upon enforcing R(t) to be zero at 2N

equidistant points ti = (i−1)π/(Nω) ∈ [0,2π/ω], we
obtain a system of 2N nonlinear algebraic equations:

Ri(A1,A2, . . . ,AN ; B1,B2, . . . ,BN)

:= ẍ(ti ) + ξ ẋ(ti) + x(ti) + βx3(ti)

− F cosωti = 0i , (8)

where

x(ti) =
N∑

n=1

An cos (2n − 1)ωti

+ Bn sin (2n − 1)ωti, (9a)

ẋ(ti ) =
N∑

n=1

−(2n − 1)ωAn sin (2n − 1)ωti

+ (2n − 1)ωBn cos (2n − 1)ωti, (9b)

ẍ(ti ) =
N∑

n=1

−(2n − 1)2ω2An cos (2n − 1)ωti

− (2n − 1)2ω2Bn sin (2n − 1)ωti, (9c)

where i is an index value ranging from 1 to 2N .
Equation (8) is the collocation-resulting NAEs. It is
also referred to as the TDC algebraic system for the
harmonic/superharmonic solutions. The Jacobian ma-
trix B to this system can be readily derived upon dif-
ferentiating Ri with respect to Aj and Bj .

B =
[

∂Ri

∂Aj

,
∂Ri

∂Bj

]

2N×2N

, (10)

where

∂Ri

∂Aj

= −(2j − 1)2ω2 cos (2j − 1)ωti

− ξ(2j − 1)ω sin (2j − 1)ωti

+ cos (2j − 1)ωti + 3βx2(ti) cos (2j − 1)ωti,

∂Ri

∂Bj

= −(2j − 1)2ω2 sin (2j − 1)ωti

+ ξ(2j − 1)ω cos (2j − 1)ωti

+ sin (2j − 1)ωti + 3βx2(ti) sin (2j − 1)ωti .

Consequently, the coefficient variables An, Bn in
Eq. (8) can be determined by the Newton–Raphson
method.

3.1 Equivalence between the HDHB and the TDC

The equivalence between HDHB and TDC was found
and demonstrated in Dai [2] in detail. For the paper’s
integrity, we herein derive the HDHB system from the
TDC system to demonstrate their equivalence. A de-
tailed investigation of the HDHB method can be found
in Liu [12].
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In accordance with [12], the Duffing equation takes
the form: mẍ +dẋ +kx +αx3 = F sinωt , and the trial
solution is chosen as

x(t) = x̂0 +
N∑

n=1

[x̂2n−1 cosnωt + x̂2n sinnωt]. (11)

To formulate the TDC algebraic system, we enforce
the residual-error function R(t) = mẍ + dẋ + kx +
αx3 −F sinωt to be zero at 2N + 1 equidistant points
ti = 2iπ/[(2N +1)ω] (i = 0,1, . . . ,2N). Then we ob-
tain the TDC algebraic system:

Ri(x̂0, . . . , x̂2N)

:= mẍ(ti) + dẋ(ti) + kx(ti)

+ αx3(ti) − F sinωti = 0i . (12)

The HDHB system can be derived from the TDC sys-
tem equivalently. We treat each term in the above
equation separately. Firstly, collocating x(t) at points
ti , we have

x(ti) = x̂0 +
N∑

n=1

[x̂2n−1 cosnωti + x̂2n sinnωti]. (13)

Considering θi = ωti , Eq. (13) can be rewritten in a
matrix form
⎡

⎢⎢⎢⎣

x(t0)

x(t1)
...

x(t2N)

⎤

⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎣

1 cos θ0 sin θ0 · · · cosNθ0 sinNθ0

1 cos θ1 sin θ1 · · · cosNθ1 sinNθ1
...

...
...

...
...

...

1 cos θ2N sin θ2N · · · cosNθ2N sinNθ2N

⎤

⎥⎥⎥⎦

×

⎡

⎢⎢⎢⎣

x̂0

x̂1
...

x̂2N

⎤

⎥⎥⎥⎦ . (14)

Therefore,

Q̃x ≡

⎡

⎢⎢⎢⎣

x(t0)

x(t1)
...

x(t2N)

⎤

⎥⎥⎥⎦ = E−1Q̂x, (15)

where E−1 is a transformation matrix, i.e., the square
matrix in Eq. (14), and Q̂x = [x̂0, x̂1, . . . , x̂2N ]T .

Similarly, collocating ẋ(t) at ti , we have

ẋ(ti ) =
N∑

n=1

[−nωx̂2n−1 sinnωti + nωx̂2n cosnωti].
(16)

Interestingly, we observe that the above equation can
be written in a matrix form by existing quantities:

⎡

⎢⎢⎢⎣

ẋ(t0)

ẋ(t1)
...

ẋ(t2N)

⎤

⎥⎥⎥⎦

= ω

⎡

⎢⎢⎢⎣

0 − sin θ0 cos θ0 · · · N cosNθ0

0 − sin θ1 cos θ1 · · · N cosNθ1
...

...
...

...
...

0 − sin θ2N cos θ2N · · · N cosNθ2N

⎤

⎥⎥⎥⎦

×

⎡

⎢⎢⎢⎣

x̂0

x̂1
...

x̂2N

⎤

⎥⎥⎥⎦ = ωE−1AQ̂x, (17)

where

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0 1

−1 0
0 2

−2 0
. . .

0 N

−N 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (18)

In the same manner, collocating ẍ(t) at ti , we have

ẍ(ti ) =
N∑

n=1

[−n2ω2x̂2n−1 cosnωti

− n2ω2x̂2n sinnωti
]
. (19)

Encouragingly, Eq. (16) can be written compactly as

⎡

⎢⎢⎢⎣

ẍ(t0)

ẍ(t1)
...

ẍ(t2N)

⎤

⎥⎥⎥⎦ = ω2E−1A2Q̂x. (20)
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The nonlinear part R̃x is defined as

R̃x ≡

⎡

⎢⎢⎢⎣

x3(t0)

x3(t1)
...

x3(t2N)

⎤

⎥⎥⎥⎦ . (21)

Plus,

⎡

⎢⎢⎢⎣

sinωt0
sinωt1

...

sinωt2N

⎤

⎥⎥⎥⎦ = E−1H, where H ≡

⎡

⎢⎢⎢⎢⎢⎣

0
0
1
...

0

⎤

⎥⎥⎥⎥⎥⎦
. (22)

Now, substituting Eqs. (15), (17), (20)–(22) into the
TDC system (12), we obtain

E−1(mω2A2 + dωA + kI
)
Q̂x + αR̃x = F H̃. (23)

According to Eq. (15) Q̂x = EQ̃x , the above equation
can be written as

(
mω2D2 + dωD + kI

)
Q̃x + αR̃x = F H̃, (24)

where D = E−1AE and I is identity matrix. The al-
gebraic system (24) is equivalent to the TDC sys-
tem (12), since no approximation is adopted during
derivation. We point out that system (24) is exactly
the same as the HDHB algebraic system in [12]. We
therefore conclude that the HDHB method is the TDC
method in disguise.

4 An extended time domain collocation method

4.1 The extended time domain collocation method

In the previous section, we have demonstrated that the
HDHB system is equivalent to the original TDC sys-
tem. In the framework of the solving Duffing equa-
tion, however, the TDC is simpler than the conven-
tional HDHB, since it works in terms of Fourier coef-
ficient variables, instead of transforming into the time
domain variables as in HDHB. In fact, Liu [10] pro-
vided another version of HDHB to avoid the transfor-
mation procedure. Nevertheless, both the TDC and the
HDHB produce nonphysical solutions. Therefore, the
TDC method is to be improved to deal with this limi-
tation.

In the TDC, as the number N of the harmonics is
small in the trial solution, e.g., Eq. (6), it may not
be sufficient to collocate the residual error function,
Eq. (7), only at 2N points in a period. One may have to
use M collocation points, M > 2N , to obtain a reason-
able solution [1]. As M → ∞ one develops a method
of least-squared error, wherein one seeks to minimize
a scalar function J (An,Bn) = ∫ T

0 R2(t) dt [T is the
period of the periodic solution] with respect to the co-
efficient variables An, Bn.

We herein propose the extended time domain collo-
cation method in the model of the Duffing equation. In
the previous section, we have obtained the determin-
ing algebraic system (8) of the original TDC. For sim-
plicity, the algebraic system R(Ā, B̄)1 is expressed by
R(x). In order to obtain the extended TDC system, we
collocate the residual function (7) at M points leading
to an over-determined system of equations

Ri(xj ) = 0, i = 1,2, . . . ,M; j = 1,2, . . . ,2N,

(25)

where M > 2N . Since the number of equations out-
numbers the number of the unknowns, we can use least
square method to find an approximate solution.

We seek an approximate solution x∗
j for xj ,

Ri

(
x∗
j

) = εi �= 0, (26)

so that x∗
j minimize the square error, εiεi . The Einstein

summation convention applies herein.
To minimize εiεi , we require

∂

∂x∗
k

(εiεi) = ∂Ri

∂x∗
k

Ri = BikRi = 0k. (27)

The above formula can be written in a matrix form:

BTR = 0. (28)

The size of the Jacobian matrix B of the collocation
resulting system is M ×2N , and R is M ×1. The num-
ber of equations of the well-determined system is 2N .
To the end, we have transformed the over-determined
system into a well-determined system.

1Note that Ā, B̄ is the vector form of the coefficient vari-
ables An, Bn, respectively. Do not confuse B̄ with the Jacobian
matrix B.
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In addition, the explicit expression for the Jacobian
matrix of the well-determined system can be readily
obtained:

∂

∂x∗
p

(
BikRi

(
x∗
j

)) = Bik

∂Ri

∂x∗
p

= BikBip. (29)

Thus, the Jacobian matrix of the well-determined sys-
tem, denoting by BL, is

BL = BTB, (30)

where BL is 2N × 2N .
In Sect. 3, we have obtained the algebraic system R

and Jacobian matrix B for the original TDC method.
Considering Eqs. (28) and (30), we can conveniently
extend the original TDC to the new TDC by modifying
the codes by multiplying BT on the left of R and B.

4.2 Elimination of the nonphysical solutions

The HDHB has been demonstrated to produce non-
physical solutions in solving the nonlinear problems
[7, 12]. The time domain collocation method (TDC)
suffers from the same drawback, since they have been
proved equivalent [2].

4.2.1 The nonphysical solution phenomenon in
response curves

In this section, the nonphysical solution phenomenon
is exhibited by comparing amplitude-frequency re-
sponse curves in the frequency domain. Using the
Newton–Raphson method (NR), the algebraic system
arising from the HDHB or the TDC will converge to
a solution, provided the initial conditions are within a
certain radius of convergence. Since the NR is sensi-
tive to initial values, we apply the globally optimally
iterative algorithm (GOIA) [8], in the case that the NR
fails to converge. The amplitude-frequency response
curve can be obtained by incrementally increasing or
decreasing the frequency. At each step, the previous
solution is employed as the initial conditions for the
next step. This procedure is called a frequency march-
ing procedure. For the Duffing oscillator, the response
curves will have regions of hysteresis when the nonlin-
earity is large. In the hysteresis region, there are three
branches. Typically, the upper branch and the lower
branch are stable, which correspond to stable periodic
motions. The middle branch is unstable, it cannot be
reached practically.

Fig. 1 The response curves of the Duffing equation:
ẍ + 0.2ẋ + x + x3 = 1.25 sinωt , by HDHB method and time
domain collocation method, via frequency marching procedure.
The solid lines are the results by HB10

Figure 1 plots the response curves of the Duffing
equation by the harmonic balance method, the HDHB
method and the collocation method. Specifically, the
model ẍ + 0.2ẋ + x + x3 = 1.25 sinωt is investigated
in this section. The solid line is the response curve
computed by the tenth-order harmonic balance method
named HB10, which is applied herein as the bench-
mark. It can be seen from the solid line that when
the frequency increases beyond the turning point near
ω = 2.40, the peak amplitude will drop down and con-
tinue on the lower branch. Similarly, an oscillator that
begins on the lower branch will jump to the upper
branch as the frequency decreases beyond the turning
frequency near ω = 1.75.

Figure 1(a) shows two sets of response curves by
the HDHB4 (fourth-order HDHB): one by marching
the frequency from 0.1 to 3, and another by marching
the frequency from 3 to 0.1, both at an increment of

ω = 0.1. The HDHB4 with an increasing frequency
marching procedure generates the upper curve similar
to the one generated by the HB10 until near ω = 1.9.
Beyond that, it goes up with the increase of the fre-
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quency, and does not drop down to the lower branch.
The HDHB4 with an decreasing frequency marching
procedure accurately predicts the lower branch. How-
ever, at the turning point ω = 1.75, it does not jump
up to the upper branch until reaching the frequency
near 1.2. It is demonstrated that the HDHB4 may pro-
duce nonphysical solutions.

Figure 1(b) displays the response curves by the col-
location methods. The collocation method with 2 har-
monics in the trial function and 4 collocation points
is referred to as TDC2. The collocation method with
2 trial harmonics and 20 collocation points is an ex-
tended TDC denoted by TDCn2m20. We see from
Fig. 1(b) that the TDC2 cannot give a reasonable pre-
diction of the response curve, for both forward march-
ing and backward marching. All the results by TDC2
far away from the benchmark are nonphysical solu-
tions. Note that the TDC2 with the backward fre-
quency marching fails to converge near ω = 1.5 by
either NR or GOIA. Hence, the amplitude of the rest
part is plotted to zero.

The TDCn2m20 with the forward marching can
capture the upper branch of the response curve. How-
ever, it does not drop down to the lower branch beyond
the turning point, ω = 2.40. The TDCn2m20 with the
backward marching captures the lower branch of the
response curve very well. Similarly, it does not jump
up to the upper branch at the turning point at ω = 1.75.

Thereby, with only two harmonics included, the
extended TDC successfully predicts the upper and
lower branches of the response curve which the orig-
inal TDC cannot. And also, we see that the extended
TDC with two harmonics yields a better result than
the HDHB with four harmonics by comparing the two
figures.

4.2.2 Monte Carlo simulation

In addition to the frequency marching procedure, we
can employ other methods for initial condition gener-
ation. Here, the nature of the solutions generated by
the TDC system is studied from a statistical perspec-
tive by generating initial conditions through Monte
Carlo simulation. That is, initial conditions are ran-
domly generated for a large number of computations
in order to determine the probability of converging to
any particular solution. For each simulation, 10,000
sample initial conditions are specified. The coefficient
variables An, Bn of the resulting NAEs are randomly

specified within the range of [−2,2]. The forcing fre-
quency is set to ω = 2.0 to produce the three solutions
on the three branches of the hysteresis curve. In Fig. 2,
Monte Carlo histograms are presented for the solution
convergence of the TDC2, TDCn2m6, TDCn2m10,
and TDCn2m20.

For the TDC systems, the probability of con-
verging to any particular solution is highly sensi-
tive to initial conditions. Figure 2(a) displays that the
TDC2 yields 7244 unique solutions out of 10,000 tri-
als. This means that the TDC2 algebraic system ac-
commodates a large number of solutions computa-
tionally. Physically, almost all of them are fake so-
lutions for the Duffing oscillator. In this case, the
TDC2 has very slim possibility to converge to the
physical solutions. Figures 2(b)–(d) show that the
TDCn2m6, TDCn2m10, and TDCn2m20 simulations
generate 15, 9, and 3 unique solutions respectively,
where the three true solutions are labeled. Con-
cretely, in the TDCn2m6 simulation, the probabil-
ity of converging to the lower, unstable, and upper
branches are 3.83, 25.97, and 19.98 %, respectively.
In the TDCn2m10 simulation, the probability of con-
verging to the lower, unstable, and upper branches
are 0.18, 23.51, and 69.73 %, respectively. In the
TDCn2m20 simulation, the probability of converging
to the lower, unstable, and upper branches are 5.98,
28.13, and 65.89 %, respectively. In sum, the proba-
bility of converging to a physical solution is 49.78 %
for the TDCn2m6 simulation, and 93.42 % for the
TDCn2m10 simulation, and 100 % for the TDCn2m20
simulation.

In general, the probability of the attraction to phys-
ical solutions increases as more collocation points are
chosen. To sum up, the extended time domain col-
location method (TDC) with more collocation points
can relieve or eliminate the nonphysical solution phe-
nomenon. Theoretical investigations of the dealiasing
function of the extended TDC is undergoing and will
be done in another paper.

5 Initial values for the Newton–Raphson method

In Sect. 3, the time domain collocation method (TDC)
has been formulated. The algebraic system account-
ing for harmonic/superharmonic solutions was given
in Eq. (8). In order to solve the resulting NAEs, one
has to give initial values for the Newton iterative pro-
cess to start. It is known that the system may have
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Fig. 2 Monte Carlo histograms for the solutions of the
TDC system at ω = 2. (a) Results for TDC2. (b) Results
for TDCn2m6. (c) Results for TDCn2m10. (d) Results for
TDCn2m20

multiple solutions, viz, multiple steady states under a
given set of parameters. Hence, it is expected to pro-
vide the deterministic initial values to direct the alge-
braic system to the desired solutions. In this section,
we provide the appropriate initial values by using the
second-order harmonic balance method (HB2). The
initial values for undamped and damped systems are
considered separately.

5.1 Initial values for the NAE system, for the
undamped Duffing oscillator

In this subsection, we consider the undamped system:

ẍ + x + βx3 = F cosωt. (31)

Because the damping is absent, the trial function to
Eq. (31) can be simplified to [20]

x(t) =
N∑

n=1

An cos (2n − 1)ωt. (32)

We simply consider the second-order harmonic bal-
ance method (HB2). The approximate solution is cho-
sen as

x(t) = A
(2)
1 cosωt + A

(2)
2 cos 3ωt. (33)

The superscript (2) is introduced, on one hand, to dis-
tinguish from the coefficients A1, A2 in the N th order
approximation in Eq. (32), and on the other hand to de-
note the order of approximation. For brevity, however,
we omit the superscript unless needed.

Substitution of Eq. (33) in Eq. (31) and balancing
the coefficients of cosωt and cos 3ωt , leads to two si-
multaneous nonlinear algebraic equations

4
[
F + A1

(
ω2 − 1

)]

= 3A1
(
A2

1 + A1A2 + 2A2
2

)
β, (34a)

4A2 + (
A3

1 + 6A2
1A2 + 3A3

2

)
β = 36A2ω

2. (34b)

Equations (34a) and (34b) can be solved immedi-
ately by Mathematica, to obtain coefficient variables
of HB2. We set the initial values of the coefficients of
the N th order approximation in Eq. (32) as

A1 = A
(2)
1 , A2 = A

(2)
2 ,

A3 = A4 = · · · = AN = 0.
(35)
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Then we can solve the collocation resulting NAEs,
similar to Eq. (8), by the Newton–Raphson method.

We note that Eqs. (34a) and (34b) may have mul-
tiple sets of solutions at a certain frequency. Since in
Eq. (33) we included the first and the third harmonic
(i.e., third superharmonic) in it, the multiple sets of
solutions can be either harmonic solution or third su-
perharmonic solution, by HB2. Each set of solutions
of Eqs. (34a) and (34b), may direct the collocation-
resulting NAEs to its corresponding high order ap-
proximation as will be verified later.

5.2 Initial values for the NAEs arising from the
damped system

The second-order approximation for the damped sys-
tem as Eq. (4) is

x(t) = A1 cosωt + B1 sinωt + A2 cos 3ωt

+ B2 sin 3ωt. (36)

Substitution of Eq. (36) into the Duffing equation (4)
and then collecting coefficients of cosωt , sinωt ,
cos 3ωt , and sin 3ωt , leads to a system of NAEs as
follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A1
[
4 − 4ω2 + 3β

(
A2

1 + A1A2 + 2A2
2 + B2

1

+ 2B1B2 + 2B2
2

)]

= 4F + B1(3βA2B1 − 4ξω)

B1
[
4 − 4ω2 + 3β

(
A2

1 − 2A1A2 + 2A2
2 + B2

1

− B1B2 + 2B2
2

)]

= 4ξωA1 − 3βA2
1B2

A2
[
4 − 36ω2 + 3β

(
2A2

1 + A2
2 + 2B2

1 + B2
2

)]

= βA1
(
3B2

1 − A2
1

) − 12ξωB2

B2
[
4 − 36ω2 + 3β

(
2A2

1 + A2
2 + 2B2

1 + B2
2

)]

= 12ξωA2 + βB1
(
B2

1 − 3A2
1

)
.

This system of NAEs determines the coefficients of
the second order approximation by HB2. It may have
multiple sets of solutions under a given system of pa-
rameters, which may be either fundamental harmonic
or third superharmonic solutions. The initial values of
the harmonic solution by HB2 lead to the correspond-
ing harmonic solution by TDCN . Similarly, the initial
values of the superharmonic solution by HB2 lead to
the corresponding superharmonic solution by TDCN .

The initial values for the N th order approximation can
be chosen as:

A1 = A
(2)
1 , B1 = B

(2)
1 ,

A2 = A
(2)
2 , B2 = B

(2)
2 ,

A3 = A4 = · · · = AN = 0,

B3 = B4 = · · · = BN = 0.

(37)

Consequently, the collocation-resulting NAEs can be
solved. Then we can obtain the N th order approxima-
tion by inserting the coefficient variables into the trial
function in Eq. (6).

6 Numerical simulation

In this section, we apply the original time domain
collocation method (TDC) to investigate the response
curves of the Duffing equation. Specifically, we focus
on examining the properties of the accurate third su-
perharmonic response curves, and discuss some pecu-
liar behaviors.

6.1 Undamped system

We apply the time domain collocation method (TDC)
to solve an undamped Duffing equation. Moriguchi
[13] investigated the undamped Duffing equation hav-
ing the form

ẍ + x + βx3 = F cosωt (38)

by numerical integration method.
They found various orders of resonances in this

system. Now we apply the time domain collocation
method to solve both the fundamental harmonic and
third superharmonic solutions. In accordance with the
current topic, we concentrate on the frequency range
where the third superharmonic may occur. In this case,
the parameters β and F are specified to be 4 and 1, re-
spectively.

6.1.1 Initial values, and response curves by HB2

We solve Eqs. (34a) and (34b), arising from HB2, to
obtain the initial values for the higher order approx-
imation. Because of the simplicity of the system, we
can plot the A1 vs. ω and A2 vs. ω curves. Figure 3
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Fig. 3 The coefficient-frequency relationship of the Duffing
equation: ẍ + x + 4x3 = cosωt , by HB2. Since B1 and B2 are
zero, thus |A1| is the amplitude of the fundamental harmonic
component, and |A2| is the amplitude of the third superharmonic
component

indicates that the Duffing equation has one periodic
solution, denoted by SOL1, when the frequency is be-
low ωc. If ω > ωc, there exist three solutions, namely
SOL1, SOL2, SOL3 marked in Fig. 3. For SOL1, it
can be seen from Fig. 3 that the fundamental harmonic
dominates the oscillation where ω < 0.4. The third
harmonic component can be regarded to be significant
after about ω = 0.55. Thus, SOL1 may be either fun-
damental harmonic solutions or third superharmonic
solutions, depending on the frequency range. There
exists a handover region or transitional region for the
harmonic and third superharmonic oscillations.

For SOL2, the third harmonic amplitude, |A2|, is
always larger than the fundamental amplitude, |A1|.

Hence, SOL2 is always a third superharmonic solu-
tion.

For SOL3, the third harmonic can be comparable
with the fundamental harmonic from the onset ωc to a
certain frequency. As the frequency increases, the fun-
damental harmonic finally dominates the oscillation.
Therefore, there exists a transitional region between
the two modes of oscillations.

In order to solve Eqs. (34a) and (34b), we need to
choose a frequency ωg , where by the response curves
can be obtained. Therefore, ωg is called the generat-
ing frequency. Once the second-order approximation
by HB2 has been obtained, we apply Eq. (35) to gen-
erate the initial values for the higher order approxima-
tion. The collocation resulting NAEs can be solved by
the Newton–Raphson method. The main principle of
choosing a proper ωg is to select a frequency where
there exist as many solutions as possible, so that more
response curves can be obtained. It can be seen that at
a frequency greater than ωc, the system has three so-
lutions. Hence, we chose the ωg > ωc so that all three
response curves can be generated from ωg .

6.1.2 High order approximation by collocation
method

In this case, the ωg is chosen to be 0.6. The initial
values are tabulated in Table 1. Using the initial val-
ues, we can solve the collocation-resulting NAEs to
obtain a high order approximation. Throughout the pa-
per, we set the convergence criterion ε of the Newton–
Raphson solver to be 10−10.

The results by TDC12 are tabulated in Table 2.
There are three sets of solutions at ωg = 0.6, so that we
can apply the frequency marching procedure, march-
ing from ωg back and forth to find the three frequency-
response curves, which are plotted in Fig. 4(a). In
computation, the initial values given by HB2 are used
only at the generating frequency.

The comparison of Tables 1 and 2 shows that each
of the three sets of initial values by HB2 successfully

Table 1 Initial values, by HB2, at ωg = 0.6

cosωt cos 3ωt

SOL1 0.19067672 0.81922565

SOL2 0.24975525 −0.79275590

SOL3 0.50192378 0.21388726
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Table 2 Results by TDC12, at ωg = 0.6

SOL1 SOL2 SOL3

cosωt 0.1390275 0.2492567 0.4732840

cos 3ωt 0.7912959 −0.7484906 0.2440950

cos 5ωt 0.0925313 0.0644968 0.0420799

cos 7ωt 0.0304983 0.0291257 0.0098560

cos 9ωt 0.0250495 −0.0217225 0.0023128

cos 11ωt 0.0060974 0.0027251 0.0005293

cos 13ωt 0.0019951 0.0011719 0.0001219

cos 15ωt 0.0009751 −0.0006941 0.0000281

cos 17ωt 0.0003135 0.0000893 0.0000064

cos 19ωt 0.0001110 0.0000406 0.0000015

cos 21ωt 0.0000508 −0.0000207 0.0000003

cos 23ωt 0.0000151 0.0000027 0.0000000

directs the NAEs, arising from twelfth-order approx-
imation of TDC12, to its corresponding solution. It
confirms the validity of using the HB2 to supply the
initial values.

Now we investigate the three solutions at the fre-
quency ωg . The x versus t curves in one cycle are pro-
vided in Fig. 4. Figures 4(b), (c), and (d) correspond to
the solutions of SOL2, SOL1, and SOL3 in Table 2, re-
spectively. It can be seen that Figs. 4(b), (c) have three
local peaks in one period, while Fig. 4(d) has only one.
This can be explained by Table 2. In SOL2 and SOL1,
the third harmonic is more significant than the first har-
monic, so the third harmonic component plays a more
important role in x(t). In SOL3, the fundamental har-
monic component is more significant than others, so
it displays more like a simple harmonic oscillation.
However, the third harmonic components of the three
solutions are comparable with the fundamental ones.
Thus, all the three solutions can be regarded as third
superharmonic oscillations.

6.1.3 Amplitudes of each harmonic

The amplitudes of each harmonic are given in Fig. 5,
in order to explore the significance of each harmonic.
In accordance with the notations in Eq. (32), the am-
plitudes of the first, third, and fifth harmonic are |A1|,
|A2|, and |A3|, respectively. The peak amplitude, e.g.,
max |x|, is plotted by heavy lines in figures. We inves-
tigate the three curves (marked by SOL1, SOL2, and
SOL3) in Fig. 5(a) separately.

Fig. 4 The response curves and the three x versus t curves (at
ω = 0.6) of the Duffing equation: ẍ + x + 4x3 = cosωt , by
TDC12
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Fig. 5 The amplitude/harmonic amplitudes versus frequency
curves of the Duffing equation: ẍ+x+4x3 = cosωt , by TDC12

Figure 5(b) shows that SOL1 is a third superhar-
monic solution in the region from about ω = 0.5 to
infinity, since the third harmonic component is signifi-
cant compared with the first harmonic component. The
amplitude of the fifth harmonic, i.e., |A3|, can be com-
parable with that of the third harmonic in [0.35,0.5].
Therefore, the onset of the third superharmonic so-
lution of SOL1 is blurry. It should be some value
around 0.5. It depends on how one defines a third su-
perharmonic solution, that is, how significant should
the third superharmonic component be, comparing
with the harmonic and fifth superharmonic parts, so
as to regard the solution as a third superharmonic so-
lution.

The onset frequency of the multiple valued re-
sponse is ωB , predicted by TDC12. Figure 5(c) plots
the curve associated with SOL2. It displays that the
fifth superharmonic is very weak. The third superhar-
monic component is larger than the first harmonic at
the onset, and keeps being so with the increase of the
frequency. Thus, SOL2 is the third superharmonic so-
lution in the whole branch.

The response curve associated with SOL3 is plotted
in Fig. 5(d). The first and third harmonic components
are comparable from the onset ωB to a certain value.
Thus, in this region, the solution can be regarded as
a third superharmonic solution. As the frequency in-
creases to a large enough value, the solution becomes
a harmonic one, where all higher harmonics are weak.
Overall, there exists a transitional region between the
harmonic solution and the third superharmonic solu-
tion for SOL3.

6.2 Damped system

6.2.1 Multiple valued response

In this section, the system: ẍ + ξ ẋ + x + βx3 =
F cosωt is considered. Herein, we specify the parame-
ters as: ξ = 0.01, β = 4, and F = 1. In order to see the
contributions of each harmonic, we evaluate the am-
plitudes of the lowest few harmonics separately. The
peak/harmonic amplitude-frequency response curves
are given in Fig. 6, where the solid and dashed curves
are corresponding to the stable and unstable periodic
solutions, respectively. We see that the multivalued
response curves (from ωC to ωD) constitute a loop,
which is in contrast to the undamped system. The am-
plitudes of the first, third, and fifth harmonic are de-
noted by |a1|, |a3|, and |a5|, respectively.
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Fig. 6 The peak/harmonic amplitude-frequency response
curves of the Duffing equation: ẍ + 0.01ẋ + x + 4x3 = cosωt ,
by TDC12

Figure 6(b), shows that in the region of about ω ∈
[0.45,ωD], the first harmonic and third harmonic are
significant and comparable. Thus, the oscillation in
this region can be regarded as a third superharmonic
one. Also, we notice that |a5| can be comparable with
|a3| in about [0.35,0.45], where the fifth superhar-
monic solution exists. Therefore, SOL1 has a transi-
tional region between the third and the fifth superhar-
monic oscillations.

In Fig. 6(c), |a5| is weak; |a3| is larger than |a1|.
Therefore, the oscillations belonging to this curve
are the third superharmonic oscillations in the entire
branch.

In Fig. 6(d), the third harmonic components are sig-
nificant from ωC to a blurry value (it depends on how
to define “significant”). In this region, the solution can
be regarded as a third superharmonic solution. As the
frequency increases, the fundamental harmonic com-
ponent finally dominates others. The oscillation be-
comes a fundamental harmonic oscillation. Thus, there
is a transitional region for the two modes of oscilla-
tions.

In sum, we conclude that the two stable curves
(SOL1, SOL3) experience a transitional region, where-
in two modes of oscillations hand over continuously.
For the unstable curve, SOL2, it is a third superhar-
monic oscillation in the entire branch, i.e., [ωC,ωD].
The defined transitional region is believed to be first
examined in literature.

6.2.2 Single valued response

We now turn to study a strongly damped Duffing equa-
tion: ẍ+0.2ẋ+x+4x3 = cosωt . The peak amplitude,
and the amplitudes of up to the seventh harmonic, are
plotted in Fig. 7, wherein the amplitudes of the first,
third, fifth, and seventh harmonic are denoted by |a1|,
|a3|, |a5|, and |a7|, respectively. It shows that the re-
sponse curve is a single valued one in this case.

Figure 7 displays that the peak amplitude versus
frequency curve has three local maximum values in
the marked areas E, F , and G, arising from the lo-
cal maximum values of |a7|, |a5|, and |a3|, respec-
tively. Therefore, the regions of E, F , and G are corre-
sponding to the seventh, fifth, and third superharmonic
solutions, respectively. Similar to the multiple valued
case, the regions for different modes of oscillations are
indefinite. Different modes of oscillations hand over
continuously in the transitional region.
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Fig. 7 The peak/harmonic amplitude-frequency response
curves of the Duffing equation: ẍ +0.2ẋ +x +4x3 = cosωt , by
TDC12. E: the seventh superharmonic response region. F : the
fifth superharmonic response region. G: the third superharmonic
response region

6.2.3 The effects of parameters: ξ , β and F

Figure 8 plots the frequency response curves for vari-
ous values of damping, nonlinearity, and external force
in the region where the third superharmonic response
occurs. Figure 8(a) indicates that a smaller damping
can locally enhance the upper branch of the loop. As
the damping goes to zero, the loop will approach to
infinity as the case of the undamped system. Con-
versely, the multivalued region shrinks as the damping
increases. The multivalued response ceases to occur
when the damping is increased to a certain value. Fig-
ure 8(a) shows that the response curve is single valued
when the damping is raised up to 0.2.

Figure 8(b) provides the response curves with a
varying β . We see that a larger nonlinearity bends and
shifts the response curves to the right. Also, it lowers
the response amplitude in the considered region.

The effect of the amplitude of the impressed force
is shown in Fig. 8(c). It displays that when F in-
creases, the response amplitude increases globally. Be-
sides, a larger force enlarges and shifts the multivalued
region to the right.

6.2.4 Jump phenomena

To give a whole understanding of the response of
the Duffing equation, Fig. 9 plots the 1/3 subhar-
monic [2], the fundamental harmonic, and the third

Fig. 8 The amplitude versus frequency curves for the Duffing
equation ẍ + ξ ẋ + x + βx3 = F cosωt , with various values of
ξ , β and F , by TDC12

superharmonic response curves of the Duffing equa-
tion.

It reveals that the jump phenomena occur in both
harmonic and third superharmonic responses. To ex-
plain this, letting the amplitude of the external force
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be fixed, we vary the forcing frequency slowly up
and down. For the superharmonic response, the fre-
quency starts at about 0.4. As the frequency is in-
creased, the amplitude increases through point A until
point D is reached. As the frequency is increased fur-
ther, a jump-down from D to B takes place. Let the
frequency start at ω = 0.7. As the frequency is de-
creased, the amplitude increases through point B un-
til point C is reached. As the frequency is decreased
further, a jump-down from C to A takes place. Thus,
there are two jump-downs in the third superharmonic
response; see Fig. 9(b). For the harmonic response,
there is a jump-down from E to F on the increasing
road, and a jump-up from G to H on the decreasing
road; see Fig. 9(a).

It needs to be noted that the third superharmonic re-
sponse curve is attached to the fundamental response
curve, while the 1/3 subharmonic response curve is
isolated. It means that if the forcing frequency is in-
creased or decreased through their existing regions
slowly, the superharmonic response appears. The 1/3
subharmonic response, however, does not appear. This

Fig. 9 The one third subharmonic, fundamental harmonic and
third superharmonic response curves of the Duffing equation:
ẍ + 0.01ẋ + x + 4x3 = cosωt

stresses the importance of exploring the superhar-
monic solutions.

7 The accuracy of the time domain collocation
method

The x versus t curves and the phase portraits of SOL3
of the Duffing equation: ẍ + x + 4x3 = cos t , by
TDC12 and HB12 are given in Fig. 10. It indicates
that the TDC12 and the HB12 agree very well with
each other.

Furthermore, Fig. 11 plots the absolute differences
of x between the two methods. We can see that max-
imum differences between the two methods of order
N = 5,8,10 and 12 are about 5.54 × 10−6, 1.21 ×
10−9, 5.67 × 10−12 and 2.68 × 10−14, respectively. It
indicates that a higher order time domain collocation
method can be more accurate. In sum, Figs. 10 and 11
verify the high accuracy of the TDC.

Fig. 10 Comparisons of the x vs. t and phase portraits on
the lower branch response curve of the Duffing equation:
ẍ + x + 4x3 = cos t , by TDC12 and HB12
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Fig. 11 The absolute differences of the displacement x by the
time domain collocation method (TDC) and the harmonic bal-
ance method (HB) with various orders of approximations

8 Conclusions

In this paper, the time domain collocation method
(TDC) was applied to find the third superharmonic
solutions of the Duffing equation. The collocation of
the residual error in the ODE, at discrete time inter-
vals, was performed on a whole period of the con-
sidered oscillation. The collocation-resulting nonlin-
ear algebraic equations were solved by the Newton–
Raphson method. Based on the proposed scheme, the
effects of each parameter on the amplitude-frequency
response were examined. The multivaluedness, jump
phenomenon and transitional region [which to the au-
thors’ best knowledge has never been discussed in lit-
erature] of the third superharmonic response were ex-
plored. The HDHB method was demonstrated to be
the TDC method in disguise. In addition, the TDC
was also extended to a new version by collocating at
more points. It was demonstrated that the extended
TDC method remarkably relieved or even eliminated
the nonphysical solution phenomenon upon compar-
ing with the original TDC and the HDHB method. Fi-
nally, numerical examples confirmed that the time do-
main collocation method (TDC) was simple and ac-
curate in obtaining the periodic solutions of the Duff-
ing equation. Also, this simple approach can be read-
ily applied to solve other nonlinear oscillatory prob-
lems.
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