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Abstract The present paper investigates the dynamic
response of infinite Timoshenko beams supported by
nonlinear viscoelastic foundations subjected to a mov-
ing concentrated force. Nonlinear foundation is as-
sumed to be cubic. The nonlinear governing equations
of motion are developed by considering the effects
of the shear deformable beams and the shear modu-
lus of foundations at the same time. The differential
equations are, respectively, solved using the Adomian
decomposition method and a perturbation method in
conjunction with complex Fourier transformation. An
approximate closed form solution is derived in an in-
tegral form based on the presented Green function and
the theorem of residues, which is used for the calcu-
lation of the integral. The dynamic response distribu-
tion along the length of the beam is obtained from the
closed form solution. The derivation process demon-
strates that two methods for the dynamic response of
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infinite beams on nonlinear foundations with a mov-
ing force give the consistent result. The numerical re-
sults investigate the influences of the shear deformable
beam and the shear modulus of foundations on dy-
namic responses. Moreover, the influences on the dy-
namic response are numerically studied for nonlinear-
ity, viscoelasticity and other system parameters.

Keywords Nonlinear response · Infinite Timoshenko
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1 Introduction

The influence of moving loads on foundations has
been the subject of numerous investigations in struc-
tural mechanics. When the concentrated load moves
with constant velocity along infinite foundations, a
relatively simple “steady-state” solution can be ob-
tained [1]. The extensive researches on the dynamic
response analysis of beams on foundations under mov-
ing loads have been summarized in review articles by
Fryba [2], Wang et al. [3], and Beskou and Theodor-
akopoulos [4].

In most of the published researches on the topic
of response of an infinite beam resting on a founda-
tion under moving loads, the foundation is assumed
as linear elastic one. Sheehan and Debnath [5] pre-
sented an analytical solution of the dynamic response
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of an infinite beam on an elastic foundation with ax-
ial load. Zheng et al. [6] studied the instability anal-
ysis of a beam resting on a viscoelastic foundation
and subjected to a moving mass–spring–damper sys-
tem. Metrikine and his colleagues investigated the dy-
namic instability of a mass moving along an axially
compressed beam on a viscoelastic foundation [7]; an
oscillator moving along a beam on an elastic half-
space [8]; a mass moving along a beam on a period-
ically inhomogeneous foundation [9]; a moving two-
mass oscillator on a beam on a viscoelastic founda-
tion [10, 11]; a bogie moving on a flexibly supported
beam [12]; a moving particle on a periodically sup-
ported infinitely long string [13]. Sun et al. proposed
a closed-form solution of the deflection of a beam on
linear subgrade subjected to a moving line load [14], a
harmonic line load [15], moving loads [16], a platoon
of moving dynamic loads [17] and a beam on multi-
layered viscoelastic media under a moving dynamic
distributed load [18]. Dimitrovová [19] studied the vi-
bration induced by a load moving along a beam resting
on a piece-wise homogeneous viscoelastic foundation.
Mackertich [20] investigated the vibration of a beam
on elastic foundation excited by a moving and vibra-
tion mass. Chen et al. [21] established the dynamic
stiffness matrix of a beam on viscoelastic foundation
to a harmonic moving load. Kargarnovin and Youne-
sian [22] checked the response of a beam supported
by a Pasternak viscoelastic foundation. Ruge and Birk
[23] compared the dynamic stiffness of Timoshenko
and Euler–Bernoulli beams on Winkler foundation.
ÇalIm [24] analyzed the dynamic behavior of beams
on Pasternak-type viscoelastic foundation subjected to
time-dependent loads. Mazilu et al. [25] analyzed the
vibration of a three-mass oscillator moving along a
viscoelastic supported Timoshenko beam.

With the development of the studies on dynamic re-
sponse of a beam resting on a linear foundation, re-
searchers began to pay attention to beams on a non-
linear foundation. In practice the foundation is highly
nonlinear. Dahlberg [26] experimentally found that the
influence of foundation’s nonlinearity on a railway
track were quite significant and cannot be omitted.
Wu and Thompson [27] found that linear track mod-
els are not appropriate for wheel/track impact. Kargar-
novin et al. [28] compared the responses of a nonlin-
ear and equivalent linear viscoelastic model, and they
found that the results are completely different at low
frequencies. Furthermore, Hryniewicz [29] found that

the nonlinearity of the foundation increases the ampli-
tude of vibration under certain conditions. Ansari, Es-
mailzadeh and Younesian [30] found that for the non-
linear foundation in the high-speed range, increasing
the gradient of the deflection with respect to the load
speed is much larger than that of the linear founda-
tion. Ding et al. [31] studied the convergence of the
Galerkin method for the dynamic response of finite
beam resting on a nonlinear foundation with viscous
damping subjected to a moving concentrated load,
they also found that nonlinear parameter of the foun-
dation has significant influence on the dynamic re-
sponse and the convergence.

It should be remarked that the literature on infinite
beams on nonlinear foundations is rather limited. To
the author’s best knowledge, in previous work, only
Kargarnovin et al. [28] and Hryniewicz [29] studied
the response of an infinite beam on a nonlinear foun-
dation. Based on the nonlinear cubic Winkler founda-
tion, Kargarnovin et al. [28] studied the response of
an infinite Timoshenko beam subjected to a harmonic
moving load, the authors considered the shear mod-
ulus of the beams, without taking into account the
shear parameter of the foundation. Hryniewicz [29]
discussed the dynamic response of an infinite Rayleigh
beam subjected to moving load without considering
the shear modulus of the beam or the foundation. How-
ever, there was no literature on the dynamic response
of an infinite beam on a nonlinear foundation consid-
ering the shear deformable beams and shear modulus
of the foundation at the same time.

According to the modeling of the mechanical be-
havior of the road or railway and the subgrade, the
earliest mathematical model adopted is the Winkler
elastic foundation [32]. The Winkler foundation is
assumed as a series of mutually independent verti-
cal spring. Pasternak-type foundation is introduced to
account for the interaction among the linear elastic
springs [33]. With linear-plus-cubic stiffness, Tsiatas
compared finite beams on nonlinear Winkler’s foun-
dation and nonlinear Pasternak’s foundation [34]. He
found that even for small nonlinearity in the founda-
tion the linear analysis is inadequate to predict the
real response of the beam and the deflection of the
beam is more sensitive in case of the nonlinear Paster-
nak foundation. Sapountzakis and Kampitsis investi-
gated the nonlinear response of shear deformable fi-
nite Timoshenko–Rayleigh beams resting on nonlin-
ear three-parameter viscoelastic foundation [35]. They
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found the effect of shear deformation is significant, the
discrepancy between the results of the linear and the
nonlinear analyses is remarkable and the damping co-
efficient is of paramount importance for beams on vis-
coelastic foundation. The investigation draws the con-
clusion that the nonlinear three-parameter foundation
including material damping is a very practical model
for dynamic loading cases. However, there have been
no investigations about the infinite Timoshenko beam
on nonlinear Pasternak foundation.

Euler–Bernoulli [1, 5–10, 13–19, 31, 34], Rayleigh
[29] and Timoshenko [11, 12, 20–24, 28, 35] beam
theories were used for modeling the beam. Timo-
shenko [36] proposed a beam theory which adds the
effect of shear as well as the effect of rotation to
the Euler–Bernoulli beam. Ruge and Birk compared
the Timoshenko and the Euler–Bernoulli beam on
the Winkler foundation in the frequency-domain [23].
They found the physically more realistic Timoshenko
beam model offers additional numerical advantages
in unbounded domains. Although the infinite Tim-
oshenko beam on foundation is extensively studied,
the works on infinite Timoshenko beams on nonlinear
foundation are rather limited.

Although several methods (for example, the nor-
mal-mode analysis [19], the dynamic-stiffness method
[21], the boundary element method [35]) were used
to dealing with an infinite beam on a foundation, the
integral transformation is the most common used one
and also is a powerful tool for dealing with dynami-
cal problems for such case. There are two approaches
for dealing with nonlinear term in the governing equa-
tions, namely, a perturbation method [28] and the Ado-
mian decomposition method without linearization or
perturbation [29]. In this paper, these two methods
were, respectively, used to deal with the nonlinear term
from the foundation reaction, and then the integral
transformations were employed for the dynamic re-
sponse of the infinite Timoshenko beam incurred by
a moving load. The derivation process proves that the
two methods give the consistent result for current is-
sues.

The present paper is organized as follows. Section 2
establishes the governing equations for the transverse
vibration of an infinite Timoshenko beam on a non-
linear viscoelastic foundation subjected to a moving
concentrated force. Section 3 employs the Adomian
decomposition method to determine the dynamic re-
sponses of the beams. Section 4 applies the perturba-
tion method to analyze the governing equations under

the infinite boundary conditions. Section 5 presents
some numerical examples to demonstrate the effects of
the related parameters on the dynamic response. Sec-
tion 6 ends the paper with the concluding remarks.

2 Equation of motion

The system under investigation is an infinite elastic
Timoshenko beam resting on nonlinear viscoelastic
foundation and subjected to a moving load, as shown
in Fig. 1. The speed of the moving load is assumed
to be constant. Consider a homogeneous beam with a
constant cross-section A, a second moment of area I ,
a shear modulus G, a effective shear area k∗A, a den-
sity ρ and a modulus of elasticity E. The foundation is
taken as a nonlinear Pasternak foundation with liner-
plus-cubic stiffness and viscous damping with four pa-
rameters as follows [35]:

P(x, t) = k1u(x, t) + k3u
3(x, t) + c

∂u(x, t)

∂t

− Gp

∂2u(x, t)

∂x2
(1)

where P represents the force induced by the founda-
tion per unit length of the beam, k1 and k3 are the lin-
ear and nonlinear foundation parameters, respectively,
Gp and c are the shear parameter and the damping co-
efficient of the foundation, respectively, t is the time,
x is the spatial coordinate along the axis of the beam,
u(x, t) is the vertical displacement function. Using the
Hamilton principle and considering the Timoshenko
beam theory, one can develop the governing differen-
tial equations of motion for the beam as [28]

ρA
∂2u(x, t)

∂t2
+ k∗AG

[
∂ψ(x, t)

∂x
− ∂2u(x, t)

∂x2

]

+ P(x, t) = F0δ(x − vt),

ρI
∂2ψ(x, t)

∂t2
− EI

∂2ψ(x, t)

∂x2
+ k′AG

×
[
ψ(x, t) − ∂u(x, t)

∂x

]
+ kf ψ(x, t)

+ cf

∂ψ(x, t)

∂t
= 0

(2)

where F0 and v are the magnitude of the load and the
load speed, kf and cf are foundation rocking stiffness
and damping coefficients, ψ(x, t) is the slope func-
tion due to bending of the beam, δ(x − vt) is the Dirac
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Fig. 1 The model of the
Timoshenko beam on a
nonlinear viscoelastic
Pasternak foundation

delta function used to deal with the moving concen-
trated load, which be defined by
∫ +∞

−∞
δ(x − x0)f (x) = f (x0) (3)

3 Adomian decomposition method

Since the beam is infinitely long, it is convenient to
define the moving coordinate system as follows:

η = x − vt (4)

The displacement of the infinite beam becomes time
invariant, in the steady-state. And the following results
are obtained:

u,t = −vū′, u,tt = v2ū′′,

u,x = ū′, u,xx = ū′′,

ψ,t = −vψ̄ ′, ψ,tt = v2ψ̄ ′′,

ψ,x = ψ̄ ′, ψ,xx = ψ̄ ′′

(5)

where ū and ψ̄ are the displacement and slope of
steady-state, a comma preceding x or t denotes partial
differentiation with respect to x or t , and the prime
indicates differentiation with respect to η. Substitu-
tion (5) into (2) yield

ρAv2ū′′ + k∗AG
(
ψ̄ ′ − ū′′) + k1ū + k3ū

3 − cvū′

− Gpū′′ = F0δ(η),

ρIv2ψ̄ ′′ − EIψ̄ ′′ + k∗AG
(
ψ̄ − ū′) + kf ψ̄

− cf vψ̄ ′ = 0

(6)

Since the beam length is considered to be infinite, the
boundary conditions are

lim
η→±∞ ū = lim

η→±∞ ū′ = lim
η→±∞ ū′′ = 0,

lim
η→±∞ ψ̄ = lim

η→±∞ ψ̄ ′ = lim
η→±∞ ψ̄ ′′ = 0

(7)

Equation (6) can be rewritten as

L1ū(η) + L2ψ̄(η) = F0δ(η) − k3ū
3(η),

−L2ū(η) + L3ψ̄(η) = 0
(8)

where

L1 = (
ρAv2 − k∗AG − Gp

) d2

dη2
− cv

d

dη
+ k1,

L2 = k∗AG
d

dη
, (9)

L3 = (
ρIv2 − EI

) d2

dη2
− cf v

d

dη
+ (

k∗AG + kf

)

3.1 Decomposition

The method of Adomian decomposition has been ap-
plied to a rather wide class of nonlinear partial differ-
ential equations [29, 37]. The nonlinear term is repre-
sented as a series of Adomian polynomials. In order to
solve (8) via the Adomian decomposition method, ū

and ψ̄ can be decomposed into the form of the infinite
sum of series

ū(η) =
+∞∑
j=0

ūj (η), ψ̄(η) =
+∞∑
j=0

ψ̄j (η) (10)

The nonlinear term can be decomposed as [29]

ū3(η) =
+∞∑
j=0

Aj(η) (11)

where the series Aj (j = 0,1,2, . . .) are polynomials,
called Adomian polynomials which can be expressed
as [29]

Aj =
j∑

n=1

c(n, j)
[
ū3

0(η)
](n)

, n ≥ 1 (12)

It is to be noted that in this scheme, the sum of the
subscripts in each term of the Aj are equal to j . The
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c(n, j) are products of n components of ū whose sub-
scripts sum to j , divided by the factorial of the number
of repeated subscripts. Thus

c(1,3) = ū3, c(2,3) = ū1ū2,

c(3,3) = ū3
1

3

(13)

So here Aj are given as

A0(η) = ū3
0, A1(η) = 3ū2

0ū1,

A2(η) = 3ū2
0ū2 + 3ū2

1ū0,

A3(η) = ū3
1 + 3ū2

0ū3 + 6ū0ū1ū2, . . .

(14)

Substitution of (10) and (11) into (8) yield

L1

+∞∑
j=0

ūj (η) + L2

+∞∑
j=0

ψ̄j (η)

= F0δ(η) − k3

+∞∑
j=0

Aj(η) − L2

+∞∑
j=0

ūj (η)

+ L3

+∞∑
j=0

ψ̄j (η) = 0 (15)

In the following computations, the infinite series only
keep the first two terms in (14). So that (15) can be
rewritten in recursive form [29]:

{
L1ū0(η) + L2ψ̄0(η) = F0δ(η)

−L2ū0(η) + L3ψ̄0(η) = 0{
L1ūj (η) + L2ψ̄j (η) = −k3Aj−1(η)

−L2ūj (η) + L3ψ̄j (η) = 0

(16)

where j = 1,2.

3.2 Integral transformation

Substitution of (9) into the first part of (16) yield

(
ρAv2 − k∗AG − Gp

)
ū′′

0 − cvū′
0 + k1ū0

+ k∗AGψ̄ ′
0 = F0δ(η)(

ρIv2 − EI
)
ψ̄ ′′

0 − cf vψ̄ ′
0 + (

k∗AG + kf

)
ψ̄0

− k∗AGū′
0 = 0

(17)

and then application of complex Fourier transform

U0(ξ) =
∫ +∞

−∞
ū0(η)e−iηξ dη,

Ψ0(ξ) =
∫ +∞

−∞
ψ̄0(η)e−iηξ dη

(18)

leads to [22]

[(−ρIv2 + k∗AG + Gp

)
ξ2 − icvξ + k1

]
U0(ξ)

+ ik∗AGξΨ0(ξ) = F0,

(19)[(
ρIv2 − EI

)
ξ2 + icf vξ − (

k∗AG + kf

)]
Ψ0(ξ)

+ ik∗AGξU0(ξ) = 0

U0(ξ) and Ψ0(ξ) which Green’s functions can be
solved from (19):

U0(ξ) = B60ξ
2 + B70ξ + B80

B10ξ4 + B20ξ3 + B30ξ2 + B40ξ + B50
,

(20)

Ψ0(ξ) = ik∗AGF0ξ

B10ξ4 + B20ξ3 + B30ξ2 + B40ξ + B50

where

B10 = GpIE − Gpv2ρI − Av2EIρ + Av4Iρ2

+ k∗AGEI − k∗AGv2ρI,

B20 = −ivcf k∗AG − icEIv + iρIcv3

− iGpvcf + iρcf v3A,

B30 = Gpk∗AG − ρAv2k∗AG + kf k∗AG − ccf v2

+ EIk1 − ρIv2k1 + Gpkf − Aρkf v2, (21)

B40 = −icvk∗AG − ivcf k1 − icvkf ,

B50 = k1k
∗AG + k1kf ,

B60 = EIF0 − ρIF0v
2,

B70 = −ivcf F0,

B80 = F0kf + F0k
∗AG

Now, if an inverse Fourier transform is taken of both
sides of (17), then we will get
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ū0(η) = 1

2π

∫ +∞

−∞
U0(ξ)eiξηdξ = 1

2π

∫ +∞

−∞
B60ξ

2 + B70ξ + B80

B10ξ4 + B20ξ3 + B30ξ2 + B40ξ + B50
eiξηdξ

ψ̄0(η) = 1

2π

∫ +∞

−∞
Ψ0(ξ)eiξηdξ = 1

2π

∫ +∞

−∞
ik∗AGF0ξ

B10ξ4 + B20ξ3 + B30ξ2 + B40ξ + B50
eiξηdξ

(22)

To calculate integrals of (22), it is necessary to employ the residue theorem. According to residue theorem, the
integrals of (22) are returned to the sum of residues at poles. The poles are the roots of B10ξ

4 + B20ξ
3 + B30ξ

2 +
B40ξ + B50 = 0. Considering the boundary conditions of an infinite beam [29], the closed form solutions are
obtained as

ū0(η) = 1

2π
Re s

{
B60ξ

2 + B70ξ + B80

B10ξ4 + B20ξ3 + B30ξ2 + B40ξ + B50
eiξη

}∣∣∣∣
ξ=ξl

= 1

2π

[
2π i

∑
Im ξj >0

lim
ξ→ξj

(ξ − ξj )U0(ξ)eiξη + π i
∑

Im ξj =0

lim
ξ→ξj

(ξ − ξj )U0(ξ)eiξη

]

ψ̄0(η) = 1

2π
Re s

{
ik∗AGF0ξ

B10ξ4 + B20ξ3 + B30ξ2 + B40ξ + B50
eiξη

}∣∣∣∣
ξ=ξl

= 1

2π

[
2π i

∑
Im ξj >0

lim
ξ→ξj

(ξ − ξj )Ψ0(ξ)eiξη + π i
∑

Im ξj =0

lim
ξ→ξj

(ξ − ξj )Ψ0(ξ)eiξη

]

(23)

for η ≥ 0, where ξj in the first part of (23) is the pole of U0(ξ) in upper half part of the complex plane and ξj in
the second part of (23) is the pole of Ψ0(ξ) in upper half part of the complex plane and

ū0(η) = 1

2π
Re s

{
B60ξ

2 + B70ξ + B80

B10ξ4 + B20ξ3 + B30ξ2 + B40ξ + B50
eiξη

}∣∣∣∣
ξ=ξl

= 1

2π

[
−2π i

∑
Im ξj <0

lim
ξ→ξj

(ξ − ξj )U0(ξ)eiξη − π i
∑

Im ξj =0

lim
ξ→ξj

(ξ − ξj )U0(ξ)eiξη

]

ψ̄0(η) = 1

2π
Re s

{
ik∗AGF0ξ

B10ξ4 + B20ξ3 + B30ξ2 + B40ξ + B50
eiξη

}∣∣∣∣
ξ=ξl

= 1

2π

[
−2π i

∑
Im ξj <0

lim
ξ→ξj

(ξ − ξj )Ψ0(ξ)eiξη − π i
∑

Im ξj =0

lim
ξ→ξj

(ξ − ξj )Ψ0(ξ)eiξη

]

(24)

for η ≤ 0, where ξj in the first part of (24) is the pole of U0(ξ) in lower half part of the complex plane and ξj in
the second part of (24) is the pole of Ψ0(ξ) in lower half part of the complex plane.

When the integrals of (22) have high order poles, the closed form solutions are obtained as

ū0(η) = 1

2π
Re s

{
B60ξ

2 + B70ξ + B80

B10ξ4 + B20ξ3 + B30ξ2 + B40ξ + B50
eiξη

}∣∣∣∣
ξ=ξl

= 1

2π
lim
ξ→ξl

d

dξ

{
B60ξ

2 + B70ξ + B80

(ξ − ξ1)(ξ − ξ2)
eiξη

}

ψ̄0(η) = 1

2π
Re s

{
ik∗AGF0ξ

B10ξ4 + B20ξ3 + B30ξ2 + B40ξ + B50
eiξη

}∣∣∣∣
ξ=ξl

= 1

2π
lim
ξ→ξl

d

dξ

{
ik∗AGF0ξ

(ξ − ξ1)(ξ − ξ2)
eiξη

}
(25)



Dynamic response of an infinite Timoshenko beam on a nonlinear viscoelastic foundation to a moving load 291

where ξl in the first part of (25) is the second order
pole of U0(ξ), ξ1 and ξ2 are the first order poles. ξl

in the second part of (25) is the second order pole of
Ψ0(ξ), ξ1 and ξ2 are the first order poles.

Now the second part of (16) is considered. For
j = 1 and 2, the second part of (16) can be rewritten
as
(
ρAv2 − k∗AG − Gp

)
ū′′

1 − cvū′
1

+ k1ū1 + k∗AGψ̄ ′
1 = −k3ū

3
0(

ρIv2 − EI
)
ψ̄ ′′

1 − cf vψ̄ ′
1 + (

k∗AG + kf

)
ψ̄1

− k∗AGū′
1 = 0

(26)

and
(
ρAv2 − k∗AG − Gp

)
ū′′

2 − cvū′
2 + k1ū2

+ k∗AGψ̄ ′
2 = −3k3ū

2
0ū1(

ρIv2 − EI
)
ψ̄ ′′

2 − cf vψ̄ ′
2 + (

k∗AG + kf

)
ψ̄2

− k∗AGū′
2 = 0

(27)

Using a similar procedure for (17) and using appro-
priate Green’s functions and the convolution integral
theorem, the closed form solutions are obtained as

ū1(η) = −
∫ +∞

−∞
ū3

0

(
η − η∗)ũ1

(
η∗)dη∗,

(28)

ψ̄1(η) = −
∫ +∞

−∞
ū3

0

(
η − η∗)ψ̃1

(
η∗)dη∗

ū2(η) = −3
∫ +∞

−∞
ū2

0

(
η − η∗)ū1

(
η − η∗)ũ1

(
η∗)dη∗,

(29)

ψ̄2(η) = −3
∫ +∞

−∞
ū2

0

(
η − η∗)ū1

(
η − η∗)ψ̃1

(
η∗)dη∗

where ũ1(η) and ψ̃1(η) can be determined by

L1ũ1(η) + L2ψ̃1(η) = δ(η)

−L2ũ1(η) + L3ψ̃1(η) = 0
(30)

The same procedure is applicable in the case of
Euler–Bernoulli beams. In this case, the equations of
motion can be derived as [31]

EIu,xxxx + ρAu,tt − Gpu,xx + k1u + k3u
3 + cu,t

= F0δ(x − vt) (31)

Using the same procedure, a closed form solution can
be calculated as

ū0(η) = F0

2π

×
∫ +∞

−∞
eiξη

EIξ4 + (Gp − ρAv2)ξ2 − icvξ + k1
dξ,

(32)

ū1(η) = −
∫ +∞

−∞
ū3

0

(
η − η∗)ũ1

(
η∗)dη∗

ū2(η) = −3
∫ +∞

−∞
ū∗2

0

(
η − η∗)ū∗

1

(
η − η∗)ũ∗

1

(
η∗)dη∗

Using the same method of residue theorem, (32) will
be solved.

4 Perturbation method

Introducing a dimensionless variable as follows:

u(x, t) ↔ k3

k1

√
I

A
u(x, t) (33)

Substituting (33) into (2) leads to

ρAu,tt + Yψ,x − qu,xx + k1u + εu3 + cu,t

− Gpu,xx = F0Y

q
δ(x − vt)

ρIYψ,tt − EIYψ,xx + qYψ − q2u,x + kf Yψ

+ cf Yψ,t = 0

(34)

where q = k∗AG, Y = q
k3
k1

√
I
A

, ε = k3(
q
Y
)2. Introduc-

ing coordinate transformation η = x − vt , and substi-
tuting (5) into (34) yields
(
ρAv2 − q − Gp

)
ū′′ − cvū′ + k1ū + εū3 + Y ψ̄ ′

= F0Y

q
δ(η)

(35)(
ρIYv2 − EIY

)
ψ̄ ′′ − cf vY ψ̄ ′ + (qY + kf Y )ψ̄

− q2ū′ = 0

One assumes an expansion of dimensionless displace-
ment [28]

ū(η) = ū0(η) + ū1(η)ε + ū2(η)ε2 + · · · ,

ψ̄(η) = ψ̄0(η) + ψ̄1(η)ε + ψ̄2(η)ε2 + · · ·
(36)
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Substituting (36) into (35), and then equating co-
efficients ε0, ε1 and ε2 in the resulting equation, one
obtains

ε0: Fū0 = F0Y

q
δ(η), Fψ̄0 = 0 (37)

ε1: Fū1 = −ū3
0, Fψ̄1 = 0 (38)

ε2: Fū2 = −3ū2
0ū1, Fψ̄2 = 0 (39)

where

Fūk = (
ρAv2 − q − Gp

)
ū′′

k − cvū′
k + k1ūk + Y ψ̄ ′

k,

Fψ̄k = (
ρIYv2 − EIY

)
ψ̄ ′′

k − cf vY ψ̄ ′
k (40)

+ (qY + kf Y )ψ̄k − q2ū′
k

where k = 0,1,2.
Equations (37)–(39) and (17), (26), and (27) are

exactly the same. Therefore, these equations can be
solved via integral transformation, and the procedure
exactly same as the procedure for solving (16). That
is to say, for approximate analysis the steady-state of
infinite beams on nonlinear cubic foundation, the Ado-
mian decomposition method based on 2-term trunca-
tion are accordant with the second order term pertur-

bation method. But the perturbation method depend on
ε, which must be very small one.

5 Numerical results

In this part, numerical examples are given for paramet-
ric research. The physical and geometrical properties
of the Timoshenko beam, foundation and the moving
load are listed in Table 1.

In part three, the decomposition series for the Ado-
mian decomposition were gotten. But the convergence
of the decomposition series has not been determined.
According to [37, 38], let

αj =
⎧⎨
⎩

‖uj+1‖
‖uj ‖ , ‖uj‖ 
= 0

0, ‖uj‖ = 0
(41)

‖uj‖ = max
η

Abs
[
uj (η)

]
(42)

The decomposition series equation (10) will con-
verges rapidly to exact solution for 0 ≤ αj < 1, j =
0,1,2, . . . . According to Table 1 and (40) and (41)

‖u0‖ = 0.000345 (43)

‖u1‖ = 0.000046454 (44)

Table 1 Properties of the
beam, foundation and load
[28, 31]

Item Notation Value

Beam

Young’s modulus (steel) E 201 GPa

Shear modulus G 77 GPa

Mass density ρ 7850 kg/m3

Cross sectional area A 7.69 × 10−3 m2

Second moment of area I 3.055 × 10−5 m4

Shear coefficients k′ 0.4

Foundation

Linear stiffness k1 3.5 × 107 N/m2

Nonlinear stiffness k3 4 × 1014 N/m4

Viscous damping μ 1732.5 × 103 N s/m2

Shear parameter Gp 66687500 N

Rocking stiffness kf 108 N/m2

Rocking damping coefficients cf 1.5 × 106 N s/m2

Moving load

Load F0 65 kN

Speed v 50 m/s
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Fig. 2 The approximately analytic solution of deflection of the
beam

‖u2‖ = 0.0000294 (45)

α0 = ‖u1‖
‖u0‖ ≈ 0.1346 < 1 (46)

α1 = ‖u2‖
‖u1‖ ≈ 0.633 < 1. (47)

In the following computations, the infinite decom-
position series equation (10) only keep the first three
terms.

Using the prescribed method, a computer program
has been provided to solve the problem. To realize the
steady-state response, it is sufficient to study the vi-
bration of any point of the beam. Hence, the point
x = 0 is used in the following numerical examples.
As the first example, the dynamic response of the in-
finite Timoshenko beam is considered during passage
of a moving load. Figure 2 shows the time history of
the Timoshenko beam subjected to the moving con-
centrated force. For t < 0, the transverse deflection in-
creases with time, and the biggest deflection does not
appear in the t = 0, there is a little delay. After reach-
ing to the biggest deflection, the transverse deflection
decreases and tends to zero. And the growth speed of
the transverse deflection is far greater than the reduced
speed.

The effects of the shear modulus of the Timoshenko
beam and the shear modulus of the foundation on the
deflection of the beam on the viscoelastic nonlinear
foundation are illustrated in Figs. 3 and 4, respectively.
From the observation of Figs. 3 and 4, it is found that
the biggest deflection of the Timoshenko beam de-
crease with the increasing shear modulus of the beam
and the increasing shear modulus of the foundation.
Furthermore, Figs. 3 and 4 show that the contributions

Fig. 3 Effect of the shear modulus of the Timoshenko beam on
the deflection of the beam

Fig. 4 Effect of the shear modulus of the foundation on the
deflection of the beam

of the shear modulus of the beam and the shear modu-
lus of the foundation on the deflection are significant,
especially when the shear modulus of the beams and
the shear modulus of foundations are not great ones.
That is to say, the shear modulus of the beams and the
shear modulus of foundations cannot be neglected for
the dynamic response of infinite beams on nonlinear
viscoelastic foundations. In Refs. [28] and [34], Kar-
garnovin et al. and Tsiatas have, respectively, shown
that the shear modulus of the beams and the shear
modulus of foundations have the significant influence
on the dynamic response of infinite beams on the non-
linear foundation. In the present paper, the effects of
the shear modulus of the beams and the shear mod-
ulus of foundations are investigated at the same time,
and similar results are got as above mentioned two ref-
erences. On the other side, the numerical results also
indicate that the shear modulus of Timoshenko beams
is not sensitive to the time-delays of the biggest deflec-
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Fig. 5 Effect of the modulus of the elasticity of the Timoshenko
beam on the deflection of the beam

tion while the time-delays decreases with the increas-
ing shear modulus of foundations.

Figure 5 shows the effect of the modulus of the
elasticity of the beam on the deflection of the Timo-
shenko beam on the viscoelastic nonlinear foundation.
As is seen in this figure, the modulus of the elasticity
of the Timoshenko beam has little effects on the trans-
verse deflection of the Timoshenko beam. Specifically,
there are only discernible differences between results
for rather large different modulus of the elasticity of
the Timoshenko beam.

Figure 6 illustrates the effect of the damping coef-
ficient of the foundation on the deflection of the Timo-
shenko beam on the viscoelastic nonlinear foundation.
It should be noted that the viscoelastic foundation turn
into an elastic Pasternak foundation when c = 0. The
numerical result shows that the damping coefficient
of the foundation has significant influence on the dy-
namic response of the deflection of the Timoshenko
beam and the deflection decrease with the increasing
damping coefficient. Furthermore, the numerical result
shows that the biggest deflection of the Timoshenko
beam on the elastic Pasternak foundation appear when
t = 0. Moreover, the time the biggest deflection ap-
peared is delayed with the increasing damping coeffi-
cient of foundations. Hence a larger value of the damp-
ing coefficient of foundations leads to a smaller deflec-
tion of the beam and the damping is one of the reasons
of time-delay.

The effects of the linear elasticity parameter of
foundations on the deflection of the Timoshenko beam
on the viscoelastic nonlinear foundation is displayed
in Fig. 7. Figure 7 shows that the whole form of the de-
flection of the beam has little change with different lin-
ear elasticity parameter of foundations. Furthermore,

Fig. 6 Effect of the damping coefficient of the foundation on
the deflection of the beam

Fig. 7 Effect of the linear elasticity parameter of the foundation
on the deflection of the beam

the numerical results of Fig. 7 show that the biggest
deflection of the beams decreased with increasing the
linear elasticity parameter of foundation.

The effects of the nonlinear elasticity parameter of
foundations on the deflection of the Timoshenko beam
on the viscoelastic nonlinear foundation are displayed
in Figs. 8–10. Figure 8 displays the effects of the non-
linear elasticity parameter of foundations on the ver-
tical displacements of the beam at x = 0 while t = 0
versus the magnitude of the moving load. Figures 9
and 10, respectively, illustrate the dynamic response of
the infinite Timoshenko beams with the different mov-
ing load. It is observed from Figs. 8–10 that the non-
linear elasticity parameter of foundations is an impor-
tant parameter for influencing the dynamic response
of the beam on the viscoelastic nonlinear foundation.
Specifically, Fig. 8 shows that the deflection of the
Timoshenko beams and the influence of the nonlinear
elasticity parameter both increase with the increasing
magnitude of the moving load F0. Furthermore, the
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Fig. 8 Effect of the nonlinear elasticity parameter of the foun-
dation on the deflection of the beam versus the magnitude of the
moving load

Fig. 9 Effect of the nonlinear elasticity parameter of the foun-
dation on the deflection of the beam: F0 = 50 kN

deflection of the beam increases with the increasing
nonlinear parameter of foundation with a large mov-
ing load. It should be noted that this conclusion coin-
cides with the research in Ref. [27]. On the contrary, a
small moving load leads to the deflection of the Tim-
oshenko beams decrease with the nonlinear elasticity
parameter of the foundation. In addition, from the ob-
servation in Figs. 9 and 10, similar conclusions can
be found for the effects of the nonlinear parameter on
the dynamic response of the infinite beams. The com-
parison in Figs. 9 and 10 indicates that the influences
of the nonlinear parameter increase with the increas-
ing magnitude of the moving load. On the other side,
both of Figs. 9 and 10 show that the whole form of the
deflection of the beam has little change with different
nonlinear elasticity parameter of foundations.

Figures 11 and 12 show that the dynamic response
change with the foundation rocking stiffness and
damping coefficients on the deflection of the Timo-

Fig. 10 Effect of the nonlinear elasticity parameter of the foun-
dation on the deflection of the beam: F0 = 65 kN

Fig. 11 Effect of the foundation rocking stiffness on the deflec-
tion of the beam

Fig. 12 Effect of the foundation damping coefficient on the de-
flection of the beam

shenko beams on the viscoelastic nonlinear founda-
tion. As seen in this figure, the whole form has lit-
tle change and the biggest deflection decrease with
increasing foundation rocking stiffness and damping
coefficients. It should be noted that the effects of the
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Fig. 13 Influence of moving velocity of the load on the deflec-
tion of the beam

foundation rocking stiffness and damping coefficient
have been investigated in Ref. [22]. In this paper, sim-
ilar conclusions are drawn from the numerical results.
In other words, the present paper proves that the influ-
ences of the rocking stiffness and damping coefficients
of the foundation on the transverse deflection of the in-
finite beam on the foundation cannot be neglected.

The effect of the velocity of the moving concen-
trated force on the deflection of the Timoshenko beam
on the viscoelastic nonlinear foundation is displayed
in Fig. 13. Figure 13 indicates that the biggest de-
flection of the Timoshenko beam decreases with the
increasing moving velocity. Furthermore, the deflec-
tion of the beam is sensitive to the changing moving
velocity. On the other hand, the numerical results in
Fig. 13 proves that the whole form of the deflection
of the Timoshenko beam on the viscoelastic nonlinear
foundation has little change under different velocity of
the moving concentrated force.

As pointed out in Refs. [28, 29], the model of the
beam is also an important aspect of influencing deflec-
tion of the beam resting on the viscoelastic founda-
tion. The deflection of two different beam models on
the viscoelastic nonlinear foundation is compared in
Fig. 14. As is seen from the figure, the deflection of
the Timoshenko beam close to the region of t = 0 is
lower than the Euler–Bernoulli beam’s. Furthermore,
the deflection of the Timoshenko beam on the foun-
dation is higher than the Euler–Bernoulli beam’s in
other regions. It should be noted that the Timoshenko
beam is usually considered more accurate than the
Euler–Bernoulli beam [39]. Nevertheless, the Euler–
Bernoulli beam is more acceptable for the dynamic re-
sponse of the beam on the foundation in this investi-
gation. It is because the Euler–Bernoulli beam overes-

Fig. 14 Comparison of two different beam models from the de-
flection of the beam

timated the results of the dynamic response. In other
words, the numerical results in Fig. 14 illustrates that
the dynamic response from the Euler–Bernoulli beam
theory provides more conservative estimate in track
design.

6 Conclusions

This paper is devoted to the dynamic response of in-
finite Timoshenko beams resting on nonlinear founda-
tions with viscous damping acted upon subjected to a
moving concentrated load. In conjunction with com-
plex Fourier transformation, the Adomian decompo-
sition method and a perturbation method are, respec-
tively, used to deal with the nonlinear term from the
foundation reaction. Moreover, the dynamic response
distribution is obtained by using the presented Green
function and the theorem of residues.

The present paper proves that the Adomian decom-
position method and the perturbation method give a
consistent result for current issues. Furthermore, it was
found that the dynamic responses of infinite Timo-
shenko beams resting on nonlinear viscoelastic foun-
dations decrease with growing of the shear modulus
of the beam and the shear modulus of the foundation.
Numerical results also illustrate that the dynamic re-
sponses decrease with the linear foundation parame-
ter and damping coefficient. Specially, the influence
of the nonlinear elasticity parameter of the foundation
increase with the increasing magnitude of the moving
load. Furthermore, a small moving load leads to the
deflection of the Timoshenko beams decrease with the
nonlinear elasticity parameter. Nevertheless, the de-
flection of the beam increase with the increasing non-
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linear parameter under a large moving load. Moreover,
numerical comparison shows that the biggest deflec-
tion of the Timoshenko beam is lower than the Euler–
Bernoulli beam’s.
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