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Abstract Recently the synchronization control for
chaotic systems with unknown parameters has at-
tracted great attention among the researchers and di-
verse synchronization schemes have been reported in
the literature. In this review article, we carefully re-
visit several recent articles published from 2010 to
the present and find that several reported schemes are
problematic. The imperfect synchronization schemes
are categorized into five cases according to their defect
types. By providing a general theorem for the adap-
tive synchronization design, we further present mod-
ified schemes to correct the defects in these articles.
In addition, we have emphasized the significant linear
independence condition for ensuring successful iden-
tification, as this condition has been neglected in sev-
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eral previous articles. We also summarize three cases
when this condition is not valid, and accordingly four
approaches are proposed to guarantee the successful
parameter estimation for uncertain chaotic systems.

Keywords Adaptive synchronization · Parameter
identification · Uncertain chaotic system · Linear
independence condition

1 Introduction

During the previous two decades, the synchronization
study of chaotic systems has always been a hot topic
in the research field of nonlinear science. This is moti-
vated by its potential application in many areas such as
secure communication. In the common framework of
chaos synchronization, one system serves as the drive
system and the other the response system. The main
task for the synchronization problem is to design ef-
fective controllers so that the response state would fi-
nally track the drive trajectory. In many practical situ-
ations, there exist partially or even fully uncertain pa-
rameters in either/both drive system and/or response
system. The conventional control approaches are not
applicable in such case, as the desired synchronization
would be destroyed by these uncertainties. Hence, the
synchronization design for chaotic systems with un-
known parameters is an interesting problem that has
attracted great attention recently.

The pioneer paper that deals with the adaptive syn-
chronization of uncertain chaotic systems is [1]. In
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[1], Parlitz firstly proposed the synchronization-based
identification method to estimate the unknown param-
eters in uncertain Lorenz system. Later, this method
has been applied and extended to synchronize other
uncertain chaotic (or hyperchaotic) systems. For ex-
ample, in [2], the adaptive synchronization of uncer-
tain Chen system was studied. In [3], the authors in-
vestigated the synchronization design of hyperchaotic
Rössler systems with unknown parameters via the
parameter identification method. From the literature,
there are abundant articles discussing the adaptive syn-
chronization or parameter identification of other spe-
cific dynamical systems. An elaborate collection of
such articles can be found in a recent paper [4], in
which the authors have reviewed and compared many
adaptive synchronization schemes reported in the lit-
erature before the year 2010.

Nevertheless, the synchronization design for uncer-
tain chaotic systems continues to be a significant topic
among the researchers. Many other research articles
have been published in the recent two years, and some
more specific cases and more general synchronization
forms have been studied in the literature. In [5], a gen-
eral method was proposed for the Q–S synchroniza-
tion between different chaotic systems with uncertain
parameters and double scaling functions. In [6], Zheng
et al. studied the so-called adaptive modified function
projective synchronization for uncertain hyperchaotic
systems and then presented two numerical simulations
to verify the effectiveness of the proposed scheme.
A recent article by Wu and Li [7] considered a new
chaotic system and designed controllers and updat-
ing laws to realize the hybrid function projective syn-
chronization of that newly found chaotic system with
unknown parameters. Another recent article by Yang
[8] reported an interesting result that the adaptive syn-
chronization of uncertain Lü hyperchaotic system can
be achieved via single-input controller. Via this sim-
ilar single-input controller method, Yang in [9] fur-
ther investigated the exponential synchronization of a
new Lorenz-like attractor. In [10], Wang and Sun de-
signed the adaptive controllers to achieve the adap-
tive multi-switching synchronization of chaotic sys-
tems with unknown parameters. Wu and Lu in [11]
introduced a new synchronization form, i.e. the gen-
eralized projective lag synchronization (GPLS), and
designed controllers to achieve the GPLS between
Lorenz hyperchaotic system and Lü hyperchaotic sys-
tem, and between Lorenz–Stenflo hyperchaotic system

and Lorenz hyperchaotic system, all with unknown pa-
rameters. However, the article [11] only studied the
GPLS of specific uncertain hyperchaotic systems and
did not present a general scheme. Later, this issue
was addressed by the same authors in [12], in which
they presented a detailed analysis to derive the general
method for achieving the adaptive GFPLS of different
chaotic systems with fully unknown parameters. An-
other article worth mentioning is [13]. Based on the
pragmatical asymptotical stability theory and the non-
linear control method, Li and Ge [13] proposed the
pragmatical adaptive scheme for the synchronization
of different orders chaotic systems with all uncertain
parameters.

The above articles [1–13] have addressed the prob-
lem of synchronization design for chaotic systems
with unknown parameters. Recently, some researchers
have generalized the parameter identification method
to the synchronization and estimation of chaotic sys-
tems with unknown delays. The basic idea is to treat
the unknown delays as kinds of special system param-
eters. In [14], Ma and Lin have proposed a system-
atic synchronization-based method to adaptively iden-
tify the unknown delays in nonlinear dynamical sys-
tems. Furthermore, this adaptive synchronization con-
cept have been employed in [15] to estimate the un-
known communication delays between coupled sys-
tems. Another direction of the adaptive synchroniza-
tion research that should be mentioned is that there
have already been some attempts on identifying un-
certain real-world systems instead of toy models. In
[16], the authors used the parameter-estimation-based
synchronization method to gain the biological insights
of the tuberculosis in Cameroon. In [17], the adap-
tive synchronization problem of two coupled chaotic
Hindmarsh–Rose neurons with unknown parameters
was investigated and the authors proposed a novel
method by only controlling the membrane potential in
the slave neuron. Also reported in [18] is the feasibility
analysis of multi-parameter identification from scalar
outputs of chaotic systems. The authors in [18] further
applied this method to identify multiple unknown pa-
rameters in the so-called Malkus–Lorenz water wheel
model. Note that the above mentioned articles are far
from a complete list of the recent literature concern-
ing the adaptive synchronization design, as many other
novel and interesting concepts and schemes have been
reported which have enhanced our understanding and
knowledge for controlling uncertain dynamical sys-
tems.
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This paper is inspired by a previous review arti-
cle [4] published recently in Nonlinear Dynamics. In
[4], after reviewing a collection of related articles pub-
lished before 2010 on the adaptive chaos synchroniza-
tion, the authors concluded that those articles suffered
from research novelty as many reported schemes can
be categorized by a union form. In this paper we will
go some extra miles further. We will focus on re-
viewing and revisiting other adaptive synchronization
schemes from recent literature (mainly from the year
2010 to the present year 2012). It is found that some
articles have reported imperfect or incorrect results re-
garding this topic. One typical problem is the mis-
application of adaptive control method in the design-
ing procedure of adaptive synchronization scheme, re-
sulting in that the unknown parameters are wrongly
involved in the parameter identification process. An-
other issue that receives less consideration in those ar-
ticles is the deduction of the sufficient condition for
successful parameter convergence, while this condi-
tion has been unfortunately neglected in many articles.
We have noticed that recently there have been some
comment articles aiming to point out the errors re-
ported in the current literature, see e.g. [19–21]. Gen-
erally speaking, however, the existing problems ap-
pearing in these articles have not received adequate at-
tention. Hence, we intend to present a detailed review
and analysis to those problems, and this is the prime
motivation of this article.

The objectives of this review article are three-fold.
First, we will revisit the proposed synchronization
schemes reported in some recent articles [5–13, 27–
31, 33–39] and will point out that some recent arti-
cles have proposed problematic results for the adap-
tive synchronization deign. The designing problems
are categorized into five cases (see Sect. 2 for de-
tailed analysis). Among the five cases, the infeasible
updating laws and the neglect of important Linear In-
dependence (LI) condition for parameter estimation
are listed as the top two scenarios. In fact, these two
defects have been slightly mentioned in several pre-
vious articles [22–24]. However, these problems have
not attracted enough attention in the literature and we
feel the need to present hereby a comprehensive re-
visit in the current article. Meanwhile, we will present
detailed analysis and discussion on why these schemes
are problematic. Second, we will further propose mod-
ified synchronization schemes to correct the imperfect
schemes reported in these articles while this issue has

not been addressed in the previous articles. This part
constitutes the main content of Sect. 3 of this article.
Third, we will emphasize the important LI condition
for the parameter identification, while this condition
has been regretfully neglected in a series of articles. It
is worth noting that the LI condition has been analyzed
and established in [22, 25]. Furthermore, in some re-
cent articles [23, 26] the authors have proposed an-
other more practical criterion, the finite-time LI con-
dition, for synchronization-based parameter identifi-
cation. In this paper we do not attempt to go further
about this condition. Instead, we intend to draw a list
of the defective articles in order to gain more attention
as well as to present a systematic study to deal with
the cases of the linear dependence scenario. Hence, in
Sect. 4, we will elaborate three cases when this con-
dition does not hold and then propose four feasible
approaches to guarantee the successful identification.
Typical examples and numerical simulations are also
provided in each part of Sect. 4 to show the effective-
ness of those approaches. To the best of our knowl-
edge, there are few articles that have discussed this sig-
nificant subject. Hence, the content of Sect. 4 serves as
another contribution presented in this review article.

This article mainly consists of five parts, and the
main content of this article follows similarly as men-
tioned in the above paragraph.

2 Review and comment on some reported schemes
with defects

In the literature there are many adaptive schemes re-
ported for the synchronization design of dynamical
systems with uncertain parameters. The designing task
in this topic has two simultaneous objectives: one is
to design the controller functions to achieve the adap-
tive synchronization and the other is to design updat-
ing laws to identify the unknown system parameters.
The reported results from the recent literature have
enriched our knowledge on the control of uncertain
chaotic systems. However, it is regretfully found that
some proposed schemes are questionable. In this sec-
tion, we will review several recent articles and analyze
why the adaptive schemes proposed in these articles
are questionable or incorrect.

2.1 Case I: infeasible parameter updating laws

This problem is the most commonly seen one in the lit-
erature. By collecting the relevant data or time series
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from the dynamical systems, the aim of the parameter
updating process is to use the collected time series to
identify the unknown parameters. Note that the param-
eters, before successful identification, are unknown to
us. However, in many adaptive schemes reported in
the literature, the unknown parameters are directly em-
ployed in the parameter updating laws. This causes
an apparent contradiction which implies that the pro-
posed updating methods are not applicable. In the fol-
lowing, we will take the result of [5] as an illustrative
example, as the Q–S synchronization studied in [5] is a
general one which can cover many other synchroniza-
tion forms.

In a recent paper [5] the authors studied the Q–S
synchronization between two non-identical chaotic
systems with unknown parameters. Consider the fol-
lowing dynamical systems:{

drive system: ẋ = f (x) + F(x)P

response system: ẏ = g(y) + G(y)Θ + U
(1)

where P and Θ are system parameter vectors which
are unknown before identification. The readers are
referred to Sect. 2 of [5] for detailed definitions of
x, y,f (x),F (x), g(y), and G(y).

According to the definition of Q–S synchroniza-
tion, the synchronization errors are defined as

e(t) = α(t)Q(x) − β(t)S(y) (2)

where α(t) and β(t) are the scaling factors. The main
theoretical result of [5] is that the authors proposed
the following controller functions and updating laws to
achieve the Q–S synchronization between systems (1):

U = −g(y) − G(y)Θ̂ + 1

β(t)
DS−1 · (H(x,y, t)

+ α(t) · DQ · F(x)P̂
)

(3)

where P̂ and Θ̂ are the estimation vectors of unknown
parameters.

The updating laws of the estimated parameters are
given as{ ˙̂

P = (α(t) · DQ · F(x))T · e − P̃

˙̂
Θ = −(β(t) · DS · G(y))T · e − Θ̃

(4)

where DQ and DS are the Jacobian matrices of the
vector functions Q(x) and S(y), P̃ and Θ̃ are the esti-
mation errors defined as P̃ = P̂ − P and Θ̃ = Θ̂ − Θ .

Clearly, by inserting the definition of P̃ and Θ̃ into
Eq. (4), one can find that the true values of the un-
known parameters appear in the updating process.
Hence, the updating laws designed in Eq. (4) are in-
feasible in practice.

We should mention that in another article [27] con-
cerning the Q–S synchronization by the same authors,
this problem still exists.

Remark 1 Other articles with similar defective results
include [6, 7, 28–31] (see Eq. (13) of [28], Eq. (10)
and Eq. (11) of [6], Theorem 1 of [29], Eq. (4.7) in
[30], Eq. (11) in [7], etc.). Note that this list is not
complete. In Sect. 3 of this paper, we will give feasible
and general schemes to correct such defects appeared
in these articles.

Remark 2 Some infeasible schemes have been de-
tected in several comment articles, e.g. [19, 21]. We
should note that the modified scheme in the comment
[19] is still incorrect, as an important condition for the
parameter identification is neglected. For details, see
Sects. 2.2 and 4 below.

2.2 Case II: the neglect of the linear independence
(LI) condition for the parameter identification

To start, we would like to re-investigate the result in
a recent paper [10], in which the authors investigated
the multi-switching synchronization of chaotic system
with adaptive controllers and unknown parameters. In
Sect. 3 of [10], the multi-switching synchronization of
Lorenz system and Chen system with unknown param-
eters was studied and the controllers were designed.
For the convenience of analysis, we restate the theo-
retical results of [10] as follows.

Consider the adaptive synchronization problem be-
tween the drive Lorenz system and the controlled re-
sponse Chen system. Those two systems are written
as⎧⎪⎨
⎪⎩

ẋ1 = a1(x2 − x1)

ẋ2 = c1x1 − x1x3 − x2

ẋ3 = x1x2 − b1x3

(5)

and⎧⎪⎨
⎪⎩

ẏ1 = a2(y2 − y1) + ui1(t)

ẏ2 = (c2 − a2)y1 − y1y3 + c2y2 + ui2(t)

ẏ3 = y1y2 − b2y3 + ui3(t)

(6)
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In the case i = 1, the error signal is defined as e11 =
y1 − x1, e12 = y2 − x2, e13 = y3 − x3. According to
Eqs. (5) and (6), the error dynamics was obtained as⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ė11 = a2(y2 − y1) − a1(x2 − x1) + u11(t)

ė12 = (c2 − a2)y1 − y1y3 + c2y2 − c1x1

+ x1x3 + x2 + u12(t)

ė13 = y1y2 − b2y3 − x1x2 + b1x3 + u13(t)

(7)

Then the controller functions and update laws were de-
signed as1

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u11(t) = −e11 − ā2(y2 − y1) + ā1(x2 − x1)

u12(t) = −e12 − (c̄2 − ā2)y1 + y1y3

− c̄2y2 + c̄1x1 − x1x3 − x2

u13(t) = −e13 − y1y2 + b̄2y3 + x1x2 − b̄1x3

(8)

and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̄a1 = −(x2 − x1)e11
˙̄b1 = x3e13

˙̄c1 = −x1e12

˙̄a2 = (y2 − y1)e11 − y1e12
˙̄b2 = −y3e13

˙̄c2 = y1e12 + y2e12

(9)

where ā1 ∼ c̄2 are the estimated values of the unknown
parameters a1 ∼ c2. We adopt the same initial condi-
tions as those in [10] for variable states x1(0) ∼ y3(0)

and estimated parameters ā1(0) ∼ c̄2(0) to replicate
the numerical results. The time evolutions of parame-
ter identifications for the unknown parameters a1 ∼ c2

are depicted in Fig. 1. For clarity, the dashed lines are
added in each subfigure to indicate the real values of
each unknown parameter.

Figure 1 clearly shows that, except for the unknown
parameter c2, the remaining five unknown parameters
a1 ∼ b2 have been estimated to false values with the
controllers (8) and updating laws (9). Hence, the au-
thors’ statement that “as predicated, we observe that
the unknown parameters in system (15) and system

1We should note that there are some typo errors in the origi-
nal controller functions designed in [10]. In the controller term
u12(t), the parameter a2 should be written with a hat ā2 since
a2 is unknown to users. In the controller term u13(t), the cross
product term x1x3 that was wrongly written in Eq. (18) of [10]
should be x1x2. These errors have been corrected in Eq. (8) of
this paper.

(16) have been identified using the parameters updat-
ing laws (20)” (see the last paragraph of Sect. 3.1 of
[10]) does not hold.

Next we will analyze the reasons for the identifica-
tion failure of the unknown parameters a1 ∼ b2. For
t → ∞, we have e1,i → 0 and ė1,i → 0. By inserting
the controller functions (8) and updating laws (9) into
Eq. (7), we can obtain

(a2 − ā2)(y2 − y1) − (a1 − ā1)(x2 − x1) = 0
(c2 − c̄2)(y1 + y2) − (a2 − ā2)y1 − (c1 − c̄1)x1 = 0
(b1 − b̄1)x3 − (b2 − b̄2)y3 = 0

⎫⎬
⎭

for t → ∞ (10)

With the realization of synchronization between sys-
tem (5) and system (6), it is clear that x1(t) =
y1(t)|t→∞, x2(t) = y2(t)|t→∞ and x3(t) = y3(t)|t→∞,
and also y2(t) − y1(t) = x2(t) − x1(t)|t→∞. For the
linear equation (10), when the synchronization is
achieved between corresponding states, the vector sig-
nals x1, x2, x3 will be linearly dependent to y1, y2, y3,
respectively. Thus the solutions of (10) should be⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(a2 − ā2) − (a1 − ā1) = const1
(a2 − ā2) − (c1 − c̄1) = const2
(b1 − b̄1) − (b2 − b̄2) = const3
(c2 − c̄2) = 0

(11)

where the constant numbers consti (i = 1,2,3) can
be arbitrary values. Hence, with the updating laws (9),
only the estimated parameter c̄2 can be successfully
identified to the true value c2.

Note that the above analysis indicates that synchro-
nization is an obstacle for parameter identification,
which confirms the conclusion drawn by a previous
study [32]. When the synchronization-based method
is employed to identify the system parameters or net-
work topologies, the LI condition should be carefully
checked for a successful identification [21, 24, 25].

Remark 3 Other articles which neglect the important
LI condition include [33–38]. In fact, in the recent re-
view article [4] this condition has not been taken into
consideration either. In those studies, since this essen-
tial condition is not derived, the theoretical analysis is
incomplete and the true convergence of the estimated
parameters cannot be guaranteed. For the same reason,
the comment letter [19] did not provide a complete
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Fig. 1 Parameter
identification of system (5)
and system (6) with the
controller function Eq. (8)
and the updating laws
Eq. (9) designed in
Ref. [10]

correction to the commented article [39]. If the LI con-
dition (or more specifically, the finite-time LI condi-
tion) is not satisfied in the adaptive synchronization
process, the parameter estimation would be in trouble.
Thus, another significant concern is how to guarantee
the true identification of the unknown parameters. This
topic will be discussed in detail in Sects. 4.2–4.5.

2.3 Case III: wrongly designed controller functions

Recently in [11], Wu and Lu investigated the GPLS
between different hyperchaotic systems with uncertain

parameters. In Sect. 4 of [11], the authors studied the

GPLS between Lorenz hyperchaotic system and un-

certain Lü hyperchaotic system, which are described

as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ1 = a(y1 − x1)

ẏ1 = bx1 + y1 − x1z1 − w1

ż1 = x1y1 − cz1

ẇ1 = dy1z1

(12)
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and⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ2 = l̃(y2 − x2) + w2 + u1(t)

ẏ2 = −x2z2 + h̃y2 + u2(t)

ż2 = x2y2 − p̃z2 + u3(t)

ẇ2 = x2z2 + r̃w2 + u4(t)

(13)

where l̃, h̃, p̃ and r̃ are unknown parameters to be
identified in the response system.

The authors designed the following controller func-
tion to achieve the GPLS:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1(t) = −l(y2(t) − x2(t)) − w2(t) − ax2(t)

+ am1y1(t − τ1) − k1e1(t)

u2(t) = x2(t)z2(t) − (h − 1)y2(t)

+ bm2x1(t − τ2) − m2w1(t − τ2)

+ (k2 + 1)e(t)

u3(t) = −x2(t)y2(t) − (c − p)z2(t)

+ m3x1(t − τ3)y1(t − τ3) − k3e3(t)

u4(t) = −x2(t)z2(t) − rw2(t)

+ dm4y1(t − τ4)z1(t − τ4) − k4e4(t)

(14)

and⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

˙̃
l = −(y2 − x2)e1
˙̃
h = −y2e2

˙̃p = z2e3

˙̃r = −w2e4

(15)

where τi (i = 1,2,3,4) is the time delay and mi

(i = 1,2,3,4) is the scaling factor. Clearly, we ob-
serve that the true values l, h, p and r , which require
identification in the process of synchronization, have
been used in advance in the controllers of Eq. (14) in
order to achieve the synchronization.

Despite the errors appeared in the controller func-
tion of Eq. (14), it is not very difficult to correct this
wrong scheme. In system (13), the parameters should
be written without the hat “∼” to indicate that they
are true values of system parameters. In the designed
controller function of Eq. (14), all the parameter terms
should add the hat “∼” implying that they are the es-
timations for each unknown parameter, while the esti-
mation process are governed by Eq. (15) and the up-
date laws remain the same.

Another erroneous result of [11] that should be
mentioned is that the parameter update laws designed
by Eq. (20) in [11] are not applicable either, and this
error is same as the above-mentioned case in Sect. 2.1.
In Sect. 3 of this paper, we will present a general and
correct method to deal with this problem.

2.4 Case IV: adaptive synchronization or parametric
synchronization?

In a recently published article [8], the author discussed
a very interesting topic: using the single-input con-
troller to adaptively synchronize hyperchaotic systems
with uncertain parameters. To avoid lengthy state-
ments, the same symbols and notations in [8] are em-
ployed here.

In Sect. 3 of [8], the following theoretical results
were reported. For the specified hyperchaotic Lü sys-
tem, the adaptive single-input controller was designed
as{

U2(t) = −k̃2(t)e2(t)

U1(t) = U3(t) = U4(t) = 0
(16)

The adaptive algorithm for the feedback gain k̃2(t) was
proposed as

˙̃
k2 = γ1e

2
2, k̃2(0) = 0 (17)

In addition, the adaptive update laws of system param-
eters were suggested as⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ėa = −γ2ea + λ(e2
1 − e1e2 − (x2 − x1)e1)

ėb = −γ3eb + (e2
3 + x3e3)

ėc = −γ4ec + (−e2
2 − x2e2)

ėd = −γ5ed + (e2
4 + x4e4)

(18)

In Eqs. (16)–(18), ei = yi − xi (i = 1,2,3,4) are the
state errors and ea , eb , ec, ed are the parameter errors
which are defined as ea = ar −a and so on. The author
stated that ar , br , cr , dr were uncertain parameters
in response system and they should be identified via
update laws (18) to their true values a, b, c, d respec-
tively. By expanding the expression of ea, eb, ec, ed ,
we can find that each update laws involves the true
values, which leads to an obvious irrationality. To be
more specific, the reported scheme is for parametric
synchronization, but not for adaptive synchronization.
The concept of parametric synchronization, which is
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proposed in [40], is obviously different from the con-
cept of adaptive synchronization. In the research of
adaptive synchronization, we know the structures of
the systems and the time series of system states, but
we have no a priori knowledge about the true val-
ues of the system parameters. What we have to do
is to design effective controllers to achieve the syn-
chronization and parameter identification based on the
measured time series of the states. The definition of
adaptive synchronization implies that no direct infor-
mation about the system parameters is available for de-
signing the controller functions and update laws. How-
ever, things are much different for parametric synchro-
nization. A premise of the parametric synchronization
scheme is that the system parameters, either in drive
system or in response system, should be known in ad-
vance. Based on this premise the controllers then can
be designed to synchronize the unknown parameters
with the known parameters. In fact, parametric syn-
chronization is the same as the conventional synchro-
nization scheme if we treat the system parameters as
the system states with unchangeable or constant val-
ues.

In order to obtain adaptive synchronization of the
systems studied in [8], those terms ea , eb, ec, ed should
be canceled in the updating laws (18). We should men-
tion that the same problem occurs in another article [9]
by the same author.

2.5 Case V: the impracticability of a pragmatical
adaptive synchronization scheme

Recently Li and Ge [13] reported a pragmatical adap-
tive synchronization scheme. In this section, we briefly
introduce the main theoretical results of [13], and then
analyze why this scheme is not practical.

Consider the adaptive synchronization between
master chaotic system and slave chaotic system as{

ẋ = Ax + Bf (x)

ẏ = Âx + B̂f (y) + u(t)
(19)

The main contribution of [13] is that it proposed the
following controllers and updating laws to realize the
synchronization of systems (19) (see Theorem 1 of
[13]).

The parametric update laws were designed as

˙̂am = −ãme, m = 1 ∼ p (20)

where e = x − y are the synchronization errors, p is
the number of parameters, am are the unknown param-
eters in the master system, âm are the estimated pa-
rameters in the slave system and ãm = am − âm are the
estimation errors of unknown parameters.

The controller functions were designed as

u = −ẏout + K(x − y) + Bf (y) + Ay − ã2
m(e − 1),

m = 1 ∼ p (21)

where ẏout is ẏ without controllers, gain K should sat-
isfy the following constant:

min(K) >

(
L‖B‖ + ‖A‖ + max

(
p∑

i=1

ã2
i

))
(22)

The authors proved that, via the above synchronization
design, the master and slave systems could achieve
adaptive synchronization. However, we will argue that
this pragmatical scheme has some defects which make
it unsuitable for practical applications.

(I) The authors stated that “by applying this new
relation formula, an appropriate feedback gain
K can be decided easily to obtain controllers
achieving adaptive synchronization” (see Sect. 4
of the Conclusions of [13]). However, by re-
considering that relation formula (i.e., Eq. (22)),
it is clearly shown that B,A and ãm = am − ām

are all unknown to us. Also, the determination
of the Lipschitz constant L for a specified non-
linear system is a tough task (we note that in
[13] the Lipschitz constants for different systems
were arbitrarily chosen as L = 1). Hence, it is
not the question whether it is easy or not for such
a task, but it is almost practically impossible to
determine the minimum values for the feedback
gain K .

(II) The controller functions (21) involve the un-
known parameters A and a2

m, which indicate that
it is impractical for real applications

(III) The parameter update laws (20) can be rewrit-
ten as ˙̂am = −ãme = −(am − âm)e. Note that am

is the unknown parameter that needs identifica-
tion, but it is involved in the identification pro-
cess. This again results in the same problem as
described in Case I of Sect. 3.1. Thus, the updat-
ing laws are infeasible either. This error has also
been pointed out in a recent comment [20].
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As a conclusion, the pragmatical scheme proposed
in [13] cannot be used in practical situations. It is
worth mentioning that in a recent article [41] the above
problems (II) and (III) still exist. Note that in the com-
ment [20], a modified scheme is provided to correct
the erroneous results in [13].

3 The corrections

In this section we would like to propose several mod-
ified schemes to correct the defective schemes listed
in Sect. 2. We firstly provide a general theorem for
the adaptive synchronization design. Then this theo-
rem will be extended to other specific synchroniza-
tion cases in order to present the corresponding cor-
rections.

3.1 General theorem

Consider the driving and response systems described
by{

ẋ = f (x) + F(x)P

ẏ = g(y) + G(y)Q + U
(23)

where x ∈ Rn,y ∈ Rn are the state vectors in drive
system and response system, respectively; f (x) is an
n × 1 matrix and F(x) is an n × p matrix in drive
system. Similarly, in response system, g(y) is an n×1
matrix and G(y) is an n × q matrix. Note that P ∈ Rp

and Q ∈ Rq are uncertain parameter vectors.
Firstly we introduce the following useful lemma

which will be used for the stability analysis in our de-
signing process.

Lemma 1 (See p. 76 of [42]) If f, ḟ ∈ L∞, and f ∈
Lp for some p ∈ [1,∞), then f (t) → 0 as t → ∞.

The result of Lemma 1 is actually a special case of
the well-known Barbalat lemma.

Define the synchronization error as e(t) = y(t) −
x(t), further define the parameter estimation error as
Q̃ = Q−Q̂ and P̃ = P − P̂ . Then the error dynamical
system is obtained as

ė = ẏ − ẋ = g(y) − f (x) + G(y)Q − F(x)P + U

= G(y)Q̃ − F(x)P̃ + (
U + g(y) − f (x)

+ G(y)Q̂ − F(x)P̂
)

= G(y)Q̃ − F(x)P̃ + Ū (24)

where Ū = (U + g(y) − f (x) + G(y)Q̂ − F(x)P̂ ).
Our aim is to achieve the synchronization as well as
the identification of the unknown parameters. Thus
we construct the following positive definite Lyapunov
function with the common quadratic form:

V1(e) = eT e/2,

V2(P,Q) = (
P̃ T P̃ + Q̃T Q̃

)
/2

(25)

and V = V1(e) + V2(P,Q). Differentiating V along
the error trajectory (24) yields

V̇ = eT
(
G(y)Q̃ − F(x)P̃ + Ū

) + Q̃T ˙̃
Q + P̃ T ˙̃

P

= eT Ū + eT G(y)Q̃ + Q̃T ˙̃
Q − eT F (x)P̃ + P̃ T ˙̃

P

(26)

Further, if we choose⎧⎪⎪⎨
⎪⎪⎩

Ū = −Ke

˙̃
Q = − ˙̂

Q = −GT (y)e

˙̃
P = − ˙̂

P = FT (x)e

(27)

Then we can obtain V̇ = −Ke2 ≤ 0, where K are the
predefined positive controlling gains. Since V (0) is
bounded, V (t) is also bounded. Consequently, from
dynamical systems (23), the state trajectories and pa-
rameter estimates are also bounded, i.e., x, y, e, P̂ ,

Q̂ ∈ L∞. From (24) we know that ė(t) exists and is
bounded for t ∈ [0,+∞). From V̇ = −Ke2 ≤ 0, one
gets∫ ∞

0
e2(τ ) dτ = − 1

K

∫ ∞

0
V̇ dτ = 1

K
(V0 − V∞) (28)

where V0 = V (e(0), P̃ (0), Q̃(0)). The above equa-
tion indicates that e ∈ L2. According to the result of
Lemma 1, we can conclude that e(t) → 0 as t → ∞,
which means that the synchronization would be fi-
nally attained. In addition, this in turn also implies that
˙̃

Q(t),
˙̃

P(t) → 0 as t → ∞.

Despite the fact that e(t),
˙̃

Q(t),
˙̃

P(t) → 0 as
t → ∞, it should be noticed that Q̃(t), P̃ (t) does not
necessarily converge to zero (and it may not converge
at all). This point shows that the reported results in
[33, 34, 43] etc. are incorrect. Additional conditions
should be imposed to establish the convergence of the
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parameter estimation errors, while this condition has
unfortunately been neglected in those papers [33–38].

When the synchronization has been achieved be-
tween the dynamical systems (23) with bounded state
signals, we have e = 0 and ė → 0 as t → ∞. By in-
serting e = 0 (or y = x) into Eq. (24), we notice that
as t → ∞ Eq. (24) actually becomes

G(y)Q̃ − F(x)P̃ = 0 (29)

Equation (29) is analogue to a linear algebraic equa-
tion group if we consider the function groups G(y)

and F(x) as the common constant matrices. Hence,
we can apply the well-known concept of linear inde-
pendence in linear algebra to derive the important con-
dition for the identification problem. Denote{

G(y) = {G(1)(y),G(2)(y), . . . ,G(p)(y)}
F(x) = {F (1)(x),F (2)(x), . . . ,F (q)(x)} (30)

where G(i)(y) ∈ Rn for i = 1,2, . . . , p and F (j)(x) ∈
Rn for j = 1,2, . . . , q . Thus Eq. (29) can be rewritten
as

p∑
i=1

G(i)(y)(Qi − Q̂i) −
q∑

i=1

F (j)(x)(Pj − P̂j ) = 0

(31)

To ensure that the above equation has the unique so-
lution of Qi = Q̂i and Pj = P̂j , the function elements
{G(i)(y)|i=1,2,...,p,F (j)(x)|j=1,2,...,q} should be lin-
early independent on the orbit y(t) = x(t) of the syn-
chronization manifold. Otherwise, there would exist
many nonzero constants α and β such that Qi − Q̂i =
α �= 0 and Pj − P̂j = β �= 0, which means that the un-
known parameters would be estimated to some other
false values. This is exactly the case that has not been
considered by [10].

3.2 Corrections to some defective synchronization
schemes

Based on the above general result, the theoretical error
in [5] should be corrected as⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

U = −g(y) − G(y)Θ̂ + 1
β(t)

DS−1

· (H(x, y, t) + α(t) · DQ · F(x)P̂ )

˙̂
P = (α(t) · DQ · F(x))T · e
˙̂

Θ = −(β(t) · DS · G(y))T · e

(32)

Note that to achieve successful identification, the LI
property of the function groups (α(t) · DQ · F(x))T

and −(β(t) ·DS ·G(y))T on the synchronization man-
ifold should be checked.

The theoretical result of [11] should be corrected as⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

U(t) = θf (x(t − τ)) − g(y(t))

+ θF (x(t − τ))P̂

− G(y(t))Q̂ − Ke

˙̂
P = θF (x(t − τ))T e

˙̂
Q = −G(y(t))T e

(33)

Equation (33) is a general formula to achieve the
GPLS of uncertain dynamical systems, however, this
formula was not derived in [11]. Similarly, the LI
property of the function group θF (x(t − τ))T and
−G(y(t))T on the synchronization is important for
successful identification. Note that the imperfect result
of [12] which deals with the adaptive GFPLS should
be corrected in a similar way as described by Eq. (33).

Similarly, the errors appearing in Theorem 1 of [29]
should be modified as⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u = f2(y) + g2(y)α̃ − h(t)f1(x)

− h(t)g1(x)β̃

˙̃
β = −h(t)(g1(x))T e

˙̃α = (g2(y))T e

ḣ(t) = xT e

(34)

The proofs of the above modified schemes follow the
same procedures of Sect. 3.1, hence we omit them
here.

The defective results in some other articles [6, 7,
28, 30] can be fixed up in a similar manner.

Note that for successful parameter identification,
the LI condition should always be tested and guaran-
teed. However, in some cases, the vector terms would
be linearly dependent on the synchronization mani-
fold in the process of adaptive synchronization, which
may lead to failures of the parameter identification.
In Sect. 4, we will present detailed discussion on the
avoidance or elimination of the linear dependence of
the relevant vector terms.

Remark 4 The LI condition is conceptually the same
as the persistence excitation condition, which is an
established concept in the area of adaptive control
[44]. We have shown that, if the system model can
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be exactly known and the time series of the system
states can be sampled properly, the unknown parame-
ters could be recovered according to the adaptive syn-
chronization method. On one hand, the complicated
chaotic signals are favorable for the potential appli-
cation of secure communication. On the other hand,
the property of the chaotic signals (or the sensitiv-
ity to initial data) leads to that the LI condition can
be easily satisfied. As a result, the unknown param-
eters would be hopefully extracted from the sampled
chaotic signals. In fact, some reported secure com-
munications (e.g. [45, 46]) have been cracked by the
adaptive synchronization method (see the cryptanaly-
sis in [47, 48]). The research motivation for the adap-
tive synchronization of chaotic systems is that the syn-
chronization scheme is expected to be adopted in the
secure communication domains. However, the claimed
advantage of the chaotic signals in communication
schemes would also be used in the parameter iden-
tification purposes. This indicates that people should
be very cautious in designing the chaos-based secure
communication scheme in the context of uncertain
chaotic systems via the adaptive method. Some de-
tailed analysis on the identifiability of uncertain dy-
namical systems can be found in an early paper [49].

Remark 5 As a conclusion of this section, we have
presented several modified schemes with rigorous
proofs to correct the defective schemes that have been
reported in several previous papers [5–7, 11, 12, 28,
30]. As mentioned above, the main defect in those ar-
ticles is that the unknown knowledge of the uncertain
parameters is used in the parameter updating laws. By
removing the parameter terms in the updating laws,
the defective results can be corrected accordingly. By
employing Barbalat’s Lemma and/or LaSalle’s invari-
ance principle, the stability of the synchronization er-
ror system, as well as the sufficient LI condition, can
be rigorously obtained. This is actually the proving
strategy adopted in [23, 24, 50]. In fact, these papers
[23, 24, 50] present correct schemes for the adaptive
synchronization design.

4 On avoiding the linear dependence in
identifying unknown parameters

As stated in the above analysis in Sect. 3, the LI prop-
erty of the related function terms is important for suc-
cessful identification. However, in practical situations,

the identification functions might become linearly de-
pendent, which will probably cause identification fail-
ures. Hence, how to avoid the linear dependence in
such cases is a significant issue for parameter identi-
fication. To the best of our knowledge, the only litera-
ture that has clearly discussed this topic is [51] (see
Sect. 4 of [51]). The basic concept of the proposed
method in [51] is to check the angles between the sub-
spaces of the function terms and then determine which
parameter index should be eliminated from the overall
index set. However, that method is somewhat complex
and difficult to understand, and the calculation of the
angle between the subspaces might result in a heavy
computation burden. In this section, we will present a
systematic study for this significant topic and propose
several feasible solutions to this problem.

4.1 There typical cases when the LI condition would
be violated

Generally speaking, there are three cases when the LI
condition would not be satisfied.

(I) The function elements FT
i (x) (or GT

i (y)) finally
converge to zero and, accordingly, these func-
tion elements would be linearly dependent. If this
happens in a quite short time, the identification
of the unknown parameters Pi (or Qi ) would
probably be unsuccessful since the stable state
could not provide sufficient information for the
true convergence of the parameter estimations.

(II) Some states in drive system (or response system)
might reach inner synchronization, i.e. xi(t) →
xj (j �=i)(t) (or yi(t) → yj (j �=i)(t)) as t → ∞.
Then there exists the possibility that either
(a) FT

i (x(t)) → 0 (or GT
i (y(t)) → 0), or

(b) FT
i (x(t)) → FT

j (x(t)) (or GT
i (y(t)) →

GT
j (y(t))).

For case (a), it is essentially the same as Case
(I) mentioned above. For case (b), the function
element FT

i (•) (or GT
i (•)) would be linearly de-

pendent with FT
j (•) (or GT

j (•)) on the inner syn-
chronized trajectory xi(t) → xj (t) (or yi(t) →
yj (t)). If this happens in a short time, the iden-
tification of the unknown parameters Pi and Pj

(or Qi and Qj ) would probably be failed. The
concept of finite-time linear independence condi-
tion, proposed in [23, 26], are applicable for the
convergence analysis in such case. One should
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carefully check the transient process of the func-
tion elements to ensure that they have provided
enough persistent time for the parameter estima-
tion before the driving functions converge to the
synchronous states. In Sect. 4.5, we will consider
a concrete example to illustrate this particular
case. Note that the concept inner synchronization
refers to the synchronization between different
states of the same system.

(III) When the synchronization between the drive sys-
tem ẋ and the response system ẏ is achieved,
there exists the possibility that FT

i (x(t)) →
GT

j (y(t)) on the synchronization trajectory yj →
xi as t → ∞. If this happens in a short time be-
fore the parameter estimations converge to their
true values, the identification of the unknown pa-
rameters Pi and Qj would be failed by a strong
possibility. We call this synchronization outer
synchronization, in order to distinguish it with
the above mentioned inner synchronization. In
Sect. 4.4, we will present a simple and feasible
approach to deal with this case.

Based on the above analysis, in the following sec-
tions, four methods are proposed to avoid the linear
dependence of the functions to ensure successful iden-
tification.

4.2 Method I: changing the structures of the function
groups FT (x) (or GT (y))

In the identification process, if the linear depen-
dence of the function element FT

i (x(t)) is predicted
due to FT

i (x(t)) → 0 or FT
i (x(t)) → FT

j (x(t)) (or

(F T
i (x(t)) → GT

j (y(t))) on the synchronization orbit
xi(t) → xj (t) (or yj (t) → xi(t)), then we can simply

change its structure as
	

F
T
i (x(t)) and re-examine its

LI property. If that there cases discussed in Sect. 4.1

are avoided for the new function
	

F
T
i (x(t)), then the

unknown parameter Pi can be truly estimated.
The same strategy can be applied to function groups

GT (y) if the linear dependence of GT
i (y(t)) is pre-

dicted. In the following, we will illustrate this method
by giving a typical example.

Consider the following system [25]:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ1 = a1(x2 − x1) + a2(x4 − x1)

ẋ2 = cx1 − x2 − x1x3

ẋ3 = −bx3 + x1x2

ẋ4 = −(x4 − x1) + a3(x2 − x1)

(35)

This system is artificially constructed in [25] based on
the classical Lorenz system with the aim to demon-
strate the reason of the identification failure. Sys-
tem (35) is chaotic when parameters are set as a1 =
a3 = 10, b = 8/3, c = 28, a2 = 6. It has been shown
in [25] that, despite the successful identification of
a1, a3, b, c, the identification of a2 cannot be achieved
via the synchronization-based method. In fact, since
ẋ4 − ẋ1 = −(1 + a2)(x4 − x1), it is obvious that
x4(t) → x1(t) as t → ∞. Hence, the inner syn-
chronization between state x4 and state x1 leads to
(x4 − x1) → 0, which means that the function element
F1(x) = x4 − x1 is linearly dependent to other func-
tions.

There are many options for the changing of
	

F 1 (x).

Here we simply change the function structure as
	

F 1

(x) = x4 − x1 + x2. Then the updating law for param-
eter a2 becomes

˙̂a2 = (y4 − y1 + y2)e1 (36)

Obviously, the new function
	

F 1 (x) is LI to other func-
tion elements. With this modification, the identifica-
tion of a2 is successful now, which is shown in the
right part of Fig. 2.

4.3 Method II: adding extra signals to the state
function

In many real situations the structures of the system
is fixed and it is not so convenient (or even not
allowed) to change the function structures. In such
cases, Method I described in Sect. 4.2 would not be
applicable. To tackle the identification problem in such
a situation, we suggest adding auxiliary signals to
the system state equation while the structures of the
function groups FT (•) (or GT (•)) should remain un-
changed.

Suppose that in the state xi the function element
Fi(x) is detected to be linearly dependent. We shall
modify the evolution equation of the state xi as

ẋi = fi(x) + Fi(x)Pi + ωi (37)

where ωi is the additive signal. This approach is espe-
cially useful in two cases:

(I) If the state xi originally converges to stable zero
point, then the additive signal ωi would inject ex-
tra energy to the evolution of xi and thus activate
the LI property of Fi(x).
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Fig. 2 Parameter
identification of system
(35). Left: identification
result with the original
updating laws designed in
Ref. [25]. Right:
identification result with the
modified updating laws
Eq. (36)

Fig. 3 Parameter
identification of system (35)
by adding extra signals to
the state function. Left:
identification result with the
modified updating laws
Eq. (38). Right:
identification result with the
modified updating laws
Eq. (39)

(II) If the function term Fi(x) is linearly dependent
due to the inner synchronization between state xi

and some other states xj (j �=i), via adding the ex-
tra signal ωi we may break this undesired syn-
chronization and thus re-gain the LI condition of
Fi(x).

It is worth noting that the concept of adding auxiliary
signals was also mentioned in [52]. The authors of [52]
remarked that by adding supplement signals the dy-
namical system would be driven out of the stable state.
In fact, the added signals can be regarded as additional
information or injected energy which could be used
not only to break the stable state but also to disturb the
undesirable synchronous orbits. Furthermore, in prac-
tice, the extra signal can also be added to other states
rather than the sole state xi .

In the following, we will present a concrete exam-
ple. Again, we consider the above example employed
in Sect. 4.2. The reason for the identification failure
is due to the fact that F1(x(t)) = x4(t) − x1(t) → 0
as t → ∞. We suggest two schemes, i.e., adding extra
signals to either the state x1 or the state x4,

ẋ1 = a1(x2 − x1) + a2(x4 − x1) + ω1 (38)

or

ẋ4 = −(x4 − x1) + a3(x2 − x1) + ω4 (39)

By doing this, the inner synchronization between x1

and x4 could be eliminated. Two numerical simula-
tions are performed: one is to add the time-varying sig-
nal ω1 = −x3 to state x1, the other is to add a constant
ω4 = 15 to the state x4. As predicted, the LI property
of the function F1(x(t)) is satisfied and the identifica-
tion of the unknown parameter a2 has been success-
fully attained (for details, see Fig. 3).

4.4 Method III: altering the synchronization orbits

In some practical situations we may confront the situa-
tions that the driving system and response system both
involve unknown parameters. It would be a tough task
to estimate all the unknown parameters as well as to
achieve the synchronization. As discussed in Case III
of Sect. 4.1, the synchronization between drive state
and the corresponding response state would result in
the linear dependence of relevant function on the syn-
chronization manifold. In other words, as the synchro-
nization becomes the major hindrance for parameter
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identification, it would become difficult to achieve the
system synchronization and parameter identification
simultaneously.

Inspired by the so-called switching synchronization
scheme [53], we propose a simple method of changing
the synchronization orbits to tackle the problem in this
case. By examining the different combination of drive
state and the synchronized response system, we can
finally find one feasible combination of the synchro-
nization orbits that can maximize the number of the
function elements which are linearly independent on
the synchronization orbit. By doing this, the number
of the unknown parameters that can be identified can
also be optimized.

We choose the most commonly used Lorenz chaotic
system as an illustrative example. The drive Lorenz
system and the controlled response Lorenz system are
given, respectively, as⎧⎪⎨
⎪⎩

ẋ1 = a1(x2 − x1)

ẋ2 = c1x1 − x2 − x1x3

ẋ3 = x1x2 − b1x3

(40)

and⎧⎪⎨
⎪⎩

ẏ1 = a2(y2 − y1) + u1

ẏ2 = c2y1 − y2 − y1y3 + u2

ẏ3 = y1y2 − b2y3 + u3

(41)

The true values of system parameters in driving
Lorenz system are a1 = 10, c1 = 28 and b1 = 8/3.
We assume that the parameters in response Lorenz
system are not identical to those in drive system, and
their values are a2 = 9, c2 = 27 and b2 = 8/3 + 0.2,
respectively. Note that with the specified parameter
values the driving and response systems both possess
chaotic attractors. We further suppose that the param-
eters a1, b1, c1 in drive system (40) and the parame-
ters a2, b2, c2 in response system (41) are all unknown
which need to be identified via the synchronization
method.

If we consider the conventional synchronization
mode that the states in response system are synchro-
nized to the corresponding states in drive system, that

is, y1
syn→x1, y2

syn→x2 and y3
syn→x3, then the synchro-

nization errors should be defined as

e1 = y1 − x1, e2 = y2 − x2, e3 = y3 − x3

(42)

The controller functions can be derived directly ac-
cording to Eq. (27). The parameter update laws are
designed as

⎧⎪⎨
⎪⎩

˙̂a1 = −(x2 − x1)e1˙̂
b1 = x3e3˙̂c1 = −x1e2

and

⎧⎪⎨
⎪⎩

˙̂a2 = (y2 − y1)e1˙̂
b2 = −y3e3˙̂c2 = y1e2

(43)

Obviously, on the synchronization orbits y1(t) =
x1(t), y3(t) = x3(t) and y2(t) = x2(t), the function
terms −(x2 − x1), x3,−x1 are linearly dependent to
(y2 − y1),−y3, y1, respectively. Under such case all
the six unknown parameters a1 ∼ c2 would be failed to
be identified. We have also performed some numerical
simulations to verify our analysis. The initial values
for the parameter estimations are â1(0) = â2(0) = 3,

b̂1(0) = b̂2(0) = −6 and ĉ1(0) = ĉ2(0) = −2. The
initial conditions for the drive states and response
states are [x1(0), x2(0), x3(0)]T = [2,−5,−1]T ,

[y1(0), y2(0), y3(0)]T = [−2,5,1]T , respectively. The
simulation results are shown in Fig. 4. It can be clearly
seen from the figures that none of the six unknown pa-
rameters have been successfully identified to their true
values.

Actually, the failures of the identification are caused
by the linear dependence of the function terms. Let
us recall the expressions of the system structures de-
scribed in Eq. (43). It is obvious that the term x1 is
always linearly independent with the term (y2 − y1);
hence, if we let the state y1 synchronize with the state
x2, then the synchronization orbit y1(t) = x2(t) is cre-
ated and, as a result, the two unknown parameters a2

and c1 would be identified. Similarly, if we choose
the states y3 and x1 as the synchronizing couples, as
the function terms −y3 and (x2 − x1) are linearly in-
dependent on the synchronization orbit y3(t) = x1(t),
the unknown parameters b2 and a1 can also be identi-
fied. For the rest two states y2 and x3, if they are syn-
chronized, the function terms y1 and −x3 are appar-
ently linearly independent on the created orbit y2(t) =
x3(t), which indicates that it is possible to identify the
last two unknown parameters c2 and b1. As a con-
clusion, all the unknown parameters can be correctly
identified by changing synchronization orbits.

To verify the correctness of the theoretical anal-
ysis, some simulations are also performed to pro-
vide intuitive explanations. Based on the above analy-
sis, the synchronization modes should be designed as
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Fig. 4 Identification
failures for all of the
unknown parameters in
drive Lorenz system (40)
and response Lorenz system
(41) with the original
updating laws Eq. (43)

y1
syn→x2, y3

syn→x1 and y2
syn→x3, and the synchroniza-

tion errors are now modified as

e1 = y1 − x2, e3 = y3 − x1,
(44)

e2 = y2 − x3

The controller functions are designed as

⎧⎪⎨
⎪⎩

u1 = −(x2 + x1x3) + ĉ1x1 − â2(y2 − y1) − k1e1

u2 = x1x2 + y2 + y1y3 − b̂1x3 − ĉ2y1 − k2e2

u1 = −y1y2 + â1(x2 − x1) + b̂2y3 − k3e3

(45)

The parameter update laws should be modified as

⎧⎪⎨
⎪⎩

˙̂a1 = −(x2 − x1)e3˙̂
b1 = x3e2˙̂c1 = −x1e1

and

⎧⎪⎨
⎪⎩

˙̂a2 = (y2 − y1)e1˙̂
b2 = −y3e3˙̂c2 = y1e2

(46)

We employ the same initial conditions for parame-
ter estimations and system states used in the above
simulations. The controlling gains are chosen as K =
diag(k1, k2, k3) = diag(2,2,2). The numerical results,
which are shown in Fig. 5, clearly indicate that all the
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Fig. 5 Identification
success for all of the
unknown parameters in
drive Lorenz system (40)
and response Lorenz system
(41) by altering the
synchronization orbits with
the modified updating laws
Eq. (46)

unknown parameters have been accurately estimated.
Thus the effectiveness of this method is verified.

Remark 6 The defective scheme reported in
[10, 33–38] can be resolved in a similar manner via
this method introduced in this section. For example, in
the recent paper [38] the authors studied the reduced-
order anti-synchronization between uncertain hyper-
chaotic Chen system and Lü system. However, via
the designed updating laws Eq. (15) of [38], none of
the unknown parameters except for d1 could be pre-
cisely estimated (we should mention that Fig. 2 pre-

sented in [38] is inaccurate). A feasible remedy to
this problem is to alter the synchronization orbits as

x1
syn→−y3, x2

syn→−y1, and x3
syn→−y2 such that all the

function terms in the updating laws can be linearly in-
dependent to each other. Detailed numerical results are
omitted here.

4.5 Method IV: adjusting the persistent time and
transient time

The above schemes in Sects. 4.1–4.3 are quite appli-
cable to ensure the long-time LI condition. However,
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Fig. 6 Time evolutions of
the states of the Lorenz
system with parameters
a1 = 1, b1 = 8/3 and
c1 = 28. (Initial conditions:
[x1(0), x2(0), x3(0)]T = [1,5,4]T )

as mentioned in [23, 26], the concept of the finite-time
LI condition is more desirable for some cases when
the long-time LI condition is not applicable. The basic
idea for the finite-time LI condition is to guarantee that
the persistent time is larger than the parameter tran-
sient time such that the unknown parameters can be es-
timated to their true values. Intuitively, two directions
can be considered, i.e., by shortening the transient time
of the estimation process, or by extending the persis-
tent time of the function elements before they converge
to the stable states or synchronous states. In this sec-
tion we shall present a typical example to show how
to adjust the persistent time and transient time simul-
taneously such that the parameter identification can be
achieved at a high accuracy even if the long-time LI
condition is not met.

Let us consider the well known Lorenz system (40)
as the drive system. But here we assume that the un-
known parameters only exist in the drive system and
we need to construct a response system to achieve the
synchronization as well as to estimate the unknown
parameters. Hence, we rewrite the response system as

⎧⎪⎨
⎪⎩

ẏ1 = â1(y2 − y1) + u1

ẏ2 = ĉ1y1 − y2 − y1y3 + u2

ẏ3 = y1y2 − b̂1y3 + u3

(47)

Note that in comparison with (41), here the parame-
ters â1, b̂1, and ĉ1 in (47) are time-varying estimates
for the unknown parameters a1, b1, and c1. We de-
sign the feedback controllers as ui = −10(yi − xi) for

i = 1,2,3. The updating laws for the unknown param-
eters are designed as

⎧⎪⎨
⎪⎩

˙̂a1 = −k1(y2 − y1)e1
˙̂
b1 = k2y3e3

˙̂c1 = −k3y1e2

(48)

where ki are the control gains for the parameter updat-
ing laws. According to [23], we assume that the true
values of the unknown parameters are a1 = 1, b1 =
8/3 and c1 = 28. With these parameter settings the
Lorenz system will display steady states rather than
the typical chaotic attractor. The time evolutions for
the driving states are shown in Fig. 6, where one can
find that as y2 → y1, the parameter estimation for
a1 = 1 would be in doubt (also see Sect. III of [23]
which presents a curve for the false convergence of
a1).

To achieve the estimation of a1 with high accuracy,
we must guarantee that the persistent time of the driv-
ing function should be long enough, or at least longer
than the transient time for the estimation process of
a1. By analyzing the above example, we can fix the
initial conditions for the unrelated states and param-
eter estimations such that the transient time for the
synchronization process is much less influenced. The
desired persistent time and the transient time for esti-
mating a1 can be adjusted by varying the initial con-
ditions for x1(0), x2(0), and â1(0). The gap between
the initial conditions for x1(0) and x2(0) would af-
fect the persistent time (i.e., the larger gap between the
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Fig. 7 Parameter
identification of a1 by
adjusting the persistent time
and the transient time via
selecting different initial
conditions

initial conditions of x1(0) and x2(0), the longer pro-
cess it would be for x1(t) converging to x2(t)). Also,
the transient time for estimating a1 would be partially
determined by the gap between the initial condition
â1(0) and its true value a1 = 1 (i.e., larger gap from
its true value would lead to longer transient time for
the parameter estimation). Hence, in order to achieve
a better estimation, the initial conditions for x1(0) and
x2(0) should be selected with a large enough gap and
the initial conditions for the estimation â1(0) should
be chosen sufficiently close to its true value. Accord-
ing to the above analysis, we have performed several
numerical simulations to present an intuitive observa-
tion of this method. In the simulations, we set the up-
dating gains as k1,2,3 = 1 and fix the initial conditions
as [x1(0), x3(0)]T = [1,4]T , [y1(0), y2(0), y3(0)]T =
[−1,1,6]T , b̂1(0) = 20, and ĉ1(0) = 5. These initial
values remain unchanged and the initial conditions for
x2(0) and â1(0) are varying in each simulation. The
simulation results are shown in Fig. 7. For the sake of
presentation, the y axis in Fig. 7, which represents the
estimation error ã1, is depicted in a logarithmic man-
ner. As can be found in Fig. 7, the numerical results
confirm the feasibility of this conceptual method. If
we choose x2(0) = 100 and â1(0) = 2, the time differ-
ence between the persistent time and the transient time
is large enough and the identification result is quite fa-
vorable.

When we implement the above method, another
problem would arise: since we have little information
about the true values for the unknown parameters, we
cannot judge whether the initial conditions for param-
eter estimators are chosen sufficiently close their true
values. To deal with this issue, here we present another

scheme to address this problem. Motivated by the con-
cept of iterative algorithm, we could run the param-
eter estimation process for several times and update
the initial conditions for the estimated parameters in
each round with the latest values in the last round. As
proved in Sect. 3, the parameter identification method
features global asymptotical stability and the estima-
tors would not be trapped in any local equilibrium. In-
stead, after each estimation round, the unknown pa-
rameters would converge better to their true values.

We have also performed numerical simulations
to demonstrate the effectiveness of this scheme by
using the same example in this section. The ini-
tial conditions are chosen as [x1(0), x2(0), x3(0)]T =
[1,5,4]T , [y1(0), y2(0), y3(0)]T = [−1,1,6]T ,

b̂1(0) = 20, ĉ1(0) = 5 and they will remain unchanged
in each round. We assume that after every 20 sec-
ond we shall initialize a new estimation round. In the
first round, we select â1(0) = 10. The numerical re-
sults are shown in Fig. 8. In the third round, the ac-
curacy has only been slightly improved from 0.9864
to 0.9884 and it could be predicted that, if without
additional measures, in the following rounds the esti-
mations could be attained with limited improvement.
Thus, in the fourth round, we not only choose the ini-
tial condition as â1(0) = 0.9884 but also magnify the
updating gain as k1 = 10. By doing this the transient
time can be further shortened and the estimation result
in the fourth round is quite satisfactory.

Remark 7 The idea in this section is inspired by the
concept of the finite-time LI condition studied in [23,
26]. When the finite-time LI period is over, the pa-
rameter estimations would remain unchanged. Hence,
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Fig. 8 Parameter
identification of a1 by using
an iterative estimation
scheme

we should enlarge the time gap between the persistent
time and the transient time. In practical cases, one can
combine the above mentioned strategies to achieve a
better performance for the parameter estimation. For
example, one can choose larger parameter updating
gains, closer initial conditions for the estimated pa-
rameters, more unparallel values for the system states,
and run the estimations with desirable rounds.

5 Conclusions

In this paper, several adaptive synchronization schemes
reported in a series of recent articles have been care-
fully reviewed and revisited, and it is found that some
proposed adaptive schemes are defective. The major
defects in these studies are that the unknown param-
eters were inappropriately involved in the designed
updating laws or the controller functions. Based on a
general theorem for the adaptive synchronization de-
sign, several modified answers have been provided to
correct these synchronization schemes.

In addition to addressing and correcting these im-
perfect results, we also point out that the important
LI condition has been neglected in several articles.
We have analyzed three cases in which the LI con-
dition would not hold and accordingly we have pro-
posed several methods to avoid the linear dependence
of the identification functions such that the success-
ful parameter identification can be achieved during the
synchronization process. In addition, typical examples
and numerical results are also presented to validate the
feasibility of the proposed methods. Finally, we hope
this article can provide insightful guidance for the syn-
chronization and identification design of chaotic (or
hyperchaotic) systems with unknown parameters.
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