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Abstract In the present paper, we study a dynamic
reaction model in which (i) the predator is provided
with an alternative food in addition to the prey species,
(ii) the predator is harvested, and (iii) a tax is im-
posed to regulate the system. The existence of possible
steady states along with their local as well as global
stability is discussed for both the exploited and un-
exploited systems. Boundedness of the system is also
discussed. It is seen that the system undergoes a Hopf
bifurcation by the addition of alternative prey and the
criteria for the Hopf-bifurcation is also discussed. Op-
timal tax policy is discussed using Pontryagin’s maxi-
mal principle. Finally, some numerical simulations are
given to show the consistency with theoretical analy-
sis.
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1 Introduction

Population dynamics has attracted interest from the
commercial harvesting industry and from many sci-
entific communities including biology, ecology, and
economics. Population ecologists study how births and
deaths affect the dynamics of populations and commu-
nities, while ecosystem ecologists study how species
control the flux of energy and materials through food
webs and ecosystems. Although all these processes oc-
cur simultaneously in nature, the mathematical frame-
works bridging the two disciplines have developed
independently. Research in the area of theoretical
ecology was initiated by Lotka–Volterra. Since then,
many mathematicians and ecologists contributed to
the growth of this area of knowledge as reported in the
treatises of Paul Colinvaux [19], Freedman [7], Kapur
([11] and [12]), etc.

Harvesting of multi-species fisheries is an impor-
tant area of study in fishery modelling. The issues and
techniques related to this field of study and the prob-
lem of combined harvesting of two ecologically in-
dependent populations obeying logistic law of growth
are discussed in detail by Clark [2]. The effect of con-
stant rate harvesting on the dynamics of predator–prey
systems has been investigated by Dai and Tang [5],
Myerscough et al. [18], and Xiao and Ruan [21], and
they obtained very rich and interesting dynamical be-
haviors. Zhang et al. [22] have investigated the dynam-
ics of the inshore-offshore fishing model with impul-
sive diffusion and pulse harvesting at different fixed
times.
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A model in which the revenue is generated from
fishing and the growth of fish depends upon the plank-
ton, which in turn grows logistically is developed by
Dhar et al. [4]. They further formulated the model with
a delay in digestion of plankton by fish and found the
threshold value of a conversional parameter for Hopf-
bifurcation. Kar and Matsuda [15], Kar and Pahari
[16] discussed the predator–prey model with time de-
lay and analyzed the effects of time delay on model
dynamics such as the time delay may change the sta-
bility of equilibrium points and even cause a switch-
ing of stabilities. The effect of environmental fluctua-
tions and gestation delay on the harvesting population
model is investigated by Zhang and Zhang [23].

The role of alternative prey in sustaining preda-
tor populations has been widely studied. Many prey–
predator models suggest that adding alternative prey to
a predator would lower the density of the target prey.
However, from some empirical works of Harwood and
Obrycki [8], Halt and Lawton [10], and Wootton [20],
it is clear that the addition of an alternative prey does
not always increase the target population. Thus, there
is an apparent conflict between theory and empirical
observations.

Taxation plays an important role in the regulation
of exploitation of biological resources. In fishery reg-
ulation, taxation, license fees, lease of property rights,
seasonal harvesting, etc. are usually considered as pos-
sible governing instruments. Economists are partic-
ularly attracted to taxation, because of its economic
flexibility. Harvesting problems with taxation as a con-
trol instrument are studied by Kar and Chaudhuri [13],
Dubey et al. [6], Kar et al. [14], etc.

In the present paper, we consider a prey–predator
fishery model by taking an alternative food for the
predator where only the predator species is harvested.
We also take tax as a control instrument. The main
objective of this paper is to find the proper taxation
policy, which would give the best possible benefit to
the society through harvesting. We first determine the
existence of possible steady states of the unexploited
system, and study their local as well as global stabil-
ity. Then we have considered the effect of harvest-
ing. Boundedness of the system is discussed. Crite-
ria for Hopf bifurcation is also developed. The opti-
mal tax policy is studied, and the solution is derived
in the equilibrium case by using Pontryagin’s maxi-
mum principle. Finally, some numerical examples are
discussed.

2 The model formulation

We consider the model equations of two interacting
species, which are in a prey–predator relationship,
and where both species have an independent specific
growth rate in the absence of the other. Whenever there
is a large catch of the predator, there exists serious
implications for production of both the species and,
therefore, it is necessary to regulate harvesting on the
predator species. The rate equations of growth of two
species are given by

dx

dt
= rx

(
1 − x

k

)
− axy

b + x
,

dy

dt
= maxy

b + x
+ dy − cy2 − h(t),

(1)

with x(0) = x0 > 0, y(0) = y0 > 0. Here, x = x(t) =
density of the prey population at time t , y = y(t) =
density of the predator population at time t , k = envi-
ronmental carrying capacity of the prey, r = average
net per-capita growth rate of the prey, i.e. maximum
specific growth rate of the prey, a = maximal relative
increase of predation, b = half saturation level which
is a constant, d = growth rate of the predator due to
availability of alternative food sources, c = mortality
rate of the predator population, m = conversion factor,
h(t) = harvesting rate of the predator at time t .

In the model equation, predator mortality is as-
sumed to be a rate proportional to y2 rather than y.
This non-linear dependency reflects the combined ef-
fects of increased predation by the super predator (not
considered in the model directly) and the interface or
competition among the predators. So, the growth of
the predator species in the second equation is limited
due to the presence of the term cy2 and even if the
density of the prey is very high.

The term dy represents a growth rate of the preda-
tor due to the availability of alternative food sources.
It is quite natural that when focal prey is low, the
predators increase their feeding on alternative prey.
But when the focal prey increases, the predator uses
less alternative prey, and as focal prey approaches to
its saturation value k, the amount of alternative prey
consumed by the predator tends to zero and then only
predation of the focal prey occurs. For this reason, we
modify the term dy by the factor dy(1 − x

k
).

The amount of prey consumed by the predator is
assumed to follow the Holling-type II [9] functional
form. Here, we assume that the per-capita rate of con-
sumption of prey by the predator is ax

b+x
. This type



Conservation of a resource based fishery through optimal taxation 593

of function for consumption is called depensatory be-
cause the per-capita consumption rate decreases as
prey density increases.

We assume that the predator population is harvested
according to the catch-per-unit-effort (CPUE) hypoth-
esis [2], which describes that catch per unit effort
is proportional to the stock level. Thus, we consider
h = qEy where E is the harvesting effort and q is the
catchability coefficient.

To control exploitation of the fishery, regulatory
agency imposes a tax τ (> 0) per unit biomass of
the landed predator fish. Any subsidy to the fishermen
may be interpreted as the negative value of τ .

The net economic revenue to the fishermen (per-
ceived rent) is given by E[q(p − τ)y − c] where p

is the price per unit biomass and c is the cost of unit
harvesting effort.

In an open access fishery of a fully dynamic model,
the level of fishing effort expands or contracts accord-
ing as the perceived rent to the fisherman is positive
or negative. A model reflecting this dynamic interac-
tion between the perceived rent and effort in a fishery
is called a dynamic reaction model. The harvesting ef-
fort E is, therefore, a dynamic variable governed by
the differential equation

dE

dt
= [

(p − τ)qy − c
]
E.

Thus, the final model becomes

dx

dt
= rx

(
1 − x

k

)
− axy

b + x
,

dy

dt
= maxy

b + x
+ dy

(
1 − x

k

)
− cy2 − qEy, (2)

dE

dt
= [

(p − τ)qy − c
]
E.

3 The case of unexploited fishery

In this case E = 0 and the model (2) reduces to

dx

dt
= rx

(
1 − x

k

)
− axy

b + x
,

dy

dt
= maxy

b + x
+ dy

(
1 − x

k

)
− cy2.

(3)

Model (3) has four non-negative equilibria E0(0,0),

E1(k,0),E2(0, d
c
), and E3(x̄, ȳ) where ȳ = r

a
(b +

x̄)(1 − x̄
k
) and x̄ is the unique real positive root of the

cubic equation

Fig. 1 This figure is given for r = 9, a = 15, b = 5, k = 50,
m = 0.8, c = 1.2, d = 2

x3 +
(

2b − k − ad

rc

)
x2

+
(

b2 − 2bk − abd

rc
+ adk

rc
+ ma2k

rc

)
x

+
(

abdk

rc
− b2k

)
= 0.

This cubic equation has at least one real positive root if
d
c

< br
a

. So, the system (3) has a unique interior equi-
librium point E3(x̄, ȳ) if and only if d

c
< br

a
.

The following figure (see Fig. 1) indicates that for
some parameter values, the system (3) has at least one
interior equilibrium point.

To analyze the behavior of the system (3), firstly,
we discuss the local behavior of the equilibria of the
system (3). The variational matrix of the system (3)
takes the form

J (x, y)

=
(

r(1 − 2x
k

) − aby

(b+x)2 − ax
b+x

maby

(b+x)2 − dy
k

max
b+x

+ d(1 − x
k
) − 2cy

)
.

At E0,

J0 =
(

r 0
0 d

)
.

Therefore, tr(J0) = r + d > 0 and det(J0) = rd > 0.
Hence, the equilibrium point E0 is unstable.

At E1,

J1 =
(−r − ak

b+k

0 mak
b+k

)
.
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Therefore, det(J1) = −makr
b+k

< 0. Hence, E1 is a sad-
dle point.

Let us find out the saddle manifold. We consider
one orbit of the system (3) along x-axis. As 0 < x < k,
ẋ is positive. Thus, the orbit along x-axis with 0 < x <

k goes to E1. Similarly, when x > k, the orbit also
goes to E1. Hence, the x-axis is the stable manifold.

The variational matrix of the system (3) at E2 is

J2 =
(

r − ad
bc

0
mad
bc

− d2

ck
−d

)
.

Now, tr(J2) = r −( ad
bc

+d) and det(J2) = −d(r − ad
bc

).
Thus, we see that if d

c
> br

a
, then tr(J2) < 0 and

det(J2) > 0.
Thus, if d

c
> br

a
, then the equilibrium point E2 is

locally asymptotically stable.
The variational matrix of the system (3) at E3(x̄, ȳ)

is

J̄ (x̄, ȳ) =
(

rx̄(1− b
k
− 2x̄

k
)

b+x̄
− ax̄

b+x̄

ȳ( mab

(b+x̄)2 − d
k
) −cȳ

)
.

We see that

tr(J̄ ) = rx̄(1 − b
k

− 2x̄
k

)

b + x̄
− cȳ,

det(J̄ ) = ax̄ȳ

b + x̄

[
mab

(b + x̄)2
− d

k
− rc

a

(
1− b

k
− 2x̄

k

)]
.

Now tr(J̄ ) < 0 if 1− b
k
− 2x̄

k
<

cȳ(b+x̄)
rx̄

and det(J̄ ) > 0
if 1 − b

k
− 2x̄

k
< a

rc
( mab

(b+x̄)2 − d
k
). Thus, if

1 − b

k
− 2x̄

k

< min

{
cȳ(b + x̄)

rx̄
,

a

rc

(
mab

(b + x̄)2
− d

k

)}
,

then E3(x̄, ȳ) is locally asymptotically stable.
Now we shall discuss the global stability of the in-

terior equilibrium point E3(x̄, ȳ).

Theorem 1 If c > max{ ad
br

, a
2b

}, then E3(x̄, ȳ) is glob-
ally asymptotically stable.

Proof Let us define H(x,y) = 1
xy

. Clearly, H > 0 if
x > 0 and y > 0. Let

f1(x, y) = rx

(
1 − x

k

)
− axy

b + x

and

f2(x, y) = maxy

b + x
+ dy

(
1 − x

k

)
− cy2.

Now

∇(x, y) = ∂

∂x
(f1H) + ∂

∂y
(f2H)

= ∂

∂x

[
r

(
1

y
− x

ky

)
− a

b + x

]

+ ∂

∂y

[
ma

b + x
+ d

(
1

x
− 1

k

)
− cy

x

]

= − r

ky
+ a

(b + x)2
− c

x

< 0 if
a

(b + x)2
− c

x
< 0,

i.e. if c(b2 + x2) + x(2bc − a) > 0, i.e. if c > a
2b

.
Again if c > ad

br
, then the equilibrium point E3(x̄, ȳ)

exists.
Hence, if

c > max

{
ad

br
,

a

2b

}

then
∇(x, y) < 0.

Since E3 is locally asymptotically stable, from the
Bendixin–Dulac criterion (Conway and Smoller) [3],
we may conclude that E3 is globally asymptotically
stable in �2+ if c > max{ ad

br
, a

2b
}.

This completes the proof. �

4 Effect of harvesting

The system (2) under investigation has six equilibria:
(i) P0(0,0,0), (ii)P1(k,0,0), (iii) P2(0, d/c,0),

(iv) P3(0, ŷ, Ê), where ŷ = c
(p−τ)q

, Ê = 1
q
(d − cŷ),

(v) P4(x̄, ȳ,0), where ȳ = r
ak

(k − x̄)(b + x̄) and x̄ is
the unique positive root of the equation

x3 +
(

2b − k − ad

cr

)
x2

+
{
(k − b)

(
ad

cr
− b

)
+ k

(
a2m

cr
− b

)}
x

+ bk

(
ad

cr
− b

)
= 0

and P5(x
∗, y∗,E∗), where

y∗ = c

(p − τ)q
,

x∗ = k − b

2
+

√(
k + b

2

2)
− aky∗

r
,

E∗ = 1

q

{
max∗

b + x∗ + d

(
1 − x∗

k

)
− cy∗

}
.
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We now study the different conditions under which
these steady states exist.

The equilibria P0(0,0,0),P1(k,0,0), and
P2(0, d/c,0) always exist. In the case of taxation, it
is natural to assume that p > τ > 0.

Hence, ŷ > 0 and Ê > 0 if d > c2

(p−τ)q
.

Therefore, the equilibrium point P3(0, ŷ, Ê) exists

if p > τ > 0 and d > c2

(p−τ)q
.

The equilibrium point P4(x̄, ȳ,0) exists if d
c

< br
a

.
This means that the ratio of the rate of growth due

to alternative prey and mortality of predator is always
less than the ratio of the product of specific growth and
the half-saturation level of the prey to its maximum
capture rate due to predation.

Before studying the stability of the model, we show
that the solutions of the system are bounded in a finite
region initiating at (x(0), y(0),E(0)).

5 Boundedness

Theorem 2 All the solutions of the system (2) which
start in �3+ are uniformly bounded.

Proof Let (x(t), y(t),E(t)) be any solution of the
system with positive initial conditions. We define the
function

W = x + y

m
+ E

m(p − τ)
.

Therefore, the time derivative is found to be

dW

dt
= dx

dt
+ 1

m

dy

dt
+ 1

m(p − τ)

dE

dt

= rx − r

k
x2 + d

m
y − d

mk
xy

− c

m
y2 − cE

m(p − τ)
.

Now, for each μ > 0, we have

dW

dt
+ μW

= rx − r

k
x2 + d

m
y − d

mk
xy − c

m
y2

− cE

m(p − τ)
+ μx + μy

m
+ μE

m(p − τ)

≤ rx − r

k
x2 + d

m
y − c

m
y2

− cE

m(p − τ)
+ μx + μy

m
+ μE

m(p − τ)
.

Taking c = μ, we have

dW

dt
+ μW ≤ rx − r

k
x2 + d

m
y − c

m
y2 + μx + μ

m
y

≤ k

4r
(r + μ)2 + 1

4mc
(d + μ)2.

Thus, we get

dW

dt
+ μW ≤ V,

where

V = k

4r
(r + μ)2 + 1

4mc
(d + μ)2.

Applying the theory of differential inequality (Birkoff
and Rota) [1], we obtain

0 ≤ W(x,y,E) ≤ V

μ

(
1 − e−μt

)
+ W

(
x(0), y(0),E(0)

)
e−μt

which upon letting t → ∞, yields

0 ≤ W ≤ V

μ
.

Thus, all the solutions of the system (2) that starts in
�+

3 are confined to the region B = {(x, y,E) ∈ �+
3 :

0 ≤ W ≤ V
μ

+ ε}, for any ε > 0. �

6 Local stability analysis

The variational matrix of the system (2) is

M(x,y,E) =
⎡
⎣

r(1 − 2x
k

) − aby

(b+x)2 − ax
b+x

0
maby

(b+x)2 − dy
k

max
b+x

+ d(1 − x
k
) − 2cy − qE −qy

0 (p − τ)qE (p − τ)qy − c

⎤
⎦ .
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The eigenvalues of the variational matrix M(0,0,0)

are r, d,−c. So, the equilibrium point P0(0,0,0) is
unstable.

The eigenvalues of the variational matrix M(k,0,0)

are −r,−c, mak
b+k

. So, the equilibrium point P1(k,0,0)

is also unstable.
For the equilibrium point P2(0, d/c,0), the eigen-

values are −d, r − ad
bc

, (p − τ)
qd
c

− c. Therefore,
P2(0, d/c,0) is a stable node if d

c
> br

a
and τ > p −

c2

qd
.

For the equilibrium point P3(0, ŷ, Ê), one eigen-
value of the variational matrix is r − ac

(p−τ)qb
, which is

negative if τ > p − ac
brq

.
The other two eigenvalues are the roots of the

quadratic equation

λ2 + c2

(p − τ)q
λ + cd − c3

(p − τ)q
= 0,

which has (a) sum of the roots = − c2

(p−τ)q
, which

is always negative and (b) product of roots = cd −
c3

(p−τ)q
. Hence, the roots of the quadratic equation are

real and negative or complex conjugate with negative

real part if τ < p − c2

dq
.

Therefore, the equilibrium point P3 is locally
asymptotically stable if

p − ac

brq
< τ < p − c2

dq
.

So, it is observed that even in the absence of prey x,
the predator may exists in its equilibrium level and this
happened due to alternative prey.

For the equilibrium point P4(x̄, ȳ,0), one of the
eigenvalues of the corresponding variational matrix is
(p − τ)qȳ − c, which is negative if τ > p − c

qȳ
.

The other two eigenvalues are the roots of the
quadratic equation

λ2 + uλ + v = 0

where

u = cȳ − rx̄

b + x̄

(
1 − b

k
− 2x̄

k

)

and

v = ax̄ȳ

b + x̄

{
mab

(b + x̄)2
− d

k
− rc

a

(
1 − b

k
− 2x̄

k

)}
.

The sign of real part of the eigenvalues are determined
by u. Now, u > 0 if k < b + 2x̄; the equilibrium point
P4(x̄, ȳ,0) is locally asymptotically stable if

k < b + 2x̄ and τ > p − c

qȳ
.

At P5(x
∗, y∗,E∗), we have

M
(
x∗, y∗,E∗)

=
⎡
⎣

rx∗
b+x∗ (1 − b

k
− 2x∗

k
) − ax∗

b+x∗ 0
mbr
b+x∗ (1 − x∗

k
) − dy∗

k
−cy∗ −qy∗

0 (p − τ)qE∗ 0

⎤
⎦ .

The characteristic equation corresponding to
M(x∗, y∗,E∗) is

λ3 + m1λ
2 + m2λ + m3 = 0 (4)

where

m1 = cy∗ − rx∗

b + x∗

(
1 − b

k
− 2x∗

k

)
,

m2 = cqE∗ − crx∗y∗

b + x∗

(
1 − b

k
− 2x∗

k

)

+ ax∗

b + x∗

{
mbr

b + x∗

(
1 − x∗

k

)
− dy∗

k

}
,

m3 = −cqrx∗E∗

b + x∗

(
1 − b

k
− 2x∗

k

)
.

The Routh–Hurwitz criterion gives a set of necessary
and sufficient conditions so that all the roots of the
characteristic equation have negative real parts. For the
above cubic equation, these criteria are m1 > 0,m3 >

0, and m1m2 − m3 > 0.
We find that if

1 − b

k
− 2x∗

k
< 0, then m1 > 0, m3 > 0.

Now,

m1m2 − m3 = m1

[
cy∗(m1 − cy∗) + ax∗

b + x∗

{
mbr

b + x∗

×
(

1 − x∗

k

)
− dy∗

k

}]
+ c2qE∗y∗.

Hence, m1m2 − m3 > 0 if

1 − b

k
− 2x∗

k
< 0 and

mbr

b + x∗

(
1 − x∗

k

)
>

dy∗

k
,

i.e. if

d(b + x∗)2

mab
< k < b + 2x∗. (5)

Therefore, by the Routh–Hurwitz criterion, we say
that (5) is the sufficient condition for local asymptotic
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stability of the non-trivial steady state P5(x
∗, y∗,E∗).

Thus, we have the following theorem.

Theorem 3 The interior equilibrium point
P5(x

∗, y∗,E∗) is locally asymptotically stable if

d(b + x∗)2

mab
< k < b + 2x∗.

From the point of view of ecological managers, it
may be desirable to have an equilibrium point which
is globally stable in order to plan harvesting strategy
and keep sustainable ecological development.

7 Global stability analysis

Let us consider the following Lyapunov function:

V (x, y,E) = k1

(
x − x∗ − x∗ ln

x

x∗

)

+ k2

(
y − y∗ − y∗ ln

y

y∗

)

+ k3

(
E − E∗ − E∗ ln

E

E∗

)

on G = {(x, y,E) : x > 0, y > 0,E > 0}, where
k1, k2, k3 are positive constants to be determined in
the subsequent steps. It can be easily verified that the
function V is zero at the equilibrium (x∗, y∗,E∗) and
positive on G.

The time derivative of V along the trajectories of
(2) is

dV

dt
= k1

(
x − x∗

x

)
dx

dt
+ k2

(
y − y∗

y

)
dy

dt

+ k3

(
E − E∗

E

)
dE

dt

= k1
(
x − x∗)[r

(
1 − x

k

)
− ay

b + x

]

+ k2
(
y − y∗)[ max

b + x
+ d

(
1 − x

k

)
− cy − qE

]

+ k3
(
E − E∗)[(p − τ)qy − c

]
.

A little manipulation yields

dV

dt
= −k1

[
r

k
− ay∗

(b + x∗)(b + x)

](
x − x∗)2

− k2c
(
y − y∗)2 +

[
k2mb

b + x∗ − k1

]

× a(x − x∗)(y − y∗)
b + x

− k2d

k

(
x − x∗)(y − y∗)

+ [
k3(p − τ) − k2

]
q
(
y − y∗)(E − E∗).

If we choose

b + x∗

mb
k1 = k2 = k3(p − τ)

then we have

dV

dt
= −k1

[
r

k
− ay∗

(b + x∗)(b + x)
+ k2d

2kk1

](
x − x∗)2

− k2

[
c − d

2k

](
y − y∗)2

− k2d

2k

[(
x − x∗)2 + (

y − y∗)2]
clearly, if

c >
d

2k
and

[
r

k
− ay∗

(b + x∗)(b + x)
+ k2d

2kk1

]
> 0

i.e. if

d

c
< 2k and x >

2kmaby∗

(b + x∗)[2rmb + d(b + x∗)] − b

and (x, y,E) 	= (
x∗, y∗,E∗),

then

dv

dt
< 0.

Hence, the equilibrium point P5 is globally asymptot-
ically stable.

Therefore, we have the following theorem.

Theorem 4 If d
c

< 2k, the equilibrium point
P5(x

∗, y∗,E∗) is globally asymptotically stable in the
region x >

2kmaby∗
(b+x∗)[2rmb+d(b+x∗)] − b.

Prey–predator models with constant parameters are
often found to approach a steady state in which the
species co-exist in equilibrium. But if parameters used
in the model are changed, other types of dynamical
behavior may occur and the critical parameter values
at which such transitions happen are called bifurca-
tion points. From an ecological point of view, bifur-
cations endanger the existence of a particular species
in a prey–predator system. When a stable steady state
goes through a bifurcation, in general, it either loses
its stability or disappears entirely. However, in order
to understand the general mechanisms leading to bi-
furcations, we take the growth rate ‘d’ of the predator
due to alternative prey as the bifurcation parameter.
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8 Bifurcation analysis

8.1 Bifurcation for the parameter ‘d’

The characteristic equation (4) has two purely imagi-
nary roots if and only if m1m2 = m3 for some value of
d , say d∗. We find that

d∗ = k(b + 2x∗)
ax∗y∗

[
−crx∗y∗

b + x∗

(
1 − b

2k
− 2x∗

k

)

+ mabrx∗(1 − x∗
k

)

(b + x∗)2
+ c2qE∗y∗

m1

]
.

Thus, there exist a unique d∗ such that m1m2 = m3.
Therefore, there is only one value of d , at which we
have a Hopf bifurcation. Thus, in the neighborhood
of d∗ the characteristic equation (4) cannot have real
roots.

For d = d∗, we have(
λ2 + m2

)
(λ + m1) = 0.

This equation has two purely imaginary roots and a
real root as

λ1 = i
√

m2, λ2 = −i
√

m2, λ3 = −m1.

The roots are in general of the form

λ1
(
d∗) = p

(
d∗) + iq

(
d∗),

λ2
(
d∗) = p

(
d∗) − iq

(
d∗),

λ3
(
d∗) = −m1

(
d∗).

To apply the Hopf bifurcation theorem as stated in
Marsden and McCracken [17], we need to verify the
transversality condition[

dp

dd

]
d=d∗

	= 0.

Substituting λ1(d
∗) = p(d∗) + iq(d∗) in Eq. (4) and

differentiating the resulting equation w.r.t. d and set-
ting p(d∗) = 0 and q(d∗) = √

m2 = q1, we get

dp

dd

(−3q2
1 + m2

) + dq

dd
(−2m1q1) = m′

1q
2
1 − m′

3,

dp

dd
(2m1q1) + dq

dd

(−3q2
1 + m2

) = −m′
2q1,

where m1,m2, and m3 are a function of the bifurcation
parameter d and

m′
1 = dm1

dd
, m′

2 = dm2

dd
, m′

3 = dm3

dd
.

Solving for dp
dd

and dq
dd

, we have[
dp

dd

]
d=d∗

= −m′
1m2 + m1m

′
2 − m′

3

2(m2
2 + m2

1m2)
.

To establish the Hopf bifurcation at d = d∗, we need
to show that[

dp

dd

]
d=d∗

	= 0,

i.e. m′
1m2 + m1m

′
2 − m′

3 	= 0.

Here,

m′
1 = dm1

dd
= 0,

m′
2 = dm2

dd
= cq

dE∗

dd
+ ax∗

b + x∗

(
−y∗

k

)

=
(

c − rx∗

k

)(
1 − x∗

k

)
,

m′
3 = dm3

dd
= cq

(
m1 − cy∗)dE∗

dd

+ cqE∗
(

dm1

dd
− c

dy∗

dd

)

= − crx∗

b + x∗

(
1 − x∗

k

)(
1 − b

k
− 2x∗

k

)
.

Therefore,

m′
1m2 + m1m

′
2 − m′

3

=
(

1 − x∗

k

)[
cy∗

(
c − rx∗

k

)

+ r2x∗2

k(b + x∗)

(
1 − b

k
− 2x∗

k

)]

< 0 if c − rx∗

k
< 0 and 1 − b

k
− 2x∗

k
< 0.

Thus, if

k < min

{
rx∗

c
, b + 2x∗

}
,

then

m′
1m2 + m1m

′
2 − m′

3 < 0

and hence[
dp

dd

]
d=d∗

	= 0.

Thus, we get a sufficient condition that whenever

k < min

{
rx∗

c
, b + 2x∗

}
,

the Hopf bifurcation occurs at d = d∗, that is the sys-
tem is stable when d < d∗ and unstable when d > d∗.
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9 Optimal taxation policy

The objective of the regulatory agency is to maxi-
mize the total discounted net revenues that the society
derives from the fishery. Symbolically, this objective
amounts to maximizing the present value J of a con-
tinuous time-stream of revenues given by

J =
∫ ∞

0
e−δt (pqy − c) dt,

where δ denotes the instantaneous annul rate of
discount,c is the fishing cost per unit effort and p is the
price per unit biomass of y .To solve this optimization
problem, we utilize the Pontryagin’s maximal prin-
ciple. We treat τ as the control variable and wish to
determine a tax policy τ = τ(t) which maximizes J

subject to the system (2).
The Hamiltonian of this control problem is

H = e−δt (pqy − c)E

+ λ1

{
rx

(
1 − x

k

)
− axy

b + x

}

+ λ2

{
maxy

b + x
+ dy

(
1 − x

k

)
− cy2 − qEy

}

+ λ3
{
(p − τ)qy − c

}
E,

(6)

where λ1, λ2, and λ3 are additional unknown functions
called the adjoint variables. The Hamiltonian (6) must
be maximized for τ . Assuming that the control con-
straints are not binding (i.e. the optimal solution does
not occur at τ = τmin or τ = τmax), we have singular
control given by ∂H

∂τ
= 0.

Now, ∂H
∂τ

= 0 gives λ3λEqy = 0.
We use a singular control and find the singular path.

For this, we take λ3 = 0.
The adjoint equations are

dλ1

dt
= −∂H

∂x

= −
[
λ1

{
r

(
1 − 2x

k

)
− aby

(b + x)2

}

+ λ2

{
maby

(b + x)2
− dy

k

}]
, (7)

dλ2

dt
= −∂H

∂y

= −
[
e−δtpqE − λ1

ax

b + x

+ λ2

{
max

b + x
+ d

(
1 − x

k

)

− 2cy − qE

}
+ λ3(p − τ)qE

]
, (8)

dλ3

dt
= −∂H

∂E

= −[
e−δt (pqy − c) − λ2qy

+ λ3
{
(p − τ)qy − c

}]
. (9)

Since λ3 = 0, we have from (9)

λ2 = e−δt

(
p − c

qy

)
. (10)

We seek to find optimal equilibrium solution of the
problem so that x, y, and E can be treated as constants.

Substituting λ2 in (7), we get

dλ1

dt
= Aλ1 + Be−δt ,

where

A = rx

k
− r

(
1 − x

k

)
+ aby

(b + x)2
,

B =
{

dy

k
− mab

(b + x)2

}(
p − c

qy

)
.

(11)

The solution of this linear equation is

λ1 = − B

A + δ
e−δt + K0e

At ,

where k0 is a constant.
The shadow price λ1e

−δt is bounded as t → ∞ iff
k0 = 0.

Therefore,

λ1 = − B

A + δ
e−δt . (12)

Using (8), we get

δ

(
p − c

qy

)
= pqE +

(
B

A + δ

)(
ax

b + x

)

+
(

p − c

qy

){
max

b + x
d

(
1 − x

k

)

− 2cy − qE

}
. (13)

Now for the optimal equilibrium solution, we have
from (2)

r

(
1 − x∗

k

)
− ay∗

b + x∗ = 0,

max∗

b + x∗ + d

(
1 − x∗

k

)
− cy∗ − q∗E = 0, (14)

(p − τ)qy∗ − c = 0.
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Using these equations in (13), we get

δ

(
p − c

qy∗

)(
cy∗ + δ

)

−
(

B

A + δ

)(
ax∗

b + x∗

)
− pqE∗ = 0, (15)

where

A = aby∗

(b + x∗)2
− r

(
1 − x∗

k

)
,

B =
{

dy∗

k
− mab

(b + x∗)2

}(
p − c

qy∗

)
.

(16)

Equation (15) together with Eqs. (14) gives the op-
timal tax τ = τ ∗ and optimal equilibrium solutions
x∗, y∗,E∗.

10 Numerical simulation

In this section, we present some numerical simula-
tions of the system (2) to verify the analytical pre-
dictions obtained in the previous sections. Using nu-
merical simulation instead of real world data, which
of course would be of great interest, has some advan-
tages. It may be noted that the simulations presented
in this paper should be considered from a qualitative,
rather than a quantitative point of view. However, nu-
merous scenarios covering the breadth of the biologi-
cal feasible parameter space were conducted and the
results display the gamut of dynamical results col-
lected from all the scenarios tested.

Fig. 2 Phase space trajectories corresponding to the optimal
tax τ ∗ = 6.56075 beginning with different initial levels for the
model system (2). Trajectories converge to the positive equilib-
rium (42.6345, 2.32609, 10.2578)

(i) Let us take r = 6, a = 20, b = 10, c = 4, d =
10, k = 50,p = 10, q = 0.5, δ = 0.01,m = 0.8
in appropriate units. Then from Eqs. (14) and
(15), we find that for the optimal tax τ ∗ =
6.56075, the system (2) has a positive equilib-
rium (42.6345,2.32609,10.2578) and is globally
asymptotically stable as seen from Figs. 2 and 3.

(ii) From Figs. 4, 5, and 6, we observe that the prey
population decreases and the predator population
increases with the increase of tax whereas the
harvesting effort always decreases with the in-
crease of tax when the other parameters remain
the same. This is realistic because whenever tax
increases, the people are less interested to harvest

Fig. 3 Time evolution of populations for the model system (2)
corresponding to the optimal tax τ ∗ = 6.56075

Fig. 4 Variation of prey population against time for different
tax levels; the other parameters remaining the same
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Fig. 5 Variation of predator population against time for differ-
ent tax levels; the other parameters remaining the same

Fig. 6 Variation of harvesting effort against time for different
tax levels; the other parameters remaining the same

predator and as a result, the predator population
increases and consumption of the prey increases
and the prey population decreases. Thus, numer-
ically, this fact is seen from Figs. 4, 5, and 6.

(iii) From Fig. 7, we observe that as d , the growth rate
of the predator due to alternative food increases,
the harvesting effort increases as expected.

(iv) For the values r = 5, a = 15, b = 5, c = 0.9, k =
50,p = 2.8, q = 0.7, δ = 0.01,m = 0.8, τ = 2,
we obtain the critical value d∗ = 20.9212 from
Sect. 8. The values of the parameters also satisfy
the sufficient condition for the Hopf bifurcation.
From Figs. 8 and 9, we see that when d < d∗,
the system is stable and as d crosses its criti-

Fig. 7 Variation of harvesting effort against time for different
values of d ; the values of the other parameters are r = 5, a = 15,
b = 5, c = 1, d = 1.5, k = 50, p = 2.8, q = 0.7, δ = 0.01,
m = 0.8, τ ∗ = 2

Fig. 8 This figure shows that when d = 20 < d∗ = 20.9212,
the equilibrium point (45.1975, 1.60714, 16.1133) is stable

cal value d∗ the system becomes unstable, i.e. a
Hopf-bifurcation occurs at the critical value d∗.

(v) Figure 10 shows that the system has a cyclic be-
havior for d = d∗ = 20.9212.

The numerical study presented here shows that, us-
ing parameter d as the control parameter, it is possible
to break the unstable behavior of the system (2) and
drive it to a stable state. Also, it is possible to keep the
population levels at a required state using the above
control.
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Fig. 9 This figure shows that when d = 22 > d∗ = 20.9212,
the system (2) becomes unstable

Fig. 10 Bifurcation for the critical value of the parameter
d = d∗ = 20.9212 when the other parameters remain same

11 Conclusion

Nowadays, the biological resources are mostly har-
vested with the aim of achieving economic interest.
Thus, unregulated exploitation and extinction of many
natural and biological resources is a major problem of
present day. In this work, we consider a bio-economic
prey–predator model with the provision of alternative
food to the predator and only the predator species is
harvested. We force the fishing effort to remain con-
tinuous over time and consider tax as a control instru-
ment. The important feature of this model is that it as-
sumes a fully dynamic interaction between the fishing
effort and the perceived rent.

From the model, it is seen that the alternative food
plays an important role in stability of the system. Bi-
furcation analysis shows that under certain conditions,
the system changes its state from stable to unstable
whenever the growth rate of the predator due to al-
ternative prey crosses its critical value. Also, the op-
timal taxation policy is discussed. Numerical simula-
tions show the consistency of the theoretical results.

In our model, we have considered the catch-rate
function based on catch-per-unit-effort hypothesis.
But this type of catch-rate function embodies some
defects of such as (i) it assumes random search for
fish, (ii) it assumes equal likelihood of being captured
for every fish, (iii) there is unbounded linear increase
in the catch with respect to effort, and (iv) there is
unbounded linear increase in the catch with respect
to population for a fixed effort. These unrealistic fea-
tures can largely be removed by adopting the alterna-
tive functional form

h = qEy

aE + by

where a and b are two positive parameters, but we
leave it for our future research work.
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