
Nonlinear Dyn (2013) 73:397–403
DOI 10.1007/s11071-013-0794-y

O R I G I NA L PA P E R

Triple mode alignment in a canonical model of the blue-sky
catastrophe

Robert A. Van Gorder

Received: 3 October 2012 / Accepted: 22 January 2013 / Published online: 5 February 2013
© Springer Science+Business Media Dordrecht 2013

Abstract The blue-sky catastrophe (BSC) is a homo-
clinic bifurcation of a saddle node periodic orbit of
codimension one, which has been found to occur in a
number of physically relevant dynamics systems. The
onset and termination of the BSC in a chaotic system is
shown to coincide with the occurrence of triple mode
alignment in a canonical model undergoing the BSC
when the model is recast as an oscillator system. Typ-
ically, such behavior is only seen in hyperchaotic sys-
tems of dimension greater than three. Hence, in the
case of three dimensional chaotic systems, competi-
tive modes may under some circumstances be used in
the prediction of the blue-sky catastrophe. Limitations
to this approach are also discussed.

Keywords Blue-sky catastrophe · Onset of chaos ·
Competitive modes · Volume contraction

1 Introduction

The blue-sky catastrophe (BSC) is a homoclinic bifur-
cation of a saddle node periodic orbit of codimension
one. As discussed in [1], chaotic attractors may also
appear or bifurcate via BSC, which occur when an at-
tractor touches the inset of a saddle cycle [2]. Of the
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seven known bifurcations of a periodic orbit, it was the
last to be discovered [3].

Shilnikov and Cymbalyuk [4] studied a continu-
ous and reversible transition between periodic tonic
spiking and bursting activities in a neuron model and
determined the model exhibits the BSC; such a tran-
sition constitutes serves as a biophysically plausible
mechanism for the regulation of burst duration. These
results were extended by Channell, Cymbalyuk, and
Shilnikov [5], where it was shown that as the ac-
tivation kinetics of the slow potassium current are
shifted toward depolarized membrane potential val-
ues, the bursting phase accommodates incrementally
more spikes into the train. For a further analysis a the
neuron model, see Shilnikov [6]. Abraham and Stew-
art [7] studied the BSC in the Shaw variant of the van
der Pol oscillator used as a model of a forced relax-
ation oscillator. Meanwhile, BSC was shown to oc-
cur in a double-well Duffing–van der Pol oscillator by
Venkatesan and Lakshmanan [8], in the forced Brus-
selator by Knudsen et al. [9], in the delayed circle map
(a discrete system) by Franciosi [10]. Meca et al. [11]
discovered the BSC in a small Prandtl number binary
mixture contained in a laterally heated cavity. Here,
the BSC appears at the destruction of a stable orbit for
certain Rayleigh numbers. Likewise, bursting in the
Taylor–Couette flow due to the BSC was observed by
Abshagen et al. [12]. McCann and Yodzis [13] find the
BSC in a population model, and show that it can serve
as one mechanism for population extinction. The re-
lation between population extinction and the BSC was
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further investigated by Schreiber in [14]. The BSC was
found in a model of parametrically excited hinged-
clamped beams by Chin and Nayfeh [15]. Both Nord-
strom Jensen and True [16] along with the more recent
work of Gao, Li, and Yue [17] found the BSC in a sym-
metric wheel-rail system. A fuzzy BSC was reported
by Hong and Sun [18].

Due the diverse applications in which nonlinear
models exhibit the BSC, it is clear that there would be
some utility in predicting the occurrence of the BSC.
McRobie [19] reported that the first change in the pe-
riod one Birkhoff signature is observed to occur close
to (and shortly after) the chaotic escape (i.e., the BSC)
of the primary resonant attractor. In the present paper,
we show that the onset of the blue-sky catastrophe can
be predicted by the use of competitive modes [20–26].
In particular, at the onset of the blue-sky catastrophe,
we find that three mode frequencies become equal be-
fore breaking away from one another. During the blue-
sky catastrophe, two of the modes are intermittently
competitive, which is what we expect from a chaotic
system. Furthermore, the triple mode alignment corre-
sponds to strong volume contraction in the system. In
this way, the onset and end of the blue-sky catastro-
phe can be approximated through competitive modes,
which therefore serve as an indicator of such behavior.

Within the context of existing works in this area,
it is clear that being able to detect the BSC is useful
for applications. Hence, we consider a specific model
from the literature which admits the BSC, and deter-
mine the features of the mode frequencies near the on-
set and termination of the bursting behavior. This type
of diagnostic could be applied to other nonlinear dy-
namical systems, which display the BSC, such as those
mentioned in [4–18].

2 Competitive modes: An overview

For a differentiable vector field F(x) on R
n and the

related dynamical system ẋ = F(x), let us write

d

dt
Fj (x) = −gj (x)xj + hj (x̂j ), 1 ≤ j ≤ n, (1)

where x̂j = (x1, . . . , xj−1, xj+1, . . . , xn). Then

ẍj + gj (x)xj = hj (x̂j ), 1 ≤ j ≤ n, (2)

is a system of oscillator equations (provided that gj >

0 for two or more j ’s). We refer to the gj ’s as more

frequencies for this reason. Let gk and gl be any two
mode frequencies. Then, if (i) gk and gl are positive
at some t∗ ≥ 0; (ii) gk(t

∗) ≈ gl(t
∗); (iii) at least one

of gk , gl is nonconstant; (iv) at least one hk , hl is a
function of system variables, we say that the modes
xk(t) and xl(t) are competitive at t = t∗. Yao, Yu, and
Essex [20] conjectured that (i)–(iv) are equivalent to
the conditions for a dynamical system to be chaotic.
However, there are some cases where a system satis-
fying (i)–(iv) is nonchaotic (particularly, in a neigh-
borhood of an equilibrium, two modes may become
competitive for all time [24]). However, for all chaotic
systems studied with the method, (i)–(iv) have held in-
termittently. This suggests that (i)–(iv) are necessary
(assuming such conditions hold intermittently, and not
always), though not sufficient, conditions for a system
to be chaotic [25, 26]. In chaotic systems, it is stan-
dard for two modes to be intermittently competitive,
whereas when three modes become competitive we
often have hyperchaos; this was demonstrated in the
case of quadratic response functions in Choudhury and
Van Gorder [26], where known dimension-four hyper-
chaotic dynamical systems were shown to have three
intermittently competitive modes.

3 Two-parameter model for the BSC

As mentioned previously, a number of models exist
which demonstrate the BSC. For sake of demonstra-
tion, we shall consider the two-parameter model

ẋ = (
2 + a − 10

(
x2 + y2))x + y2 + 2y + z2,

ẏ = −z3 − (1 + y)
(
y2 + 2y + z2) − 4x + ay,

ż = (1 + y)z2 + x2 − b,

(3)

which has been used as one model of the BSC [27,
28]. In particular, when a = 0.456 and b = 0.0357,
the system exhibits the BSC; see Fig. 1. This system is
quite distinct from the chaotic or even hyperchoaotic
systems considered in [26], since there are cubic (as
opposed to only quadratic) response functions.

Note that for these parameter values, the system has
volume element expansion or contraction given by

�V = ∇ · (ẋ, ẏ, ż)

= ∂ẋ

∂x
+ ∂ẏ

∂y
+ ∂ż

∂z
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Fig. 1 Phase portrait for the BSC solutions of (3) with
a = 0.456 and b = 0.0357

= 6a + 4

3
− (

30x2 + 12(y + 1/6)2

+ (y − z + 1)2). (4)

From (3), we compute

g1 = −300x4 + (
80 + 40a − 400y2)x2 + 8y

+ (
30

(
z2 + y2) − 2z − 20y

)
x

− (
2 + a − 10y2)2

+ 20y
(
ay − z2 − (1 + y)

(
y2 + 2y + z2)) + 8,

(5)

g2 = −3y4 − 15y3 + (
4a − 4z2 − 26

)
y2 + 3z4

+ (
9a − 52x − 12z2 − z3 − 14

)
y

− 4z3 − 8z2 − 24x

+ (
a − 2 − z2)(z2 − a

)
n + 4 + 2a

+ 2z
(
z2 + x2 − b

)
, (6)

g3 = z4 + (1 + y)z3 − 2(1 + y)2z2

− (
ay − (1 + y)

(
y2 + 2y

) − 2x
)
z

− 2(1 + y)
(
x2) − b. (7)

We know that necessary conditions for mode com-
petitiveness are g1 = g2, g1 = g3, or g2 = g3 for some
t ≥ 0. Without loss of generality, assume that this oc-

Fig. 2 Time series on t ∈ [0,1200] for the BSC solutions of (3)
with a = 0.456 and b = 0.0357

curs at some t = t∗. Then we may define the new vari-
ables τ = t − t∗ so that the τ -system is competitive
at τ = 0. Hence, it often suffices to detect initial data
(x(0), y(0), z(0)) = (x0, y0, z0) for which the modes
become competitive. If a and b are kept arbitrary for
the moment, note that forcing one competitiveness
condition results in a restriction b = b∗(x0, y0, z0, a).
Then forcing another competitiveness condition can
yield a restriction on a, say a = a∗(x0, y0, z0). If
these conditions hold jointly, we can have triple-mode
competitiveness for b = b∗(x0, y0, z0, a

∗(x0, y0, z0)).
Yet, from the above, we know that a = 0.456 and
b = 0.0357 give the BSC, so we can have triple-
mode competitiveness when a∗(x0, y0, z0) = 0.456
and b∗(x0, y0, z0,0.456) = 0.0357, provided such
(x0, y0, z0) exist.

Now, in Fig. 2, we plot the time series over t ∈
[0,1200] for the solutions and in Fig. 3 we plot the
mode frequencies over t ∈ [0,1200], both for a =
0.456 and b = 0.0357. The following pattern emerges:

– when the system begins a bursting pattern, three
modes become competitive for an instant;

– when the system is bursting, two modes are inter-
mittently competitive;

– when the system stops a bursting period, three
modes become competitive for an instant;

– when the system is on a periodic orbit connecting
two bursts, the modes decouple;
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Fig. 3 Mode frequencies g1, g2, g3 on t ∈ [0,1200] for the
BSC solutions of (3) with a = 0.456 and b = 0.0357. We find
that three mode frequencies become intermittently competitive;
this corresponds precisely to the change in qualitative behavior
observed in solutions to (3) due to the BSC

Fig. 4 Time series on t ∈ [540,570] for the BSC solutions
of (3) with a = 0.456 and b = 0.0357. Here, we take a closer
look at an orbit

– the onset of strong volume contraction or expansion
corresponds to the onset of triple mode alignment
(Fig. 6).

This pattern continues as t grows. We isolate one re-
gion of this interesting behavior in Figs. 4 and 5, which
allows us to see each of these four behaviors in the
mode frequencies. In Fig. 4, we plot the correspond-

Fig. 5 Mode frequencies g1, g2, g3 on t ∈ [540,570] for the
BSC solutions of (3) with a = 0.456 and b = 0.0357. Three
modes become competitive only at the start and conclusion of
the burst, the modes decouple while on the periodic orbit, and
during the bursting phase, two modes remain competitive

Fig. 6 Plot of �V versus t ∈ [540,570]. We see volume expan-
sion and contraction during the bursting regime, and strong vol-
ume contraction in the intermediate phase. Note that the onset
of strong volume contraction corresponds to the onset of triple
mode alignment

ing time-series for the solution to (3), while in Fig. 5
we plot the mode frequencies.

Note that near t = 546 (close to the point at which
three modes become competitive), from (4) we have
�V = −22.7458, hence there is strong volume con-
traction. Ahead of this, at t = 540, we have �V =
−2.5117, or much more weak volume contraction. At
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t = 550, in the intermediate phase between bursts, we
have �V = −56.8017, much stronger volume con-
traction. To better view the influence of the BSC on
volume contraction, we plot the quantity �V over t

for a = 0.456 and b = 0.0357 in Fig. 6. Note that the
competitiveness of three modes corresponds directly
to the onset of strong volume contraction or expan-
sion.

For (a, b) = (0.456,0.0357), we have observed
that the solutions to (3) undergo BSC when three
modes become nearly competitive, hence signifying
a correspondence between competitive modes and the
occurrence of BSC. However, there is a dual use for
the method of competitive modes. As discussed previ-
ously, if the competitive modes conditions are forced
upon a system, then in some situations we may ar-
rive at parameter regimes for which the starting sys-
tem exhibits chaotic behavior. In the case where we
desire all three modes to be competitive, i.e., gi =
gj for all pairs (i, j), one simple way to deduce
the proper parameter space is to take the differences
δi,j (a, b) = gi(a, b)−gj (a, b) and construct the func-
tion χ(a, b) = δ2

1,2 +δ2
1,3 +δ2

2,3 for any set value of the
state vector (x, y, z) in parameter space. By construc-
tion, χ(a, b) ≥ 0 for all (a, b) ∈ R

2. Take the state vec-
tor to be fixed, say (x, y, z) = (x0, y0, z0) = v0, and
define the zero-locus �(v0) = {(a, b) ∈ R

2|χ(a, b) =
0}. Certainly, for some v0 ∈ R

3, �(v0) may be empty.
However, for nonempty �(v0), the set �(v0) defines the
set of points (a, b) in parameter space that allow three
simultaneously competitive modes. However, for any
choice of v0, we may minimize the quadratic func-
tion χ(a, b), to obtain (a, b) for which the modes are
nearly competitive (this is often sufficient). We find
that we either obtain (i) solutions converging rapidly to
equilibria (it so happens that, if modes remain compet-
itive as opposed to being intermittently competitive,
the solutions are stable) or (ii) exhibit chaotic behav-
ior. In order to ensure the latter case, we may also con-
sider selecting parameters which make |�V | small,
since the chaotic solutions observed correspond to ex-
pansions and contractions in the volume elements. So,
one may attempt to minimize χ(a, b) and (�V )2 over
the available parameters, for appropriate v0.

We should remark that such a minimization does
not always yield one specific form of chaos. For in-
stance, let us fix v0 = (0.06,1,1). Taking (a, b) =
(8.0549,1.5866), we find that χ(8.0549,1.5866) =
0.00503 and |�V | = 0.0018, both of which are suffi-
ciently small. With these values, the model (3) admits

Fig. 7 Phase portrait showing dynamics for (3) with
a = 8.0549 and b = 1.5866

Fig. 8 Mode frequencies g1, g2, g3 on t ∈ [540,570] for the
solution of (3) with a = 8.0549 and b = 1.5866. Observe that
condition (i) is violated when three mode frequencies agree:
g1 = g2 = g3, yet all three are negative. Still, there are two mode
frequencies equal and positive at other intermittent times

the dynamics seen in Fig. 7. As seen in Fig. 8, the all
three mode frequencies become competitive intermit-
tently, though this time at negative values, which has
a qualitatively different meaning than given in (i)–(iv)
(since in this case the condition (i) fails.
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Thus, while the method outlined seems useful for
predicting chaos, discerning the actual nature of the
inherent chaos seems beyond the scope of the method.
Therefore, in order to determine if BSC (or any other
chaotic dynamic) is present, one would need to narrow
the permissible parameter regime with the method,
and then attempt to map the chaotic subregimes within
such a set.

4 Conclusions

In summary, we have studied a model of the blue-sky
catastrophe in the framework of competitive modes.
We find that at the start and finish of a bursting pe-
riod, all three of the mode frequencies agree, hence
three modes are competitive. In other words, when re-
cast as an oscillator system, the three oscillators come
into resonance during the transition to and from burst-
ing. This is a rare behavior not commonly observed in
3D chaotic models. More often, three mode frequen-
cies come into alignment when there is hyperchaos
(present in some dynamical systems of dimension not
less than four).

An area related to competitive modes would be syn-
chronization and antisynchronization in chaotic mod-
els, since the competitive modes assumption implicitly
involves synchronization of oscillator equations. The
process of three modes falling into and out of syn-
chronization has in the present paper been shown to
correspond with the emergence of the blue-sky catas-
trophe. A detailed study of synchronization or antisyn-
chronization problems for a two-parameter model giv-
ing the blue-sky catastrophe could be an interesting
area of work. Some recent work in related areas can
be found in [29–38].
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