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Abstract Projective synchronization of a class of
complex networks is investigated using second-order
sliding mode control. The sliding surface and the con-
trol input are designed based on stability theory. The
Burgers system with spatiotemporal chaotic behavior
in the physics domain is taken as nodes to consti-
tute the complex network, and the Fisher–Kolmogorov
system is taken as the tracking target. The artificial
simulation results show that the synchronization tech-
nique is effective.
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1 Introduction

Since Emelyanov proposed a kind of sliding mode
control method (SMC) [1], the theoretical research
on the sliding mode control has attracted gradually
widespread concern and it becomes a very important
branch in the control field because the sliding mode
control method takes on many advantages, for exam-
ple, the system stability only depends on the setting
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of sliding mode surface and its parameters, the sys-
tem exhibits the robustness due to the external noise
disturbance or the parameters perturbation, and it also
shows the characteristics of rapid response and is easy
to realize in the physics domain, etc. [2–6]. The atten-
tive object is also enlarged from the original investiga-
tion of the linear system with single-input and single-
output to the system with multi-input and multi-output
in which the errors are taken as state variables [7–9].
Especially in recent years, with the rapid development
of the computer, high-power electronic switching de-
vices, and other technologies, the sliding mode con-
trol theory and applied research have begun to enter
a new phase. The discussion of the tracking control
and synchronization on nonlinear continuous systems,
discrete systems, and even chaotic systems is involved
[10–14]. It is expected that the sliding mode control
theory can be widely used in tracking control and syn-
chronization of various complex networks in the near
future. The reasons lie in that the synchronization phe-
nomenon of a complex network not only widely ex-
ists in nature, but also has wide practicability in many
fields, such as laser transmission, information commu-
nication, Internet, automation, and so on. Therefore,
the investigation of tracking control and synchroniza-
tion for complex networks using sliding mode control
theory is of important practical significance.

The literatures reported previously focused mainly
on the traditional first-order sliding mode control
method. When the system trajectory reaches the
switching surface, the chattering is caused because
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the speed is limited and the inertia compels the motor
points pass through the switching surface, and it super-
imposes on the ideal sliding mode. Consequently, the
first-order sliding mode control method is incomplete,
that is, there exists high frequency chattering in the
vicinity of the sliding surface. In other words, the for-
mation of the high frequency chattering is owed to the
discontinuous control switching operation. So, how to
eliminate chattering becomes a key issue for the in-
vestigation of sliding mode control. At present, some
ways to eliminate high frequency chattering have been
proposed and the desired control effect is achieved,
such as the filter method [15, 16], the reducing switch-
ing gain method [17], the linear matrix inequality
(LMI) method [18], the fan-shape zone method [19],
the so-called high-order sliding mode control method
with second-order and second-order over [20, 21], and
so on.

In this paper, projective synchronization of a class
of complex network is investigated using second-order
sliding mode control. The sliding surface and the con-
trol input are designed based on stability theory. The
Burgers’ system with spatiotemporal chaotic behavior
in physics domain is taken as nodes to constitute the
complex network, and the Fisher–Kolmogorov system
is taken as the tracking target. The artificial simulation
results show that the synchronization technique is ef-
fective.

2 Mechanism for network projective
synchronization

Consider a complex network consisting of N nodes,
with each node being an n-dimensional spatiotempo-
ral chaos system. The state equation of node i can be
described by

∂xi(r, t)

∂t
= F

(
xi(r, t)

) + ε

N∑

j=1

cij xj (r, t) + ui

= Axi(r, t) + f
(
xi(r, t)

) + ε

N∑

j=1

cij xj (r, t)

+ ui (i = 1,2, . . . ,N) (1)

where xi(r, t) is the state variable of node i in the net-
work, and xi(r, t) ∈ Rn. ε is the coupling strength be-
tween the network nodes, cij is matrix element of the
coupling matrix C, and it represents the topological

structure of the network. ui is the sliding mode con-
trol input.

Assuming that the tracking target is xd(r, t), and
definition of the error between network and tracking
target is

ei(r, t) = xi(r, t) − αixd(r, t) (i = 1,2, . . . ,N) (2)

where αi is scale factor of projective synchronization.
Error evolution equation can be further obtained as

follows:

∂ei(r, t)

∂t
= ∂xi(r, t)

∂t
− αi

∂xd(r, t)

∂t

= Axi(r, t) + f
(
xi(r, t)

) + ε

N∑

j=1

cij xj (r, t)

+ ui − αi

∂xd(r, t)

∂t
(3)

The design of sliding mode control is usually di-
vided into two processes. First, the appropriate slid-
ing surface is designed to make the controlled system
reach the sliding surface and do the expected charac-
teristics movement along the sliding surface. Second,
the sliding mode controller or sliding mode control in-
put is designed to ensure that the controlled system can
converge to the sliding surface from an arbitrary initial
state. Therefore, the sliding surface is defined as s(r, t)

and the relation of dynamical evolution satisfies

∂si(r, t)

∂t
+ λisi(r, t)

= ei(r, t) −
∫ t

0
(A + L)ei(r, τ ) dτ (4)

where L is configurable gain.
According to second-order sliding mode control

theory, it must satisfy si(r, t) = ∂si(r, t)/∂t =
∂2si(r, t)/∂t2 = 0 when the sliding mode surface is
moving. Then it can be obtained

∂ei(r, t)

∂t
= (A + L)ei(r, t) (5)

If A + L is negative definite, it is easy to know that
the designed sliding mode surface can stable asymp-
totically.

In order to determine the form of sliding mode con-
trol input, the Lyapunov function is constructed as

V = 1

2

N∑

i=1

s2
i (r, t) + 1

2ϕ

N∑

i=1

[
∂si(r, t)

∂t

]2

(6)

where ϕ is a positive constant.
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Then the derivative form of V can be described as
follows:

∂V

∂t
=

N∑

i=1

si(r, t)
∂si(r, t)

∂t
+ 1

ϕ

N∑

i=1

∂si(r, t)

∂t

∂2si(r, t)

∂t2

=
N∑

i=1

si(r, t)
∂si(r, t)

∂t
+ 1

ϕ

N∑

i=1

∂si(r, t)

∂t

×
[
−λi

∂si(r, t)

∂t
+ ∂ei(r, t)

∂t
− (A + L)ei(r, t)

]

(7)

Defining the form of sliding mode input as

ui = λi

∂si(r, t)

∂t
+ Lei(r, t) − Aαixd(r, t) − f

(
xi(r, t)

)

− ε

N∑

j=1

cij xj (r, t) + αi

∂xd(r, t)

∂t

− ηsign

(
∂si(r, t)

∂t

)
(8)

then Eq. (7) can be simplified into

∂V

∂t
=

N∑

i=1

[
si(r, t)

∂si(r, t)

∂t

− η

ϕ

∂si(r, t)

∂t
sign

(
∂si(r, t)

∂t

)]

≤
N∑

i=1

(∣∣si(r, t)
∣∣ − η

ϕ

)∣∣∣∣
∂si(r, t)

∂t

∣∣∣∣ (9)

where η is a positive adjustment parameter.
An appropriate value of the adjustment parameter

η is selected to satisfy
∣∣si(r, t)

∣∣ − η

ϕ
< 0 (10)

and exist
∂V

∂t
< 0 (11)

So, the projective synchronization between net-
work and tracking target is realized based on Lya-
punov theorem. Namely, each node in complex net-
work can track the tracking target according to the size
of the scaling factor.

3 Simulation analysis

The one-dimensional Burgers’ systems with spa-
tiotemporal chaotic behavior in physics domain are

Fig. 1 Spatiotemporal evolution of state variable x(r, t)

Fig. 2 Phase diagram of Burgers system

taken as nodes to constitute a complex network, and
the Fisher–Kolmogorov system is taken as the tracking
target. The aim is to check the validity of the above-
mentioned theory.

The dynamical equation of one-dimensional Burg-
ers system can be written as [22]

∂x(r, t)

∂t
= −k

∂x(r, t)

∂r
+ ∇2x(r, t) (12)

where k is a parameter, x(r, t) is state variable of sys-
tem, and ∇2 = ∂2/∂r2.

When k is taken as 4, the spatiotemporal evolution
and phase diagram of the state variable for the Burg-
ers’ system are shown in Figs. 1 and 2, respectively.

The state equation of Fisher–Kolmogorov can be
described as [23]
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Fig. 3 Spatiotemporal evolution of state variable xd(r, t)

Fig. 4 Phase diagram of Fisher–Kolmogorov system

∂xd(r, t)

∂t
= μxd(r, t)

(
1 − xd(r, t)

ρ

)
+ D∇2xd(r, t)

(13)

where μ and ρ are parameters and xd(r, t) is state
variable of system. D is the diffusion coefficient, and
∇2 = ∂2/∂r2.

The spatiotemporal dynamics behaviors of the
Fisher–Kolmogorov system with different parameters
are extremely abundant. The spatiotemporal evolution
and phase diagram of state variable for the system are
shown in Figs. 3 and 4 while the parameters are taken
as ρ = 1,μ = 0.5, and diffusion coefficient D = 5.

It can be seen from Figs. 1–4, the bifurcation char-
acteristics and the attraction domain obtained from the
Burgers’ system and the Fisher–Kolmogorov system,
respectively, are different because two spatiotemporal

chaos systems are topological isomerism, leading to a
significant difference in the spatiotemporal evolution
and phase diagram.

N -Burgers equations (12) are taken as nodes of
the network and are constructed according to the state
equation (1).

∂xi(r, t)

∂t
= −k

∂xi(r, t)

∂r
+ ∇2xi(r, t)

+ ε

N∑

j=1

cij xj (r, t) + ui (14)

In simulation, the connections among nodes are ar-
bitrarily taken as the unidirectional star connection,
and the coupling matrix C is as follows:

C =

⎡

⎢⎢⎢⎢
⎣

0 0 0 · · · 0
1 −1 0 · · · 0
1 0 −1 · · · 0

· · · · · · · · · · · · · · ·
1 0 0 · · · −1

⎤

⎥⎥⎥⎥
⎦

(15)

Based on Eq. (8), the structure of sliding mode con-
trol input can be determined as

ui = λi

∂si(r, t)

∂t
+ Lei(r, t) + k

∂xi(r, t)

∂r
− ∇2xi(r, t)

− ε
(
x1(r, t) − xi(r, t)

)

+ αi

[
μxd(r, t)

(
1 − xd(r, t)

ρ

)
+ D∇2xd(r, t)

]

− ηsign

(
∂si(r, t)

∂t

)
(16)

Four nodes are adopted to construct a complex net-
work, and the parameters are taken as λi = 1, ϕ =
1,L = 2, η = 0.5. The phase diagrams of projec-
tive synchronization between the different nodes and
tracking target are shown in Figs. 5–8 while the
scale factor of projective synchronization are α1 =
−1, α2 = 2, α3 = 0.5, α4 = −3, respectively.

When the projective synchronization between the
complex network and tracking target is realized and
based on Eq. (2), ei(r, t) = 0, namely xi(r, t) =
αixd(r, t). If the scaling factor of projective synchro-
nization is taken as α1 = −1, it means the state vari-
able amplitude of the first node in network is equal to
that of the Fisher–Kolmogorov system, which serves
as the tracking target and both variable amplitudes
are in opposite symbols, corresponding to the case
in Fig. 5; α2 = 2 means the state variable amplitude
of the second node is 2 times as that of the Fisher–
Kolmogorov system with the same symbols, shown
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Fig. 5 Phase diagram of projective synchronization (α1 = −1)

Fig. 6 Phase diagram of projective synchronization (α2 = 2)

as in Fig. 6; α3 = 0.5 means the state variable ampli-
tude of the third node is half as that of the Fisher–
Kolmogorov system with the same symbols, corre-
sponding to the case in Fig. 7; α4 = −3 means the
state variable amplitude of the fourth node is 3 times
as that of the Fisher–Kolmogorov system with the op-
posite symbols, corresponding to the case in Fig. 8.
All these results indicate that each node in a complex
network can track the tracking target according to the
value of scale factor.

4 Conclusion

Based on second-order sliding mode control, the pro-
jective synchronization of a complex network is inves-

Fig. 7 Phase diagram of projective synchronization (α3 = 0.5)

Fig. 8 Phase diagram of projective synchronization (α4 = −3)

tigated in this work. The sliding surface and the control
input are designed and their effectiveness is analyzed
based on the theory of stability. The Burgers’ system
with spatiotemporal chaotic behavior in the physics
domain is taken as nodes to constitute a complex net-
work, the Fisher–Kolmogorov system is taken as the
tracking target. The artificial simulation results show
that no matter what value the scaling factor of pro-
jective synchronization takes, each node of complex
network can track the tracking target according to the
value of the scale factor.
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