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Abstract In this paper, a periodic parameter-switch-
ing system about Lorenz oscillators is established. To
investigate the bifurcation behavior of this system,
Poincaré mapping of the whole system is defined by
suitable local sections and local mappings. The loca-
tion of the fixed point and the parameter values of lo-
cal bifurcations are calculated by the shooting method
and Runge–Kutta method. Then based on the Flo-
quent theory, we conclude that the period-doubling
and saddle-node bifurcations play an important role
in the generation of various periodic solutions and
chaos. Meanwhile, upon the analysis of the equilib-
rium points of the subsystems, we explore the mecha-
nisms of different periodic switching oscillations.

Keywords Switched dynamical system · Poincaré
mapping · Floquet multiplier · Period-doubling
bifurcation · Saddle-node bifurcation

1 Introduction

Switched dynamical systems are useful in many engi-
neering applications such as mechanical systems [1],
electrical circuits [2], communication networks [3],
etc., which operate among a set of two or more dy-
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namical systems according to certain switching rules.
Generally, switching from one dynamical subsystem
to another often occurs on a set of borders, which are
defined on certain critical conditions of the state vari-
ables or related to the fixed time for the occurrence of
the alteration [4, 5]. When the switched system crosses
the borders, the vector fields of the switched system
may alternate between two types of flows, described
by the subsystems, leading to nonsmooth phenomena
occurring at the switching points such as grazing bi-
furcation, border collision bifurcation, and multiple-
crossing bifurcation [6]. Being the wide existence
of switches and many interesting characteristic phe-
nomenon in the switched system, it has attracted a lot
of attention in recent years and many results have been
reported [7, 8]. Bhattacharyya and Mukhopadhyay
presented the condition of global stability of an eco-
epidemiological model with switch [9]. Li et al. dealt
with the problem of liable stabilization and control
scheme of a class of switched Lipschitz systems [10].
Xiang et al. investigated the robust reliable control of
switched neutral systems [11]. Sharan and Banerjee
derived the nature of the switching map for the case
of grazing orbits of power electrical circuits [12].

Up to now, much attention has been paid to the sta-
bility, chaos, and the control schemes of the switched
systems [13–15]. In [13], a class of switching laws to
stabilize the switched system was established if there
is a stable convex combination of the unstable de-
scriptor systems. In [14], some sufficient conditions
were established to ensure the asymptotically stabil-
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ity of the switched linear system under some periodi-
cally switching signal. In [15], the stability properties
of a general class of nonautonomous switched nonlin-
ear systems were studied via multiple Lyapunov func-
tions. However, many problems for the switched sys-
tems such as the dynamical evolution with the varia-
tion of the parameters and the bifurcations associated
with the switches as well as the mechanism of com-
plexity still need further research.

For the switched system, some critical changes may
occur at the borders, that is, the solution function of
this system is no longer differentiable at the switch-
ing points, though it remains continuous. The conven-
tional method cannot be used to investigate the dynam-
ics near the neighborhood of the nonsmooth regions,
since there is little knowledge about bifurcations in
nonsmooth systems, which leads to the difficulties in
investigating the bifurcation behaviors of the switched
system. To overcome above difficulties, here we inves-
tigate the associated bifurcations of the fixed points of
piecewise smooth maps, which is corresponding to the
bifurcations of the periodic solutions of the switched
system.

To explore the dynamical behaviors and the mech-
anisms of the switched systems, here we consider
a periodic parameter-switching system between two
Lorenz oscillators. We establish a switched system,
and define its solutions, local sections, and local map-
pings. Upon these definitions, the Poincaré mapping is
constructed as a composite of local mappings. Then
the location of the fixed point corresponding to the
periodic orbit of the switched system and the param-
eter values of local bifurcations covering the stan-
dard period-doubling and saddle-node bifurcation are
calculated by Newton–Raphson and the QR meth-
ods, respectively. Meanwhile, upon the analysis of
the equilibrium points of the two subsystems as well
as the critical behaviors at the switches, the mecha-
nisms related to the special phenomena observed in
the switched systems are presented to account for the
evolutions of the trajectories.

2 The model of switched system

2.1 Model description

We begin our analysis by considering two dynamical
systems

dX/dt = fk(t,X, λ,λk), k ∈ {1,2} (1)

where t ∈ R, X = (x, y, z)T . λ ∈ Rr is an invari-
ant parameter of f1, f2, while λk ∈ Rs is a parame-
ter depending on fk . r and s are integers. fk is the
vector fields with fk(X) = (α(y − x), x(δk − z) − y,

xy − βkz)
T .

Then we define the switching condition: suppose
that the system starts from the vector of f1(X) with
the initial point X0. After the time T1, the trajectory
turns to the flow f2(X). When the subsystem 2 runs
with time T2, the trajectory changes back to the vector
field f1(X).

Obviously, the two subsystems correspond to the
typical form of Lorenz oscillator with different param-
eters, implying that the solution of the switched sys-
tem (1) is governed by the two famous state equations.
Suppose that the solutions for the two subsystems are
respectively given by

X(t) = Φ(t,X0, α,β1, δ1),

X(t) = Ψ (t,X1, α,β2, δ2),
(2)

where X1(t) = Φ(T1,X0, α,β1, δ1) is the initial point
of the subsystem 2.

2.2 Poincaré map and periodic orbit

In this section, we investigate the generation of the
period solutions of the whole system (1). The shoot-
ing method [16] will be applied, since it is a classical
method to find the limit cycle and the associated bifur-
cations of the system.

Since the system (1) is the time switched system,
we begin the shooting method program by giving the
following two local sections

Σ1 = {
(X, t) ∈ R3 × R+|t = T1

}
,

Σ2 = {
(X, t) ∈ R3 × R+|t = T1 + T2

}
.

(3)

Then the local mappings can be defined as (see Fig. 1)

P1: Σ1 → Σ2

X0 �→ X1 = Φ(T1,X0, α,β1, δ1),

P2: Σ2 → Σ1

X1 �→ X2 = Ψ (T2,X1, α,β2, δ2).

(4)

Assume that the switching surface Σ1 is the Poincaré
section. We define the Poincaré map P from Σ1 to Σ1

as follows:

P = P2 ◦ P1, (5)
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Fig. 1 Switching surfaces and local mappings

namely,

P : Σ1 → Σ1

X0 �→ X2 = Ψ
(
T2,Φ(T1,X0, α,β1, δ1),

α,β2, δ2
)
.

(6)

The fixed point of this map can be obtained by solving
the following equation:

P(X) − X = 0. (7)

Since the analytic expression of the Poincaré mapping
is unknown, in order to compute the fixed point, we
need to compute the Jacobian matrix

DP = dX2

dX0
= dX2

dX1

dX1

dX0
= DP2 × DP1, (8)

where dX1/dX0 is the solution of the following vari-
ational equations from t = 0 to t = T1,
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d

dt

(
∂Φ

∂X

)
= ∂f1

∂X

(
∂Φ

∂X

)
,

∂Φ

∂X

∣∣∣∣
t=0

= I,

(9)

where I is an identity matrix. Putting (9) and sub-
system 1 together and calculating it by Runge–Kutta
method, out comes the numerical solution of (9). At
t = T1, X1 is regarded as the initial point of subsys-
tem 2. dX2/dX1 is the solution of the following dif-
ferent equations from t = T1 to t = T1 + T2:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d

dt

(
∂Ψ

∂X

)
= ∂f2

∂X

(
∂Ψ

∂X

)
,

∂Ψ

∂X

∣
∣∣∣
t=T1

= I.

(10)

Similarly, by resolving the simultaneous equations of
(10) and subsystem 2, we can obtain the numerical so-
lution of Eqs. (10).

We now use the Newton–Raphson method to com-
pute the correction to be applied

X′
0 = X0 − X2 − X0

dX2/dX0 − I
. (11)

Fig. 2 Phase portrait of a single periodic switching oscillation
on (x, y) plane, where A′ is the projection of the fixed point A,
the black and gray trajectories are governed by the subsystem 1
and 2, respectively

Then the location of fixed point and Jacobian matrix of
the Poincaré map can be obtained. Hence, the period
of periodic switching oscillation T has the following
form:

T = T1 + T2. (12)

Meanwhile, according to the roots {μ1,μ2,μ3} of the
characteristic equation

det(DP − μI) = 0. (13)

We can determine the stability of the periodic switch-
ing oscillation and analyze the bifurcation behavior
based on the Floquet theory.

For example, we fix the parameters at α = 5.0,
β1 = 1.0, δ1 = 10.0, β2 = 2.3, δ2 = 16.0, T1 =
T2 = 10.0, X0 = (−3.7,−3.7,10.0). By using the
Newton–Raphson method to (11) and (13), the fixed
point A = (−2.888,−3.279,10.208) and the Floquet
multipliers μ = (−0.72211 + 0.20994i,−0.72211 −
0.20994i,4.0 × 10−7) can be obtained. Thus, a stable
periodic switching oscillation is obtained and shown
in Fig. 2.

3 Switching behaviors and associated bifurcation
mechanisms

In this section, using the analysis methods devel-
oped in the foregoing section, we will investigate the
complicated bifurcation behavior of the switched sys-
tem (1). We fix some of the parameters at α = 5.0,
β1 = 1.0, δ1 = 10.0, δ2 = 16.0, T1 = T2 = 10.0, and
take β2 as the bifurcation parameter to investigate the
dynamical evolutions of the oscillator.
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Fig. 3 (a) The equilibrium
points of subsystem 1: two
stable focuses E1± separated
by the saddle E1

0 ; (b) The
equilibrium points of
subsystem 2 for different
parameter β2

Fig. 4 (a1) Bifurcation
diagram of the switched
system with respected to the
parameter β2.
(a2) Associated maximal
Lyapunov exponent σ .
(b–d) are the enlargement
of (a1)

3.1 Equilibrium points and bifurcation of the
subsystems

Because the switched system (1) may involve in the
two vector fields, the stability analysis of equilibrium
point related to the two subsystems is very important.

Note that the subsystem 1 has two stable focuses
E1± = (±3,±3,9) and a saddle E1

0 = (0,0,0) for the
above fixed parameters (see Fig. 3(a)). By varying the
parameter β2, the equilibrium points of subsystem 2
are presented in Fig. 3(b). It can be seen that when
β2 > 0 there are three equilibria in subsystem 2, de-
noted by

E2
0 = (0,0,0), E2± = (±√

15β2,±
√

15β2,15).

As shown in Fig. 3(b), the solid branches of SF± rep-
resent stable focuses and the dashed branches UF±
and Sa represent unstable focuses and saddles, respec-
tively, the points H± are Hopf bifurcation points of
equilibria E2± with β2 = 1.143 and the point BP is fold
bifurcation of the equilibria with β2 = 0.

3.2 Periodic oscillations and bifurcation mechanisms

Once the switches described above are introduced, not
only periodic movements but also chaotic oscillations
can be found. The bifurcation diagram and associated
maximal Lyapunov exponent σ by changing the pa-
rameter β2 from β2 = 2.3 (single periodic switching
oscillation) is plotted in Fig. 4(a). To reveal the details



Dynamical behaviors of the periodic parameter-switching system 33

Fig. 5 Periodic oscillation
of 1T (a) and its overlay
with the equilibrium
attractors of the subsystems
(b), where the subfigure
gives a clear understanding
of the rectangular region

Fig. 6 Periodic switching attractors to chaos. (a) β2 = 2.60; (b) β2 = 2.88; (c) β2 = 2.91

of dynamical evolution of the switched system (1),
here we focus on several typical regions of the pa-
rameter β2, i.e., 2.3 < β2 < 3.0, 5.25 < β2 < 11.0,
16.75 < β2 < 20.5 (see Fig. 4(b–d)).

3.2.1 Case 1: 2.3 < β2 < 3.0

Note that when 2.300 < β2 < 2.457, a periodic os-
cillation of 1T can be observed. When β2 = 2.4, the
typical phase portrait of such oscillation is plotted
in Fig. 5(a). According to (11), the associated fixed
point A of the Poincaré map of this periodic oscilla-
tion is computed as A = (−3.024,−3.446,10.142).
Meanwhile, the overlap of the phase portrait related
to the oscillation of 1T with the equilibrium attrac-
tors of the two subsystems in (x, y) plane is pre-
sented in Fig. 5(b). One may find that a clear un-
derstanding that the vector field of switched system
may alternate between the two stable focuses E1−
and E2−.

Next, we will give a detailed analysis of the evo-
lution of such oscillation. Assume the fixed point A is
the initial point. During the time (0, T1), the subsystem
1 is activated, causing the trajectory moves asymptot-
ically to the stable focus E1− along with ABC to the

point C, while with in (T1, T1 + T2) the subsystem 2
is activated, leading the trajectory scrolls down to the
stable focus E2− along with CDA back to the fixed
point A. Thus, the periodic oscillation of 1T with two
switching points A and B is created.

With the increase of the parameter β2, as presented
in Fig. 6, the number of switching points in the peri-
odic attractor changes from two to four and continue
to be doubled.

The phenomenon can be understood by the analy-
sis of the Floquet multipliers computed by (13) with
appropriate numerical calculations. For β2 increased
from 2.300 to 2.457, the switched system (1) behaves
as periodic switching oscillation of 1T and all the Flo-
quet multipliers lie inside the unit circle {μ ∈ C1 |
|μ| = 1}. However, when β2 increases through 2.457,
one of the Floquet multiplier goes through the unit cir-
cle from the direction of −1 (see Table 1(a)). Accord-
ing to the Floquent theory, the stable periodic oscilla-
tion of 1T becomes stable periodic oscillation of 2T

via period-doubling bifurcation. While the parameter
β2 = 2.837, the Floquet multipliers of periodic oscil-
lation of 2T goes through the unit circle from the di-
rection of −1 again (see Table 1(b)), causing the stable
periodic switching oscillation of 2T becomes stable
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Table 1 The Floquet multipliers of periodic oscillation

β2 μ1 μ2 μ3

(a) 2.45 < β2 < 2.457

2.450 −0.99187 −0.52110 0

2.452 −0.99456 −0.51908 0

2.454 −0.99720 −0.51709 0

2.456 −0.99982 −0.51512 0

2.457 −1.00112 −0.51415 0

(b) 2.833 < β2 < 2.837

2.833 −0.95235 −0.23191 0

2.834 −0.96443 −0.22886 0

2.835 −0.97643 −0.22591 0

2.836 −0.98835 −0.22304 0

2.837 −1.00020 −0.22026 0

periodic switching oscillation of 4T . Further increase
of the parameter β2 may lead to complicated switch-
ing behaviors, evolving to chaos via period-doubling
bifurcations. These results agree well with the bifur-
cation diagram in Fig. 4(b).

3.2.2 Case 2: 5.25 < β2 < 11.0

As shown in Table 2(a), when β2 = 5.407, the Floquet
multiplier μ1 goes through the unit circle from the di-
rection of 1, while β2 = 10.23, it goes through the unit
circle from the direction of −1 (see Table 2(b)). Based
similarly on the Floquet theory, the chaotic oscillation
suddenly changes to periodic switching oscillation of
2T via saddle-node bifurcation at β2 = 5.407. Numer-
ical simulations (for example, see Table 2(b)) further
show that such stable periodic oscillation of 2T be-
comes stable periodic oscillation of 4T via period-
doubling bifurcation, and finally evolves to chaos. The
typical phase portraits are presented in Fig. 7. These
results are consistent with the bifurcation diagram in
Fig. 4(c).

We now focus on the periodic oscillation of 2T

for the parameter β2 ∈ (5.407,10.230). Take the case
when β2 = 5.45 as an example, the fixed point A is
computed as A = (7.418,9.549,10.886) by (11) and
the corresponding phase portrait on (x, y) plane is pre-
sented in Fig. 8(a). It can be seen that the vector field
of switched system may alternate among four stable
focuses E1± and E2±, which is different from the case 1
β2 = 2.4.

Table 2 The Floquet multipliers of periodic oscillation

β2 μ1 μ2 μ3

(a) 5.413 > β2 > 5.407

5.413 0.69352 3.7 × 10−4 0

5.411 0.75494 3.6 × 10−4 0

5.409 0.84889 3.4 × 10−4 0

5.408 0.95421 3.3 × 10−4 0

5.407 1.01129 3.2 × 10−4 0

(b) 10.2 < β2 < 10.23

10.200 −0.88001 1.5 × 10−7 0

10.225 −0.98223 1.3 × 10−7 0

10.227 −0.99061 1.3 × 10−7 0

10.229 −0.99903 1.2 × 10−7 0

10.230 −1.00324 1.2 × 10−7 0

To explore the mechanism of the movement, we
assume that the trajectory of the solution is starting
from the fixed point A in subsystem 1, presented in
Fig. 8(b). Because of the attraction of the stable fo-
cus E1−, the trajectory may move asymptotically to
E1− along with AB . However, at time T1 the subsys-
tem 2, with the switching point B as the initial point,
is activated. Then the trajectory may settle down to the
stable focus E2− along with BC until another switch-
ing happen at the point C after time T2. Note that the
switching point C is attracted by the other stable fo-
cus E1+ of the subsystem 1, then the trajectory tends
asymptotically to the stable focus E1+ with the path
CD. A new switching point D occurs when the sys-
tem is governed by the subsystem 1 after time T1 once
more, at which the trajectory turns to be governed by
the subsystem 2 and is along with DA to the stable
focus E2+. The trajectory may return back to the fixed
point A after time T2, forming the periodic switching
oscillation of 2T .

3.2.3 Case 3: 16.75 < β2 < 20.5

As shown in Table 3, when β2 = 17.811 and β2 =
17.90, one of the Floquet multipliers goes through the
unit circle from the direction of −1, causing the sta-
ble periodic switching oscillation of 4T becomes the
stable periodic switching oscillation of 2T at β2 =
17.811, and at β2 = 17.90 the stable periodic switch-
ing oscillation of 2T changes to the stable periodic
switching oscillation of 1T via a cascading of period-



Dynamical behaviors of the periodic parameter-switching system 35

Fig. 7 Periodic switching
attractors to chaos.
(a) β2 = 5.35; (b) β2 = 6.0;
(c) β2 = 10.35;
(d) β2 = 10.70

Fig. 8 Periodic oscillation
of 2T for β2 = 5.45.
(a) Phase portrait;
(b) Overlap of the phase
portrait and the attractors of
the subsystems

doubling bifurcation. The typical phase portraits are
presented in Fig. 9. These results are equal to the bi-
furcation diagram in Fig. 5(d).

Next, we still explore the mechanism of the peri-
odic oscillation. When β2 = 17.9, the fixed point A

is computed as A = (−16.128,−16.474,14.432) and
the corresponding periodic orbit on (x, y) plane is
shown in Fig. 10(a). By overlapping the phase portrait
with the attractors of the two subsystems (Fig. 10(b)),
it can be seen that the trajectory of periodic solution
may alternate between the transient process of the sta-
ble focuses E1− and E2−, which is the same as the
behavior of the periodic oscillation of the parameter
β2 = 2.4 discussed above.

4 Conclusions

The periodic parameter-switching system may exhibit
very complex behaviors such as periodic switching
oscillation of 1T and periodic switching oscillation
of 2T , etc. The existence of these solutions can be
demonstrated by computing the fixed point of the
Poincaré mapping of the whole system, while the
mechanisms of these solutions can be understood by
the overlap of the phase portrait related to the periodic
solution with the equilibrium attractors of the two sub-
systems. It is found that the trajectory of the periodic
solution can be divided into parts determined by the
transient processes of different attractors of the sub-
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Fig. 9 Periodic switching attractors to chaos. (a) β2 = 17.5; (b) β2 = 17.815; (c) β2 = 18.0

Fig. 10 Periodic oscillation
of 2T (a) and its overlay
with the equilibrium
attractors of the subsystems
(b), where the subfigure
gives a clear understanding
of the rectangular region

Table 3 The Floquet multipliers of periodic switching oscilla-
tion

β2 μ1 μ2 μ3

(a) 17.825 > β2 > 17.811

17.825 −0.70230 0 0

17.820 −0.81287 0 0

17.815 −0.92305 0 0

17.812 −0.98901 0 0

17.811 −1.01096 0 0

(b) 17.935 > β2 > 17.9

17.935 −0.79449 5.4 × 10−6 0

17.925 −0.85405 5.1 × 10−6 0

17.910 −0.94233 4.6 × 10−6 0

17.905 −0.97150 4.5 × 10−6 0

17.900 −1.00056 4.4 × 10−6 0

systems, which forms periodic solutions with different
forms of switchings. Furthermore, based on the Flo-
quent theory, the evolution processes, and the associ-
ated mechanisms of these periodic solutions are inves-
tigated. Study shows that, with the increase of the pa-
rameter, the switched system can evolve to chaos by

cascading of period-doubling bifurcations or immedi-
ately via saddle-node bifurcation from the periodic so-
lutions.
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