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Abstract hing dynamics in a square tank are numer-
ically investigated when the tank is subjected to hor-
izontal, narrowband random ground excitation. The
natural frequencies of the two predominant sloshing
modes are identical and therefore 1:1 internal reso-
nance may occur. Galerkin’s method is applied to de-
rive the modal equations of motion for nonlinear slosh-
ing including higher modes. The Monte Carlo simu-
lation is used to calculate response statistics such as
mean square values and probability density functions
(PDFs). The two predominant modes exhibit complex
phenomena including “autoparametric interaction” be-
cause they are nonlinearly coupled with each other.
The mean square responses of these two modes and
the liquid elevation are found to differ significantly
from those of the corresponding linear model, depend-
ing on the characteristics of the random ground exci-
tation such as bandwidth, center frequency and exci-
tation direction. It is found that the direction of the
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excitation is a significant factor in predicting the mean
square responses. The frequency response curves for
the same system subjected to equivalent harmonic ex-
citation are also calculated and compared with the
mean square responses to further explain the phenom-
ena. Changing the liquid level causes the peak of the
mean square response to shift. Furthermore, the risk
of the liquid overspill from the tank is discussed by
showing the three-dimensional distribution charts of
the mean square responses of liquid elevations.
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Nomenclature
a0 Amplitude of harmonic excitation with

equivalent energy of random excitation
(= √

2πS0/γ )
g Acceleration of gravity
h Liquid level
l Tank length
P Fluid pressure
pij Natural frequency of sloshing mode (i, j )
S0 Power spectrum density of white noise
t Time
w Tank width
(x, y, z) Cartesian coordinate system (see Fig. 1)
xg Horizontal ground displacement
W(t) Gaussian white noise
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α Excitation direction
γ Bandwidth of a narrowband random

excitation
η Displacement of liquid surface
ρ Fluid density
φ Velocity potential function
ω Angular frequency of equivalent harmonic

excitation
Ω Center frequency of narrowband random

excitation
ζij Damping ratio of (i, j ) sloshing mode

1 Introduction

Sloshing dynamics is one of the most important issues
in mechanical, civil, marine and aeronautical engineer-
ing. The deterministic analyses of liquid sloshing dy-
namics are idealizations and simplifications of actual
sloshing dynamics. The nature of excitation, however,
may contain both periodic and random characteristics.
Liquid storage tanks subjected to earthquakes, random
sea waves acting on liquid cargo ships, and g-jitter in
microgravity field are all examples of actual sloshing
dynamics. A comprehensive review paper on nonlin-
ear sloshing dynamics was compiled by Ibrahim et al.
[1]. Housner [2] presented a linear sloshing model to
investigate the responses of free surfaces in partially
filled liquid tanks subjected to horizontal excitation,
and his model has been widely used for seismic exci-
tation in current design practice [3, 4]. However, it is
well known that sloshing at large amplitudes exhibits
nonlinear behavior, thus nonlinear models have been
developed to obtain more accurate results. Ground-
breaking studies on nonlinear sloshing behavior in
cylindrical tanks subjected to horizontal, and/or verti-
cal harmonic excitation were theoretically and exper-
imentally examined by Hutton [5] and Abramson et
al. [6]. Sloshing behavior in rectangular tanks under
horizontal, harmonic excitation have also been inves-
tigated by Faltinsen [7] and Hayama et al. [8]. Three-
dimensional sloshing in square tanks subjected to hor-
izontal, harmonic excitation was theoretically inves-
tigated and their results were compared with experi-
mental data by Faltinsen et al. [9, 10] and Ikeda et al.
[11]. Because the two predominant sloshing modes in
square tanks have an identical natural frequency and
are nonlinearly coupled with each other, the internal
resonance may occur. Therefore, sloshing may exhibit

complex phenomena such as swirl motions and am-
plitude modulated motions (AMMs) including chaotic
motions [11].

Nonlinear sloshing under random excitation has
also been investigated. When the excitation is modeled
as a random process, the free liquid surface response
is described in terms of statistics such as mean square
values, probability density functions (PDFs), autocor-
relation functions, and power spectral density func-
tions. Experimental measurements can be processed
to estimate these statistics. Because of the nonlinear
coupling of many sloshing modes, analytical stochas-
tic approaches [12] would be extremely complicated
and thus are not recommended. Instead, numerical
simulations are usually applied and may be used to
verify the validity of approximate analytical results
if experimental results are not available. Dalzell [13]
conducted experiments of horizontal, random slosh-
ing in cylindrical tanks. He found that violent swirl
motions of sloshing occurred for comparatively nar-
rowband random excitation. Sakata et al. [14, 15], and
Kimura et al. [16] theoretically investigated a cylin-
drical tank under horizontal, random base excitation
using modal equations of motion for nonlinear slosh-
ing. The excitation was modeled by a non-white ran-
dom process with a dominant frequency. The heuristic
approach was used to truncate the response statistical
moment equations for three sloshing modes. Utsumi
et al. [17, 18] used the same approach which was ap-
plied to rectangular and cylindrical tanks subjected to
seismic excitation. They found that the nonlinearity
of sloshing caused a non-zero-mean response to ap-
pear. Random responses of sloshing in a rectangular
tank were also investigated using the finite-difference
method by Chen et al. [19]. Nonlinear sloshing in a
rectangular tank subjected to horizontal random exci-
tation was investigated using the finite element method
by Wang and Khou [20]. They obtained the time his-
tories of waves and hydrodynamic forces, PDFs and
power spectra and found that narrowband excitation
caused larger wave responses to appear. Sriram et al.
[21] also used the finite element method to investi-
gate nonlinear sloshing in rectangular tanks subjected
to horizontal and vertical random excitation. They ob-
served high amplitudes of the first sloshing mode due
to the primary and parametric resonances. Nasar et al.
[22] experimentally investigated sloshing in a rectan-
gular tank mounted on a barge subjected to random
wave excitation. They studied the influences of liq-
uid levels and excitation frequencies on odd and even



Nonlinear liquid sloshing in square tanks subjected to horizontal random excitation 441

sloshing modes. Furthermore, nonlinear responses of
elastic structures with cylindrical tanks subjected to
vertical random excitation were also investigated [23–
25]. However, random responses of nonlinear sloshing
in square tanks have not yet been investigated in detail.

The present paper extends the work of Ikeda et al.
[26] by investigating nonlinear sloshing behavior in
square tanks subjected to horizontal, random ground
excitation using the same model as that in reference
[11]. The natural frequencies of the two predominant
sloshing modes are identical and therefore 1:1 inter-
nal resonance may occur. Galerkin’s method is em-
ployed to derive the nonlinear modal equations of mo-
tion for sloshing. These modal equations are solved us-
ing the Monte Carlo simulation, and the mean square
responses of the two predominant sloshing modes are
calculated. These responses are compared with the
theoretical results for the corresponding linear model.
PDFs of liquid elevation are also calculated. The influ-
ences of the center frequency, bandwidth and excita-
tion direction of the random excitation, and the liquid
level on the mean square responses are examined. The
frequency response curves for the same system sub-
jected to harmonic excitation are calculated when the
energy of the harmonic excitation is equivalent to that
of the random excitation. These curves are then com-
pared with the mean square responses in the case of
random excitation to further explain the nonlinear be-
havior depending on the excitation direction. Finally,
three-dimensional distribution charts of liquid eleva-
tions are used to discuss the risk of the liquid overspill.

2 Theoretical analysis

2.1 Equations of motion

Figure 1 shows a theoretical model for sloshing in a
square tank with length l, breadth w, and liquid filled
to level h. The Cartesian coordinate system O–xyz is
fixed to the tank where the xy-plane coincides with
the undisturbed free surface of the liquid. The tank
is subjected to horizontal, random ground excitation
xg(t), and the excitation direction deviates from the
tank length by angle α. In the theoretical analysis, the
liquid is assumed to be perfect; hence the velocity po-
tential φ(x, y, z, t) can be introduced. P(x, y, z, t) is
the fluid pressure, ρ is the fluid density, and η(x, y, t)

is the liquid elevation at position (x, y) in the tank. The
following dimensionless quantities are introduced:

Fig. 1 The model for theoretical analysis

h′ = h/l,w′ = w/l, x′ = x/l, x′
g = xg/l,

y′ = y/l, P ′ = P/
(
ρl2p2

10

)
, z′ = z/l,

η′ = η/l, φ′ = φ/
(
l2p10

)
, λ′

ij = λij l,

p′
ij = pij /p10, t ′ = p10t,

(1)

where

λij = π
√

(i/ l)2 + (j/w)2,

pij = √
gλij tanh(λijh).

(2)

Here, g is the acceleration of gravity, and pij repre-
sents the natural frequency of (i, j ) sloshing mode.
Figures 2(a), 2(b) and 2(c) show the shapes of (1, 0),
(0, 1), and (1, 1) sloshing modes, respectively. The
nodal lines of (1, 0) and (0, 1) modes coincide with
the y- and x-axes, respectively. The nodal lines of (1,
1) mode coincide with the x- and y-axes. All primes
“ ′” in (1) will hereafter be omitted for simplicity, al-
though the quantities are dimensionless in the theoret-
ical analysis and results.

Laplace’s equation and Euler’s energy equation for
the fluid motion are expressed in dimensionless form,
respectively, as

∂2φ

∂x2
+ ∂2φ

∂y2
+ ∂2φ

∂z2
= 0, (3)

∂φ

∂t
+ 1

2

[(
∂φ

∂x

)2

+
(

∂φ

∂y

)2

+
(

∂φ

∂z

)2]
+ z

ψ10
+ P

= −ẍgx cosα − ẍgy sinα, (4)
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Fig. 2 Mode shapes of
sloshing

where ψ10 = λ10 tanh(λ10h). The boundary conditions
for the fluid velocity at the tank walls and bottom are

∂φ

∂x
= 0 (at x = ±1/2),

∂φ

∂y
= 0 (at y = ±w/2),

∂φ

∂z
= 0 (at z = −h).

(5)

In addition, the kinematic boundary condition at the
liquid free surface is

∂φ

∂z
= ∂η

∂t
+ ∂φ

∂x

∂η

∂x
+ ∂φ

∂y

∂η

∂y
(at z = η). (6)

Because P = 0 at the free liquid surface, the boundary
condition for (4) is

∂φ

∂t
+ 1

2

[(
∂φ

∂x

)2

+
(

∂φ

∂y

)2

+
(

∂φ

∂z

)2]
+ η

ψ10

= −ẍgx cosα − ẍgy sinα (at z = η). (7)

The ground excitation xg(t) is assumed to be gener-
ated from the second-order, linear shaping filter as fol-
lows:

ẍg + γ ẋg + Ω2xg = ΩW(t), (8)

where W(t) is a zero-mean stationary Gaussian white
noise process with variance σ 2

W and constant power
spectral density intensity S0. Here, γ is the bandwidth
and Ω is the center frequency of xg(t). Note that the
mean square value of xg(t) is well documented in
many references (see, e.g., [27]) and is given by the ex-
pression E[x2

g] = 2πS0/γ . Equations (3) through (8)
constitute the boundary value problem of sloshing dy-
namics in square tanks.

2.2 Modal equations of motion for sloshing

Galerkin’s method is used to derive modal equations
of motion for sloshing. Here, φ and η are assumed

in terms of the eigenfunctions which can be obtained
from the corresponding linear system, as follows:

φ(x, y, z, t) =
∞∑

i=0

∞∑

j=0

aij (t)Uij (x, y)

× cosh
{
λij (z + h)

}
/ cosh(λijh), (9a)

η(x, y, t) =
∞∑

i=0

∞∑

j=0

bij (t)Uij (x, y), (9b)

in which Uij (x, y) represent eigenfunctions as fol-
lows:

Uij (x, y)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

sin(λi0x) sin(λ0j y) (i = 2m + 1, j = 2n + 1)

sin(λi0x) cos(λ0j y) (i = 2m + 1, j = 2n)

cos(λi0x) sin(λ0j y) (i = 2m,j = 2n + 1)

cos(λi0x) cos(λ0j y) (i = 2m,j = 2n),
(10)

where m and n are integers. Note that λij in (10) rep-
resent dimensionless quantities given by (1) and (2).
Here, aij (t) and bij (t) in (9a), (9b) are unknown func-
tions of time. The coordinates x and y in (4) and (7)
are expanded in terms of the eigenfunctions of (10) as

x =
∞∑

i=1

[
ri0Ui0(x, y)

]
, y =

∞∑

j=1

[
r0jU0j (x, y)

]
,

(11)

where the coefficients ri0 and r0j are determined by
the method adopted in reference [11] as follows:

ri0 =
{

(−1)
i−1

2 4
i2π2 (i = 1,3,5, . . .)

0 (i = 0,2,4, . . .),
(12)

r0j =
{

(−1)
j−1

2 4w

i2π2 (j = 1,3,5, . . .)

0 (j = 0,2,4, . . .).

Here, ε is introduced as a bookkeeping parameter to
determine the approximate solutions when the two
sloshing modes (1, 0) and (0, 1) predominantly appear.
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Therefore, the orders of aij (t), bij (t), xg , and the sys-
tem parameters are assumed as follows:

a10, a01, b10, b01, ζij ≈ O
(
ε1/3

)
,

a20, a02, a30, a03, a11, b20, b02, b30, b03, b11

≈ O
(
ε2/3

)
,

ai0, a0j , aij , bi0, b0j , bij , xg ≈ O
(
ε3/3

)

(i ≥ 4, j ≥ 4).

(13)

Equation (13) follows Hutton’s ordering [5] for cylin-
drical tanks, that is, (1, 0) and (0, 1) modes are
of O(ε1/3), (2,0), (1,1), and (0, 2) modes are of
O(ε2/3), and (3, 0), (1, 2), (2, 1), and (0, 3) modes are
of O(ε2/3). However, (1, 2) and (2, 1) modes are not
considered because they are not nonlinearly coupled
with the two predominant modes [11]. Furthermore,
the damping ratios ζij are assumed to be of O(ε1/3) in
order to consider the damping effects for all modes in
the modal equations. The validity of this ordering was
confirmed because the theoretical results agreed well
with the experimental data in the case of harmonic ex-
citation [11].

Equations (6) and (7) are expanded near η = 0,
and (9a), (9b) are substituted into these two resulting
equations. By equating the coefficients of sin(λ10x),

sin(λ01y), cos(λ20x), cos(λ02y), sin(λ30x), sin(λ03y)

and sin(λ10x) sin(λ01y) on both sides of these two
equations within the accuracy of O(ε), and eliminat-
ing aij from the resulting equations, one can obtain
the modal equations of motion for sloshing as follows:

b̈10 + 2ζ10ḃ10 + b10 + H1(b10, b01, b20, b11)

= −ψ10r10ẍg cosα

b̈01 + 2ζ01ω01ḃ01 + ω2
01b01 + H2(b10, b01, b02, b11)

= −ψ01r01ẍg sinα

b̈20 + 2ζ20ω20ḃ20 + ω2
20b20 + H3(b10, b30) = 0

b̈02 + 2ζ02ω02ḃ02 + ω2
02b02 + H4(b01, b03) = 0

b̈30 + 2ζ30ω30ḃ30 + ω2
30b30 + H5(b10, b20)

= −ψ30r30ẍg cosα

b̈03 + 2ζ03ω03ḃ03 + ω2
03b03 + H6(b01, b02)

= −ψ03r03ẍg sinα

b̈11 + 2ζ11ω11ḃ11 + ω2
11b11 + H7(b10, b01) = 0,

(14)

where ω2
ij = ψij /ψ10 and ψij = λij tanh(λijh). Note

that linear viscous damping terms 2ζijωij ḃij are in-
corporated in (14) to consider the damping effect of

sloshing. The nonlinear terms Hm (m = 1,2, . . . ,7) in
(14) are

H1 = S1ḃ10ḃ20 + S2ḃ01ḃ11 + S3ḃ
2
10b10 + S4ḃ

2
01b10

+ S5ḃ10ḃ01b01

+ S6b10b20 + S7b01b11 + S8b
3
10 + S9b

2
01b10

H2 = S10ḃ01ḃ02 + S11ḃ10ḃ11 + S12ḃ
2
01b01

+ S13ḃ
2
10b01 + S14ḃ10ḃ01b10 + S15b01b02

+ S16b10b11 + S17b
3
01 + S18b

2
10b01

H3 = S19ḃ
2
10 + S20ḃ10ḃ30 + S21b

2
10 + S22b10b30

H4 = S23ḃ
2
01 + S24ḃ01ḃ03 + S25b

2
01 + S26b01b03

H5 = S27ḃ10ḃ20 + S28ḃ
2
10b10 + S29b10b20 + S30b

3
10

H6 = S31ḃ01ḃ02 + S32ḃ
2
01b01 + S33b01b02 + S34b

3
01

H7 = S35ḃ10ḃ01 + S36b10b01,

(15)

where the symbols Sn (n = 1,2, . . . ,36) are constants
defined by the dimensions of the tank, h and w, and
their complete expressions are omitted here. Because
the nonlinear terms of b10 and b01 are included in H1

and H2 of (15), (1, 0), and (0, 1) modes are nonlinearly
coupled and form an autoparametric system. Higher
mode (2, 0) is nonlinearly coupled with both (1, 0) and
(3, 0) modes. Note that b10 is included in H5 for (3, 0)
mode, but b30 is not included in H1 for (1, 0) mode.
Hence, (1, 0) mode influences (3, 0) mode, but the op-
posite is not true. The same holds for (0, 1), (0, 2), and
(0, 3) modes. Furthermore (1, 1) mode is nonlinearly
coupled with the two predominant modes because it is
also included in H1 and H2 of (15). This mode plays
a significant role for three-dimensional liquid sloshing
in square tanks.

2.3 Nonlinear uncoupled system

Figures 3(a) and 3(b) show the schematic diagrams for
energy flow represented by the arrows in the nonlinear
coupled and uncoupled systems, respectively. The four
components of the ground excitation transfer energy
directly to (1, 0), (0, 1), (3, 0), and (0, 3) modes de-
pending on the value of α. Figure 3(a) corresponds to
the autoparametric system (14) which exhibits three-
dimensional sloshing. In order to examine the influ-
ence of nonlinear coupling between the two predomi-
nant modes in square tanks, the hypothetical, nonlinear
uncoupled system is considered in Fig. 3(b). In this hy-
pothetical system, (1, 0) and (0, 1) modes are not non-
linearly coupled, i.e., b01 in H1, and b10 in H2 of (15)



444 T. Ikeda et al.

Fig. 3 Schematic diagrams for energy flow

are assumed to be zero, and (1, 1) is not considered.
This nonlinear uncoupled system consists of two inde-
pendent systems which are governed by (1, 0), (2, 0),
and (3, 0) modes, and (0, 1), (0, 2), and (0, 3) modes,
as shown in Fig. 3(b). The sloshing in these systems
is two-dimensional and behaves as if two rectangu-
lar tanks are subjected to random ground excitation.
The mean square responses of the nonlinear uncou-
pled system are calculated to compare with those of
the nonlinear coupled system.

2.4 Theoretical random responses in the
corresponding linear model

The linearized equations of motion for (1, 0) and (0, 1)
sloshing modes are obtained from (14) as

b̈10 + 2ζ10ḃ10 + b10 = −ψ10r10ẍg cosα

b̈01 + 2ζ01ω01ḃ01 + ω2
01b01 = −ψ01r01ẍg sinα.

(16)

The autocorrelation functions Rb10(τ ) and Rb01(τ ) of
b10(t) and b01(t) can be, respectively, expressed by

Rb10(τ ) =
∫ ∞

−∞
∣∣G1(jω)

∣∣2
SW(ω)ejωτ dω

Rb01(τ ) =
∫ ∞

−∞
∣∣G2(jω)

∣∣2
SW(ω)ejωτ dω,

(17)

where SW(ω) = S0 is the power spectral density of the
white noise W(t). Here, G1(jω) and G2(jω) repre-
sent the complex frequency response functions, which

can be obtained from the transfer functions, defined
as the ratios of the responses b10(t) and b01(t) to the
input W(t), respectively, as follows:

G1(s) = Ω

s2 + γ s + Ω2
· −ψ10r10 cosα · s2

s2 + 2ζ10s + 1

G2(s) = Ω

s2 + γ s + Ω2
· −ψ01r01 sinα · s2

s2 + 2ζ01ω01s + ω2
01

.

(18)

Substituting τ = 0 into (17) gives the mean square re-
sponses

E
[
b2

10

] = Rb10(0) = S0

∫ ∞

−∞
∣∣G1(jω)

∣∣2 dω

= S0 · I1/I2 (19a)

E
[
b2

01

] = Rb01(0) = S0

∫ ∞

−∞
∣∣G2(jω)

∣∣2 dω

= S0 · I3/I4, (19b)

where

I1 = πS0Ω
2(γ + 2ζ10Ω

2)(ψ10r10 cosα)2,

I2 = (2ζ10 + γ )
(
Ω2 + 2ζ10γ + 1

)(
γ + 2ζ10Ω

2)

− Ω2(2ζ10 + γ )2 − (
γ + 2ζ10Ω

2)2

I3 = πS0Ω
2(γω2

01 + 2ζ01Ω
2)(ψ01r01 sinα)2, (20)

I4 = (2ζ01ω01 + γ )
(
Ω2 + 2ζ01ω01γ + ω2

01

)

× (
γω2

01 + 2ζ01Ω
2) − Ω2ω2

01(2ζ01 + γ )2

− (
γω2

01 + 2ζ01Ω
2)2

.

Equation (19a), (19b) is given in closed form and used
to calculate the theoretical curves of the mean square
values for the linear system which will be compared
with the simulation results for the nonlinear coupled
system.

3 Numerical results

Figure 4 shows the time histories for white noise
W(t), ground motion xg(t), sloshing modal ampli-
tudes b10, b01, and b11, and liquid elevations ηx and
ηy . These liquid elevations are measured at positions
(x, y) = (0.5,0) and (0, w/2) over the x- and y-axes,
respectively, as shown in Fig. 1. These time histories
are calculated by the Monte Carlo simulation of (8)
and (14) for the nonlinear coupled system. The values
of the system parameters are h = 0.6,w = 1.0, ζij =
0.013, α = 0◦, γ = 0.03, S0 = 1.0 × 10−7 and Ω =
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Fig. 4 Time histories when h = 0.6,w = 1.0, ζij = 0.013,

α = 0◦, γ = 0.03, S0 = 1.0 × 10−7 and Ω = 0.98

0.98. The Runge–Kutta–Gill method is used to con-
duct the numerical simulation. The time step of the
simulation is set as �t = 0.25, hence the Nyquist fre-
quency ωN = 2π/(2�t) = π/�t = 12.57. The Gaus-
sian white noise W(t) is generated from a random
number series with a zero-mean value and variance
σ 2

W = 2πS0/�t by using a FORTRAN subroutine
based on the Box–Muller method [28]. Because (1, 0)
mode is directly excited by the random ground excita-
tion when α = 0◦, b10 and ηx oscillate violently. Fur-
thermore, b01 and ηy oscillate intermittently because
(0, 1) mode is nonlinearly coupled with (1, 0) mode.
This is known as “autoparametric interaction.” It can
also be seen that (1, 1) mode appears and its constant
component fluctuates because it is autoparametrically
excited by (1, 0) mode when α = 0◦.

3.1 Influence of bandwidth

The time history records are processed to estimate the
mean square responses of the sloshing modal ampli-
tudes and the liquid elevations. The simulation results

Fig. 5 Mean square responses showing the influence of the cen-
ter frequency Ω when γ = 0.03 and the other values of the
parameters are the same as those in Fig. 4. (a) E[b2

10],E[η2
x ]

and E[η2
x ]uc for (1, 0) mode; (b) E[b2

01],E[η2
y ] and E[η2

y ]uc for
(0, 1) mode

of the mean square responses are shown in Fig. 5, and
the values of the parameters are the same as those
in Fig. 4. Figure 5(a) shows (1, 0) mode and liq-
uid elevation ηx , and Fig. 5(b) shows (0, 1) mode
and ηy . The mean square values E[b2

10] and E[b2
01]

are plotted by “"”, and E[η2
x] and E[η2

y] are plot-

ted by “!”. Furthermore, “ ” represents the mean
square values E[η2

x]uc and E[η2
y]uc which are obtained

from the hypothetical, nonlinear uncoupled system de-
fined in Sect. 2.3. All mean square values are esti-
mated from the time histories over the time duration
t = 1000–6000 in order to avoid the influence of the
transient duration and to satisfy the convergence of
these values using 100 different sets of random num-
ber series. The dash-dotted line represents the theoret-
ical curves calculated from (19a), (19b) for the cor-
responding linear model. Because “!” includes the
components of higher sloshing modes, it appears at
slightly larger values than “"”. The simulation results
are close to the theoretical curve (19a) near Ω = 0.9
and 1.1 in Fig. 5(a) when sloshing appears at low am-
plitudes. However, in Figs. 5(a) and 5(b), the simu-
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Fig. 6 Same as Fig. 5, but γ = 0.06. (a) E[b2
10] and E[η2

x ] for
(1, 0) mode; (b) E[b2

01] and E[η2
y ] for (0, 1) mode

lation results “"” and “!” deviate significantly from
the theoretical curves near Ω = 1.0. Although (0, 1)
mode is not directly excited by random ground exci-
tation, E[b2

01] and E[η2
y] appear at small values near

Ω = 1.0. This is because (0, 1) mode is autoparamet-
rically excited by (1, 0) mode. “ ” in Fig. 5(a) is
larger than “!”, and “ ” in Fig. 5(b) is not excited
because the autoparametric interaction does not occur
in the nonlinear uncoupled system. The difference be-
tween “!” and “ ” may correspond to the amount
of the energy transferred from (1, 0) mode to (0, 1)
mode though the nonlinear coupling terms. The val-
ues E[b2

10] on the left hand side of Ω = 1.0 are large
and correspond to a soft-type Duffing oscillator under
harmonic excitation because the liquid level h = 0.6 is
comparatively high.

Figure 6 shows the influence of the bandwidth
of random excitation on the mean square responses
when only the value of the bandwidth is changed from
γ = 0.03 in Fig. 5 to 0.06. As γ increases, the mean
square values E[b2

10] flatten and the simulation results
approach the theoretical curve (19a). In addition, the
mean square values E[b2

01] are close to zero. This im-
plies that the autoparametric interaction between (1,
0) and (0, 1) modes is not significant. Note that each

Fig. 7 Same as Fig. 5, but α = 20◦. (a) E[b2
10],E[η2

x ] and
E[η2

x ]uc for (1, 0) mode; (b) E[b2
01],E[η2

y ] and E[η2
y ]uc for

(0, 1) mode

“ ” in Fig. 6 appears at almost the same value as each
“!” for the same reason. Further increasing the band-
width would probably result in a flat line even for (1,
0) mode.

3.2 Influence of excitation direction

The influence of excitation direction on the mean
square responses of nonlinear sloshing in a square tank
is the primary focus of the present study and is exam-
ined by changing the value of α. Figures 7, 8, and 10
show the dependence of the mean square responses on
the center excitation frequency Ω , when only the value
of α is changed, from α = 0◦ in Fig. 5 to 20◦,40◦
and 45◦, respectively. When α �= 0◦, (1,0) and (0, 1)
sloshing modes are both directly excited by random
ground excitation. In Fig. 7(a) when α = 20◦, the peak
of “"” for E[b2

10] becomes lower than that in Fig. 5(a)
but still deviates from the theoretical curve (19a). On
the contrary, the peak of E[b2

01] in Fig. 7(b) becomes
higher than that in Fig. 5(b). Furthermore, the peak of
the theoretical curve (19b) is extremely low although
(0, 1) mode is also directly excited in the linear system.
The difference between “ ” and “!” near Ω = 1.0 in
Fig. 7 is larger than that in Fig. 5. This is because “ ”
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Fig. 8 Same as Fig. 5, but α = 40◦. (a) E[b2
10],E[η2

x ] and
E[η2

x ]uc for (1, 0) mode; (b) E[b2
01],E[η2

y ] and E[η2
y ]uc for (0,

1) mode

in Fig. 7(a) receives more energy from the ground ex-
citation, whereas “!” transfers some of this energy to
(0, 1) mode due to the autoparametric interaction. This
is also why both “!” and “"” in Fig. 7(b) for (0, 1)
mode appear at higher values than “ ” even though
(0, 1) mode receives less energy from the ground ex-
citation.

When α = 40◦, both the theoretical curve (19a)
and “ ” in Fig. 8(a) still appear at larger values
than (19a) and “ ” in Fig. 8(b), respectively. Inter-
estingly, this is not true for the coupled system. Note
that “!” appears at smaller values in Fig. 8(a) than
8(b) near the peak at Ω = 0.98. As the value of
α approaches 45◦, (1,0) mode receives increasingly
less energy from the ground excitation, while (0, 1)
mode receives increasingly more. Furthermore, the au-
toparametric interaction continues to occur, thus some
of this energy is exchanged between the two predom-
inant modes, (1, 0) and (0, 1), and the higher mode
(1, 1). It can then be assumed that when α = 40◦, the
total energy of (1, 0) mode is less than that of (0, 1)
mode due to the autoparametric interaction. When the
amplitude of sloshing is high, the influence of the au-
toparametric interaction is greater resulting in the peak

Fig. 9 Time histories at Ω = 0.98 in Fig. 8

of Fig. 8(b) being higher than that of Fig. 8(a). Fig-
ure 9 shows the time histories at Ω = 0.98 in Fig. 8.
Note that the time histories of W(t) and xg(t) in
Fig. 9 are the same as those in Fig. 4 because iden-
tical random number series and initial conditions are
used. However, it can be seen that b01 and ηy oscil-
late more frequently at higher amplitudes than b10 and
ηx . This confirms that E[η2

y] is larger than E[η2
x] near

Ω = 0.98 in Fig. 8.
For α = 45◦ in Fig. 10, the simulation results and

the theoretical curves are identical in Figs. 10(a) and
10(b) because (1, 0) and (0, 1) modes receive the same
amount of energy from the random ground excitation.
However, the coupled and uncoupled systems behave
like a soft-spring Duffing system when the liquid level
is comparatively high. Thus, the peaks of “!” and “ ”
appear at higher values than those of the theoretical
curves (19a), (19b) and shift to the left of the center
frequency Ω = 1.0. Furthermore, (1, 1) mode is au-
toparametrically excited by and absorbs energy from
(1, 0) and (0, 1) modes, and it may cause the peaks of
“!” and “"” to appear further to the left, and at lower
mean square values than those of “ ”.
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Fig. 10 Same as Fig. 5, but α = 45◦. (a) E[b2
10],E[η2

x ] and
E[η2

x ]uc for (1, 0) mode; (b) E[b2
01],E[η2

y ] and E[η2
y ]uc for

(0, 1) mode

Fig. 11 The ratio of E[η2
y ] to E[η2

x ] depending on the excita-
tion direction, including Figs. 5, 7, 8, and 10

Figure 11 shows the dependence of the ratio E[η2
y]

to E[η2
x] on Ω in terms of the excitation direction,

including Figs. 5, 7, 8 and 10 for α = 0◦,20◦,40◦
and 45◦. The purpose of this figure is to reveal the
degree of interaction between the two predominant
modes. When α = 45◦ and the means square responses
of (1, 0) and (0, 1) modes are identical, the ratio
E[η2

y]/E[η2
x] equals 1.0 for any value of Ω . This ra-

tio is less than 1.0 when α is less than 20◦, thus

(1, 0) mode always appears at higher values than (0, 1)
mode. As α increases, the ratio gradually approaches
1.0 near Ω = 1.0. Because the ratio is less than 1.0
when α is less than 20◦ but exceeds 1.0 for 0.97 <

Ω < 1.0 when α = 30◦, a critical value αc exists in
the range 20◦ < α < 30◦, where the peak of the ra-
tio E[η2

y]/E[η2
x] equals 1.0. When α < αc, it can be

assumed that this ratio would be less than 1.0 and
thus the total energy of (1, 0) mode is greater than
that of (0, 1) mode. When α > αc, however, this ra-
tio would be greater than 1.0 and the total energy of
(1, 0) mode would be less than (0, 1) mode depend-
ing on the value of Ω . Thus when α = 40◦, although
E[η2

x] is expected to be larger than E[η2
y] because the

component of the ground excitation in the x-direction
of the tank is larger than that in the y-direction, the
opposite results occur for 0.955 < Ω < 1.017. When
the bandwidth is narrow, this result is similar to that
of a system under harmonic excitation where multi-
valued response curves are observed [11]. Therefore,
in order to clarify this result, the frequency response
curves for the system subjected to harmonic excitation
can be used.

Figure 12 shows the frequency response curves in
terms of mean square values for α = 0◦. They are cal-
culated using the same method in [11] when xg(t)

in (4) and (7) is replaced by the harmonic excita-
tion a0 cosωt . When a0 = √

2πS0/γ , the harmonic
excitation has the same amount of energy as that of
the random excitation, referred to as “equivalent har-
monic excitation”. Figure 12 corresponds to Fig. 5,
when a0 = 0.00458. The solid and broken lines rep-
resent the stable and unstable steady-state solutions,
respectively. Figures 12(a) and 12(b) show the mean
square values of the harmonic oscillations of b10 and
b01, respectively, in the nonlinear coupled system, and
Figs. 12(c) and 12(d) in the nonlinear uncoupled sys-
tem. When α = 0◦, only (1, 0) mode is excited as
shown in Figs. 12(c) and 12(d), and this corresponds
to the nonlinear uncoupled system “ ” in Fig. 5.
However, in Fig. 12(b), the steady-state solution of
(0, 1) mode is unstable along branch “B2C2” and
this mode is autoparametrically excited along stable
branch “E2F2C2”. The autoparametric interaction also
causes (1, 0) mode to appear at lower amplitudes along
stable branch “E1F1C1” in Fig. 12(a), and this corre-
sponds to the nonlinear coupled system “!” in Fig. 5.

Figure 13 shows the mean square values of the har-
monic oscillations of b10 and b01, when only the value
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Fig. 12 Frequency response curves corresponding to Fig. 5 for
α = 0◦. (a) E[b2

10] for (1, 0) mode and (b) E[b2
01] for (0, 1)

mode in the nonlinear coupled system; (c) E[b2
10] for (1, 0)

mode and (d) E[b2
01] for (0, 1) mode in the nonlinear uncou-

pled system

Fig. 13 Frequency response curves corresponding to Fig. 8 for
α = 40◦. (a) E[b2

10] for (1, 0) mode and (b) E[b2
01] for (0, 1)

mode in the nonlinear coupled system; (c) E[b2
10] for (1, 0)

mode and (d) E[b2
01] for (0, 1) mode in the nonlinear uncou-

pled system
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Fig. 14 3D distribution charts of E[η2] at Ω = 0.98. (a) α = 0◦
in Fig. 5, (b) α = 40◦ in Fig. 8

of α is changed from α = 0◦ in Fig. 12 to 40◦ and cor-
responds to Fig. 8. Both modes oscillate in Figs. 13(c)
and 13(d), and (1, 0) mode appears at slightly higher
amplitudes than those of (0, 1) mode because it re-
ceives slightly more energy from the harmonic exci-
tation. This result is similar to “ ” in Fig. 8. The re-
sults of Figs. 13(a) and 13(b) are more complicated,
however, it is clear that as the excitation frequency ω

increases, (0, 1) mode oscillates at higher amplitudes
along branch “E2C2” than those of (1, 0) mode along
“E1C1”. This result, where (1, 0) mode receives more
energy from the excitation but appears at lower values
than (0, 1) mode, is similar to that of “!” in Fig. 8. The
difference between the nonlinear coupled and uncou-
pled systems may be attributed to the autoparametric
interaction and (1, 1) mode. Note that amplitude mod-
ulate motions (AMMs) appear over interval “GiHi”
(i = 1,2) with modulated amplitudes plotted by ver-
tical thin lines. Furthermore, isolated loops “Pihi fiPi”
appear and may correspond to (1, 0) mode oscillating
less frequently at higher amplitudes than (0, 1) mode
as seen in Fig. 9.

Figures 14(a) and 14(b) show the three-dimensional
(3D) distribution charts of the mean square values
E[η2] for α = 0◦ and 40◦, respectively, when the other

values of the system parameters are the same as those
in Figs. 5 and 8. E[η2] includes E[η2

x] and E[η2
y],

which are measured at positions (x, y) = (1/2,0) and
(0, w/2), respectively. It can be seen that (1, 0) mode
predominantly appears for α = 0◦ because sloshing
appears at high amplitudes on the right and left tank
walls as shown in Fig. 14(a). Both (1, 0) and (0, 1)
modes predominantly appear for α = 40◦ and the liq-
uid elevations are higher at the two opposite corners as
shown in Fig. 14(b).

Figure 15 shows the probability density functions
(PDFs), p(ηx) and p(ηy), at Ω = 0.98. The curve con-
sisting of “"” is obtained by averaging 100 PDFs each
calculated from a time history. The solid curves rep-
resent the Gaussian PDFs which are calculated using
the mean values and the variances of the time histories
of ηx and ηy . Figure 15(a) corresponds to Fig. 5 for
α = 0◦. In the upper graph of Fig. 15(a), the simula-
tion results of p(ηx) are asymmetric and deviate from
the Gaussian PDF due to the nonlinearity of slosh-
ing. The negative liquid elevation ηx appears during
−0.16 < ηx < 0, while the positive liquid elevation
ηx appears from 0 to over 0.2. Therefore, the positive
liquid elevation appears at larger amplitudes than the
negative elevation, as illustrated in the time history of
ηx in Fig. 4. In the lower graph of Fig. 15(a), the full
scale of the vertical axis is 50 to clearly show the sim-
ulation results of p(ηy). Note that these results devi-
ate significantly from the Gaussian PDF and appear at
large values near ηy = 0 due to the autoparametric in-
teraction. This corresponds to ηy intermittently oscil-
lating, as shown in Fig. 4. Figure 15(b) corresponds to
Fig. 8 for α = 40◦. Here, p(ηx) slightly deviates from
the Gaussian PDF near ηx = 0, while p(ηy) is nearly
identical to the Gaussian PDF. This implies that the
nonlinearity of sloshing influences (1, 0) mode more
significantly than (0, 1) mode. The negative and posi-
tive elevations of both p(ηx) and p(ηy) are symmetri-
cal, and this result is also reflected in their time histo-
ries.

In order to evaluate the risk of liquid overspill from
square tanks, Fig. 16 shows the three-dimensional dis-
tribution charts of the mean square values E[η2

max] of
the maximum liquid elevation ηmax in the xy-plane at
Ω = 0.98. The other values of the system parameters
are the same as those in Figs. 5 and 8. When α = 0◦
in Fig. 16(a), sloshing occurs at mid levels at all four
corners of the tank. It is thus unlikely that liquid will
overspill. When α = 40◦ in Fig. 16(b), sloshing oc-
curs at high levels at the two opposite tank corners due
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Fig. 15 Probability density
distributions of the liquid
elevations ηx and ηy

showing the influence of the
excitation direction α at
Ω = 0.98. (a) α = 0◦ in
Fig. 5, (b) α = 40◦ in Fig. 8

Fig. 16 3D distribution charts of E[η2
max] at Ω = 0.98.

(a) α = 0◦ in Fig. 5; (b) α = 40◦ in Fig. 8

to both (1, 0) and (0, 1) modes oscillating at nearly
the same high amplitudes. Therefore, the risk of liquid
overspill is severe compared with that of Fig. 16(a).
These distribution charts can be used to predict where
the liquid may spill out of the tank. Furthermore, these
charts can be used to estimate where extreme pressures
may act on the tank walls and ceiling in the case of her-

Fig. 17 Same as Fig. 5 for α = 0◦, but h = 0.34. (a) E[b2
10] and

E[η2
x ] for (1, 0) mode; (b) E[b2

01] and E[η2
y ] for (0, 1) mode

metically sealed tanks, and can be used as guidelines
for designing liquid storage tanks.

3.3 Influence of liquid level

It is well known that the liquid level plays a signifi-
cant role in governing the nonlinear dynamics of slosh-
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Fig. 18 Same as Fig. 5 for α = 0◦, but h = 0.28. (a) E[b2
10] and

E[η2
x ] for (1, 0) mode; (b) E[b2

01] and E[η2
y ] for (0, 1) mode

ing. In order to investigate the influence of the liq-
uid level on sloshing in square tanks subjected to ran-
dom ground excitation, Figs. 17 and 18 show the mean
square responses for h = 0.34 and 0.28, respectively.
The other values of the system parameters are the same
as those in Fig. 5 for α = 0◦. In Fig. 17 for a mid liq-
uid level, the mean square values symmetrically ap-
pear on both sides of Ω = 1.0 and deviate slightly
from the theoretical curves (19a), (19b) near the peaks.
Although the autoparametric interaction still causes
(0, 1) mode to appear, it appears at lower values than
those in Fig. 5. As h is decreased further, the peak
of the mean square values E[η2

x] shifts slightly to the
right for a low liquid level as shown in Fig. 18. Further-
more, the mean square values E[b2

01] are nearly equal
to 0. Thus, as the liquid level is decreased, sloshing
occurs at lower amplitudes and the autoparametric in-
teraction is less effective. From Figs. 5, 17, and 18, it
can be assumed that a critical level hc exists at which
the nonlinear system behaves like the linear system as
in Fig. 17. When h > hc as in Fig. 5, “!” deviates
from (19a), (19b) and behaves like a soft-spring type,
whereas when h < hc as in Fig. 18, “!” deviates from
(19a), (19b) and behaves as a hard-spring type. It is

thus important to consider the nonlinearity of sloshing
in order to achieve the most accurate results.

4 Concluding remarks

The mean square responses of the two predominant
sloshing modes, (1, 0) and (0, 1) modes, in square
tanks have been investigated when the tanks are sub-
jected to horizontal, random ground excitation. The
excitation is generated from the response of a second-
order linear filter to a white Gaussian random noise.
The results can be summarized as follows:

1. When the bandwidth of the random ground excita-
tion is narrow and the excitation direction α is 0◦,
only (1, 0) mode receives energy from the ground
excitation. The autoparametric interaction occurs,
and it causes (0, 1) mode to appear and the mean
square responses of (1, 0) mode to decrease when
the center frequency of the excitation is close to the
natural frequencies of these two modes.

2. Increasing the bandwidth results in less autopara-
metric interaction and the system responses are
similar to those in the corresponding linear sys-
tem. In addition, the mean square responses of both
modes flatten.

3. When 0◦ < α < 45◦, although both modes are di-
rectly excited, (1, 0) mode receives more energy
from the ground excitation than (0, 1) mode. How-
ever, the mean square values of (1, 0) mode are not
always larger than those of (0, 1) mode. This is due
to the amount of energy exchanged between (1, 0)
and (0, 1) modes through the internal resonance.

4. When the bandwidth is comparatively narrow, the
system responses under random ground excitation
can be confirmed by using the frequency response
curves for the system under equivalent harmonic
excitation.

5. When α = 0◦, (0,1) mode intermittently oscillates
and its PDF significantly deviates from the Gaus-
sian distribution because of the autoparametric in-
teraction. However, when α increases, the PDFs
of both modes approach the Gaussian distributions
and they behave like those of a linear system.

6. Distribution charts of the mean square responses
of the liquid elevation are shown. They can pre-
dict where liquid overspill and high hydrodynamic
pressure may occur in square tanks.
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7. Comparatively high and low liquid levels cause the
peak of the system to appear slightly to the left or
right of the center frequency, respectively. A crit-
ical liquid level likely exists at which the system
behaves similar to a corresponding linear system.

For further work, the influences of the intensity of
the random ground excitation and the aspect ratio of
the tank cross-section should be investigated as well
as the risk of liquid overspill most likely to occur at
two opposing corners of the tank. Furthermore, real
seismic excitation can be applied to this model in order
to investigate the responses to earthquakes.
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