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Abstract In this paper, the analytical dynamics of
asymmetric periodic motions in the periodically forced,
hardening Duffing oscillator is investigated via the
generalized harmonic balance method. For the hard-
ening Duffing oscillator, the symmetric periodic mo-
tions were extensively investigated with the aim of a
good understanding of solutions with jumping phe-
nomena. However, the asymmetric periodic motions
for the hardening Duffing oscillators have not been ob-
tained yet, and such asymmetric periodic motions are
very important to find routes of periodic motions to
chaos in the hardening Duffing oscillator analytically.
Thus, the bifurcation trees from asymmetric period-
1 motions to chaos are presented. The corresponding
unstable periodic motions in the hardening Duffing
oscillator are presented, and numerical illustrations of
stable and unstable periodic motions are carried out
as well. This investigation provides a comprehensive
understanding of chaos mechanism in the hardening
Duffing oscillator.

Keywords Hardening Duffing oscillator ·
Asymmetric periodic motions · Symmetric periodic
motions · Hopf bifurcation · Saddle-node bifurcation

A.C.J. Luo (�) · J. Huang
Department of Mechanical and Industrial Engineering,
Southern Illinois University Edwardsville, Edwardsville,
IL 62026-1805, USA
e-mail: aluo@siue.edu

1 Introduction

In mechanical engineering, in 1918, Duffing [1] pre-
sented the hardening spring model to describe the vi-
bration of electro-magnetized vibrating beam. Since
then, the Duffing oscillator has been extensively used
to describe nonlinear structural vibrations in struc-
tural dynamics. In 1964, Hayashi [2] discussed the
approximate periodic solutions and the correspond-
ing stability by the averaging method and harmonic
balance method. In 1973, Nayfeh [3] used the per-
turbation method to approximate periodic motion of
the Duffing oscillators. In 1976, Holmes and Rand [4]
discussed the stability and bifurcation of the Duff-
ing oscillator via the catastrophe theory. In 1979,
Nayfeh and Mook [5] presented the nonlinearity of
the Duffing oscillators in structural vibration through
the perturbation analysis, and Holmes [6] showed the
strange attractors of chaotic motions in nonlinear os-
cillators via the Duffing oscillator with a twin-well
potential. In 1980, Ueda [7] used numerical simula-
tions to show chaos via period-doubling of periodic
motions of Duffing oscillators. In 1990, Coppola and
Rand [8] used the method of averaging with elliptic
functions to approximately determine the limit cycles
of nonlinear oscillators. In 1992, Wang et al. [9] used
the harmonic balance method and the Floquet theory
to investigate the bifurcation behaviors of the Duff-
ing oscillator with a bounded potential well (also see,
Kuo et al. [10]). In 1995, Hanicki and Szemplinski-
Stupnicka [11] used the perturbation method to inves-
tigate the approximate solutions of periodic motions
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in the twin-well potential Duffing oscillator. In 1997,
Luo and Han [12] analytically presented the stability
and bifurcation conditions of periodic motions of the
Duffing oscillator, different from the traditional per-
turbation analysis. However, the constant term of the
analytical solution for the steady-state motion of the
Duffing oscillator was not considered. In 1996, Luo
and Han [13] presented an improved solution of the
Duffing oscillator with a twin-well potential. For ana-
lytical prediction of chaos, in 1999, Luo and Han [14]
investigated chaotic motions in nonlinear rods through
the Duffing oscillator. In 2008, Peng et al. [15] pre-
sented the approximate period-1 solution for the Duff-
ing oscillator by the harmonic balance method with
three harmonic terms, compared with the fourth-order
Runge-Kutta method. In 2012, Luo and Huang [16]
presented a generalized harmonic balance method to
obtain the analytical solution of period-1 motion of the
Duffing oscillator with a twin-well potential. Luo and
Huang [17] also presented a generalized harmonic bal-
ance method to determine period-m solutions in such
a Duffing oscillator. The hardening Duffing oscilla-
tor possesses dynamical behaviors different from the
Duffing oscillator with the twin-well. So far, one only
knows symmetric periodic motions with a rough ap-
proximation for the hardening Duffing oscillator. The
asymmetric periodic motions in such hardening os-
cillator are not discussed yet. Herein, such asymmet-
ric periodic motions will be discussed analytically be-
cause the asymmetric periodic motions are a key to
find the route to chaos analytically.

In this paper, the generalized harmonic balance
method will be used to investigate analytical periodic
motions in the periodically forced, hardening Duff-
ing oscillator. The symmetric and asymmetric period-
1 motions for such a Duffing oscillator will be investi-
gated and the corresponding analytical solutions will
be presented. The stability and bifurcations of such
period-1 motions will be carried out. The bifurcation
tree from asymmetric period-1 motions to period-4
motions will be presented. The corresponding unsta-
ble periodic motions in the hardening Duffing oscilla-
tor will be presented. Numerical illustrations of stable
and unstable periodic motions will be carried out.

2 Formulation

Consider a hardening Duffing oscillator

ẍ + δẋ + αx + βx3 = Q0 cosΩt (1)

where ẋ = dx/dt is velocity. Q0 and Ω are excitation
amplitude and frequency, respectively. δ is damping
coefficient. α and β are linear and nonlinear stiffness
coefficients of the Duffing oscillator. From Eq. (1), the
standard form for the Fourier analysis is

ẍ = f (x, ẋ, t) (2)

where

f (x, ẋ, t) = −δẋ − αx − βx3 + Q0 cosΩt. (3)

In 2012, Luo [18] presented a generalized harmonic
balance method to obtain analytical periodic motions.
From such a generalized harmonic balance method,
the analytical solution of period-1 motion for the hard-
ening Duffing oscillator is

x∗(t) = a0(t) +
N∑

k=1

bk(t) cos(kΩt) + ck(t) sin(kΩt)

(4)

and the analytical solution of period-m motion for
such a Duffing oscillator is

x∗(t) = a
(m)
0 (t) +

N∑

k=1

bk/m(t) cos

(
k

m
Ωt

)

+ ck/m(t) sin

(
k

m
Ωt

)
. (5)

For m = 1, the period-1 motion given in Eq. (3) is
recovered. From Eq. (5), the first and second order
derivatives of x∗(t) are

ẋ∗(t) = ȧ
(m)
0 +

N∑

k=1

(
ḃk/m + kΩ

m
ck/m

)
cos

(
k

m
Ωt

)

+
(

ċk/m − kΩ

m
bk/m

)
sin

(
k

m
Ωt

)
, (6)

ẍ∗(t) = ä
(m)
0 +

N∑

k=1

(
b̈k/m + 2

kΩ

m
ċk/m

−
(

kΩ

m

)2

bk/m

)
cos

(
k

m
Ωt

)

+
(

c̈k/m − 2
kΩ

m
ḃk/m −

(
kΩ

m

)2

ck/m

)

× sin

(
k

m
Ωt

)
. (7)
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Substitution of Eqs. (4)–(7) to Eq. (2) and using
the coefficients of the Fourier series for all terms of
cos(kΩt/m) and sin(kΩt/m) gives

ä
(m)
0 = F

(m)
0

(
a

(m)
0 ,b(m), c(m), ȧ

(m)
0 , ḃ(m), ċ(m)

)
,

b̈k/m + 2
kΩ

m
ċk/m −

(
kΩ

m

)2

bk/m

= F
(m)
1k

(
a

(m)
0 ,b(m), c(m), ȧ

(m)
0 , ḃ(m), ċ(m)

)
,

c̈k/m − 2
kΩ

m
ḃk/m −

(
kΩ

m

)2

ck/m

= F
(m)
2k

(
a

(m)
0 ,b(m), c(m), ȧ

(m)
0 , ḃ(m), ċ(m)

)
,

k = 1,2, . . . ,N. (8)

The coefficients of coskΩt and sin kΩt for the func-
tion of f (x, ẋ, t) are

F
(m)
0

(
a

(m)
0 ,b(m), c(m), ȧ

(m)
0 , ḃ(m), ċ(m)

)

= −δȧ
(m)
0 − αa

(m)
0 − βf

(m)
0 ;

F
(m)
1k

(
a

(m)
0 ,b(m), c(m), ȧ

(m)
0 , ḃ(m), ċ(m)

)

= −δ

(
ḃk/m + kΩ

m
ck/m

)
− αbk/m

− βf
(c)
k + Q0δ

m
k ;

F
(m)
2k

(
a

(m)
0 ,b(m), c(m), ȧ

(m)
0 , ḃ(m), ċ(m)

)

= −δ

(
ċk/m − kΩ

m
bk/m

)
− αck/m − βf

(s)
k

(9)

where the nonlinear coefficient functions are

f
(m)
0 = (

a
(m)
0

)3 +
N∑

l=1

N∑

j=1

N∑

i=1

[
3a

(m)
0

2N
bi/mbj/mδ0

i−j

+ 3a
(m)
0

2N
ci/mcj/mδ0

i−j

+ 1

4
bi/mbj/mbl/m

(
δ0
i−j−l + δ0

i−j+l + δ0
i+j−l

)

+ 3

4
bi/mcj/mcl/m

(
δ0
i+j−l + δ0

i−j+l

− δ0
i−j−l

)]
, (10)

f
(c)
k =

N∑

l=1

N∑

j=1

N∑

i=1

[
3

(
a

(m)
0

N

)2

bl/mδk
l

+ 3a
(m)
0

2N
bl/mbj/m

(
δk
|l−j | + δk

l+j

)

+ 3a
(m)
0

2N
cl/mcj/m

(
δk
|l−j | − δk

l+j

)

+ 1

4
bl/mbj/mbi/m

(
δk
|l−j−i| + δk

l+j+i

+ δk
|l−j+i| + δk

|l+j−i|
)

+ 3

4
bl/mcj/mci/m

(
δk
|l+j−i| − δk

l+j+i

+ δk
|l−j+i| − δk

|l−j−i|
)]

, (11)

f
(s)
k =

N∑

l=1

N∑

j=1

N∑

i=1

[
3

(
a

(m)
0

N

)2

cl/mδk
l

+ 3a
(m)
0

N
bl/mcj/m

[
δk
l+j − sgn(l − j)δk

|l−j |
]

+ 1

4
cl/mcj/mci/m

[
sgn(l − j + i)δk

|l−j+i|

− δk
l+j+i + sgn(l + j − i)δk

|l+j−i|

− sgn(l − j − i)δk|l−j−i|
]

+ 3

4
bl/mbj/mci/m

[
sgn(l − j + i)δk

|l−j+i|

+ δk
l+j+i − sgn(l + j − i)δk

|l+j−i|

− sgn(l − j − i)δk
|l−j−i|

]]
. (12)

Let

z(m) �
(
a

(m)
0 ,b(m), c(m)

)T

= (
a

(m)
0 , b1/m, . . . , bN/m, c1/m, . . . , cN/m

)T

≡ (
z
(m)
0 , z

(m)
1 , . . . , z

(m)
2N

)T
,

z1 = ż = (
ȧ

(m)
0 , ḃ(m), ċ(m)

)T

= (
ȧ

(m)
0 , ḃ1/m, . . . , ḃN/m, ċ1/m, . . . , ċN/m

)T

≡ (
ż
(m)
0 , ż

(m)
1 , . . . , ż

(m)
2N

)T

(13)
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where

b(m) = (b1/m, b2/m, . . . , bN/m)T and

c(m) = (c1/m, c2/m, . . . , cN/m)T.
(14)

Equation (8) can be expressed in the vector form of

ż(m) = z(m)
1 and ż(m)

1 = g(m)
(
z(m), z(m)

1

)
(15)

where

g(m)
(
z(m), z(m)

1

)

=
(

−F
(m)
0

(
z(m), z(m)

1

) − F(m)
1

(
z(m), z(m)

1

)

−2
k1Ω

m
ċ(m) + k2

(
Ω

m

)2

b(m) − F(m)
2

(
z(m), z(m)

1

)

+2
k1Ω

m
ḃ(m) + k2

(
Ω

m

)2

c(m)

)
(16)

and

k1 = diag(1,2, . . . ,N) and

k2 = diag
(
1,22, . . . ,N2),

F(m)
1 = (

F
(m)
11 ,F

(m)
12 , . . . ,F

(m)
1N

)T and

F(m)
2 = (

F
(m)
21 ,F

(m)
22 , . . . ,F

(m)
2N

)T

for N = 1,2, . . . ,∞ (17)

and

y(m) ≡ (
z(m), z(m)

1

)
and f(m) = (

z(m)
1 ,g(m)

)T
. (18)

Thus, Eq. (15) becomes

ẏ(m) = f(m)
(
y(m)

)
. (19)

The solutions of steady-state periodic motion can be
obtained by setting ẏ(m) = 0, i.e.,

F
(m)
0

(
a

(m)∗
0 ,b(m)∗, c(m)∗,0,0,0

) = 0,

F(m)
1

(
a

(m)∗
0 ,b(m)∗, c(m)∗,0,0,0

)

− Ω2

m2
k2b(m)∗ = 0,

(20)

F(m)
2

(
a

(m)∗
0 ,b(m)∗, c(m)∗,0,0,0

) − Ω2

m2
k2c(m)∗ = 0.

The (2N + 1) nonlinear equations in Eq. (20) are
solved by Newton–Raphson method. The linearized
equation at the equilibrium point y(m)∗ = (z(m)∗,0)T

is given by

Δẏ(m) = Df(m)
(
y∗(m)

)
Δy(m) and

Df(m)
(
y∗(m)

) = ∂f(m)
(
y(m)

)
/∂y(m)

∣∣
y(m)∗ .

(21)

The corresponding eigenvalues are determined by
∣∣Df(m)

(
y∗(m)

) − λI2(2N+1)×2(2N+1)

∣∣ = 0. (22)

If Re(λk) < 0 (k = 1,2, . . . ,2(2N + 1)), the approxi-
mate, steady-state, periodic solution y(m)∗ with trun-
cation of cos(NΩt/m) and sin(NΩt/m) is stable.
If Re(λk) > 0 (k ∈ {1,2, . . . ,2(2N + 1)}), the trun-
cated approximate steady-state solution is unstable.
The boundary between the stable and unstable solu-
tions is given by the bifurcation condition, including
saddle-node bifurcation and Hopf bifurcation.

3 Analytical prediction of periodic solutions

For the symmetric motion, a
(m)
0 = 0 is obtained. For

one harmonic term balance, setting m = k = 1, Eq. (9)
becomes

F
(1)
0 (a0, b1, c1, ȧ0, ḃ1, ċ1) = 0,

F
(1)
11 (a0, b1, c1, ȧ0, ḃ1, ċ1)

= −δ(ḃ1 + Ωc1) − αb1 − βf
(c)
1 + Q0,

F
(1)
21 (a0, b1, c1, ȧ0, ḃ1, ċ1)

= −δ(ċ1 − Ωb1) − αc1 − βf
(s)
1

(23)

where for i = j = l = 1 Eqs. (10)–(12) gives

f
(1)
0 = 0, f

(c)
1 = 3

4
b3

1 + 3

4
b1c

2
1, f

(s)
1 = 3

4
c3

1 + 3

4
b2

1c1.

(24)

Thus for m = k = 1, Eq. (8) becomes

ä0 = 0,

b̈1 + 2Ωċ1 − Ω2b1

= −δ(ḃ1 + Ωc1) − αb1 − 3

4
βb1

(
b2

1 + c2
1

)

+ Q0,

(25)
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c̈1 − 2Ωḃ1 − Ω2c1

= −δ(ċ1 − Ωb1) − αc1 − 3

4
βc1

(
c2

1 + b2
1

)
.

The algebraic equations for the traditional harmonic
balance with one term is given by the equilibrium
point of Eq. (25), i.e.,

−Ω2b∗
1 = −δΩc∗

1 − αb∗
1 − 3

4
βb∗

1

(
b∗2

1 + c∗2
1

) + Q0,

−Ω2c∗
1 = δΩb∗

1 − αc∗
1 − 3

4
βc∗

1

(
b∗2

1 + c∗2
1

)
.

(26)

Setting A2
1 = c∗2

1 + b∗2
1 , and deformation of Eq. (26)

produces

(δΩ)2A2
1 + A2

1

[(
α − Ω2) + 3

4
βA2

1

]2

= Q2
0. (27)

From Eq. (27), the first harmonic term amplitude can
be determined. Further, from Eq. (26), the coefficient
b∗

1 and c∗
1 are determined. The corresponding stabil-

ity and bifurcations can be determined from the eigen-
value analysis of the linearized equation of Eq. (25).
At the equilibrium point (b∗

1, c∗
1), the linearized equa-

tion is

ü + Cu̇ + Ku = 0, (28)

where

u = (Δb1,Δc1)
T, u̇ = (Δḃ1,Δċ1)

T,

ü = (Δb̈1,Δc̈1)
T

C =
[

δ 2Ω

−2Ω δ

]
, K =

[
K11 K12

K21 K22

]
;

K11 = α − Ω2 + β

(
9

4
b∗2

1 + 3

4
c∗2

1

)
,

K12 = δΩ + 3

2
βb∗

1c∗
1,

K21 = −δΩ + 3

2
βb∗

1c∗
1,

K22 = α − Ω2 + β

(
3

4
b∗2

1 + 9

4
c∗2

1

)
.

(29)

The eigenvalues of the linearized equation is deter-
mined by

∣∣λ2I + λC + K
∣∣ = 0. (30)

From the eigenvalues, the stability and bifurcation
of approximate symmetric period-1 motion are deter-
mined. For one harmonic term, the symmetric period-
1 motion cannot be approximated well. Thus, multiple
harmonic terms of the Fourier series will be used to
predict the symmetric period-1 motions, and then, the
asymmetric period-1 motions will be discussed.

The truncated Fourier series solutions will be used
to give an approximate solution close to the exact so-
lution. From such approximate, analytical solutions,
the equilibrium solution of coefficient dynamical sys-
tem for the Fourier series of the periodic motion
can be obtained from Eq. (20) using the Newton–
Raphson method, and the stability and bifurcation
analysis of the such equilibrium points can be com-
pleted through the eigenvalue analysis. The system pa-
rameters are

δ = 0.2, α = 1.0, β = 4, Q0 = 100.0.

(31)

The backbone curves of harmonic amplitude varying
with excitation frequency Ω are illustrated. The har-
monic amplitude and phase are defined by

Ak/m ≡
√

b2
k/m + c2

k/m,

ϕk/m = arctan
ck/m

bk/m

(32)

and the corresponding solution in Eq. (4) is

x∗(t) = a
(m)
0 +

N∑

k=1

Ak/m cos

(
k

m
Ωt − ϕk/m

)
. (33)

For symmetric period-1 motion, the first three har-
monic terms of the Fourier series expansion (HB3)
will be used to obtain the approximate periodic solu-
tions. The first three harmonic amplitudes (Ak) and
phases (ϕk) (k = 1,3) versus excitation frequency
are plotted in Fig. 1(a)–(d), respectively. The solid
and dashed curves represent the stable and unstable
periodic solutions based on the three terms of the
harmonic balance (HB3), respectively. The acronyms
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Fig. 1 The analytical prediction of symmetric period-1 solutions based on three harmonic terms (HB3): (a) and (b) harmonic ampli-
tudes Ak (k = 1,3); (c) and (d) harmonic phases ϕk (k = 1,3). (δ = 0.2, α = 1.0, β = 4, Q0 = 100.0)

“SN” and “HB” represent the saddle-node bifurca-
tion and Hopf bifurcation, respectively. The acronyms
“S” and “A” represent the symmetric and asymmet-
ric periodic motions, accordingly. In Fig. 1(a) and
(b), the frequency-amplitude curves are presented.
For symmetric period-1 motion, a0 = A2 = 0. From
the approximate analysis, the saddle-node bifurcations
(SN) occur at Ω ≈ 2.145,2.245,2.575,7.745,29.52.
Ω = 4.25 is for Hopf bifurcation. The frequency-
amplitude curve (Ω,A1) in Fig. 1(a) is similar to the
one harmonic term. Upper and lower stable branches
of solutions exist. The unstable solution is in the mid-
dle branch, which is similar to the traditional anal-
ysis. The upper branch of symmetric period-1 solu-
tion is in A1 ∈ (1.0,20) for Ω ∈ (0,29.52). The lower
branch of symmetric period-1 solution is in A1 ∈
(0.0,2.0) for Ω ∈ (7.745,35). From the frequency-

amplitude curve (Ω,A3) in Fig. 1(b), the higher or-
der harmonics contribution to the upper and lower
branches are less than 10 % and 1 % for Ω > 5, re-
spectively. However, for Ω < 5, the higher order har-
monic contribution to the upper branch solution are
the same quantity level. So many higher order har-
monic terms should be taken into account. The cor-
responding phase are presented in Fig. 1(c) and (d).
To make illustrations clear, the asymmetric period-1
motion based on the three harmonic terms are pre-
sented in Fig. 2(a)–(g). For the asymmetric period-1
motion, a0 �= 0 and A2 �= 0. The asymmetric period-
1 motion exists in about Ω ∈ (2.24,4.14) and there
are four parts of stable motion and four parts of un-
stable motion. In Fig. 2(a) the constant term coeffi-
cient is presented, and the symmetric period-1 mo-
tion with a0 = 0 is observed. The eigenvalue anal-
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Fig. 2 The analytical prediction of asymmetric period-1 solutions based on three harmonic terms (HB3): (a) constant term a0, (b)–(d)
harmonic amplitudes Ak (k = 1,2,3); (e)–(g) harmonic phases ϕk (k = 1,3). (δ = 0.2, α = 1.0, β = 4, Q0 = 100.0)

ysis gives the saddle-node bifurcation (SN) at Ω =
2.34,3.73,4.05 and Hopf bifurcation (HB) at Ω =
2.28,2.79,2.96,3.61,3.75. The saddle-node bifur-
cations of the symmetric and asymmetric period-1
motion are not the intersected points. In Fig. 2(b),
the frequency-amplitude curve (Ω,A1) for asym-
metric period-1 motion is presented. The frequency-
amplitude curve (Ω,A2) for asymmetric period-1
motion is presented in Fig. 2(c) and the symmetric
period-1 motion with A2 = 0 is presented as well.
The frequency-amplitude curve (Ω,A3) for asym-
metric and symmetric period-1 motion is presented in
Fig. 2(d). The phase varying with excitation frequency
relative to the first, second and third harmonic terms
are presented in Fig. 2(e)–(g). For symmetric motion,
the phase is ϕ2 = 2π .

Using the three harmonic terms, the parameter map
(Ω,Q0) are presented in Fig. 3 for the period-1 mo-

tion, and the corresponding domain are labeled. In the
parameter map, the acronyms ‘U’ and ‘S’ are for un-
stable and stable period-1 motions, respectively. SmUn

means that m stable period-1 motions and n unsta-
ble period-1 motions coexist. For m = 0, Un means
that n unstable period-1 motions coexist. For n = 0,
Sm means that m stable period-1 motions coexist.
The Hopf bifurcation boundaries (HB) are given by
dashed curves. The saddle-node bifurcation bound-
aries (SN) are given by solid curves. The dash-dot
curves give the saddle switching. In Fig. 3(a), the
global view of parameter map is given and the zoomed
view of the local details is presented in Fig. 3(b)
and (c). Again the parameter map for the lower ex-
citation frequency region may not be accurate, and
a more comprehensive investigation should be com-
pleted.
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Fig. 2 (Continued)

To obtain the appropriate analytical solution for
period-1 motion, the ten harmonic terms are used to
give the period-1 motions. The symmetric and asym-
metric period-1 motions are presented in Fig. 4(i)–

Fig. 3 A parameter map from the analytical prediction of peri-
odic solutions based on three harmonic terms (HB3): (a) Global
view and (b) zoomed view. (δ = 0.2, α = 1.0, β = 4.0)

(xx). In Fig. 4(i) and (ii), global and zoomed views for
constant term coefficients varying with excitation fre-
quency are presented. The asymmetric period-1 mo-
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Fig. 4 The analytical prediction of asymmetric period-1 solutions based on ten harmonic terms (HB10): (i) and (ii) constant term a0
and zoomed view, (iii)–(xxii) harmonic amplitudes and zoomed views Ak (k = 1,2, . . . ,10). (δ = 0.2, α = 1.0, β = 4, Q0 = 100.0)

tion exists in Ω ∈ (2.306,4.354) different from Ω ∈
(2.24,4.14) given by the three harmonic terms. The
stability ranges and bifurcation points are different be-
cause the approximate, period-1 solution with three
harmonic terms cannot provide the accurate period-1

solutions for Ω < 5. For the asymmetric period-1 mo-
tion, the range of excitation frequency is in an interval
of Ω ∈ (2.0,5.0). In Fig. 4(iii) and (iv), the frequency-
amplitude curves (Ω,A1) for period-1 motions are
presented. The solutions of symmetric period-1motion
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Fig. 4 (Continued)

given by the ten harmonic terms are almost the same
as by the three harmonic terms for Ω > 5. However,
for Ω < 5, the solutions based on the three and ten
harmonic terms are different because the higher or-
der harmonic terms have significant contributions on

the solutions. In Fig. 4(v) and (vi), the frequency-
amplitude curves (Ω,A2) for asymmetric period-1
motions are presented because of A2 = 0 for this
symmetric period-1 motion. Comparing this ten har-
monic term solution with the three harmonic term so-



Analytical solutions for asymmetric periodic motions to chaos in a hardening Duffing oscillator 427

Fig. 4 (Continued)

lution, the frequency-amplitude curves for asymmetric
period-1 motion are modified with a0,A2 ∼ 100 for
Ω ∈ (1.5,5.0). In Fig. 4(vii) and (viii), the frequency-
amplitude curves (Ω,A3) for symmetric and asym-
metric period-1 motions are presented. The amplitude

A3 based on the ten and three harmonic terms are al-
most same for Ω > 5. However, for Ω < 5, the sym-
metric and asymmetric response amplitudes for sym-
metric and asymmetric period-1 motion are quite dif-
ferent because the higher order harmonic terms pos-
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Fig. 4 (Continued)

sess more effects on the period-1 motion solutions.
For asymmetric motion, A4 ∼ 10−1, and Am ∼ 101

(m = 1,2,3,5), as shown in Fig. 4(ix)–(xii). From
Fig. 4(xiii)–(xxii), we have Am ∼ 10−2 (m = 6,8,10)
and A7,9 ∼ 10−1 for Ω < 5. However, for Ω > 5, we
have A5 ≤ 0.04,A7 ≤ 0.002 and A9 ≤ 10−4. Thus, for
symmetric period-1 motion, the Fourier series solution
with three harmonic terms can give a good approxima-

Fig. 4 (Continued)

tion for Ω > 5. From the quantity level of harmonic
response amplitudes, effects of the corresponding har-
monic terms on the solutions can be observed.

Based on the Fourier solution of period-1 motion
with the ten harmonic terms, the asymmetric period-1
motion has a Hopf bifurcation. Thus a period-2 mo-
tion will be formed from such asymmetric period-1
motion. The Fourier series expression for period-2
motion needs 20 harmonic terms. Once this period-
2 motion has a Hopf bifurcation, the period-4 motion
will appear. Further, the Fourier series solution with 40
harmonic terms will be used to describe the period-4
motion. The analytical route of an asymmetric period-
1 motion to period-4 motions (m = 4) is presented in
Fig. 5(i)–(xxiv) through the constant terms (a

(m)
0 ) for

the left and right sides of the symmetric motion and
the harmonic amplitude Ak/m (k = 1,2, . . . ,12), Ak/m

(k = 16,20, . . . ,36) and Ak/m (k = 37,38,39,40).
From the asymmetric period-1 motion, at Ω ≈ 3.447,
the approximate solution for asymmetric period-2 mo-
tions is obtained. From the asymmetric period-2 mo-
tion, at Ω ≈ 3.321, the approximate solution for asym-
metric period-4 motions is obtained. From the asym-
metric period-4 motion, at Ω ≈ 3.306, the approxi-
mate solutions for asymmetric period-8 motion can be
obtained similarly. Continuously, the chaotic motions
for such hardening Duffing oscillator can be achieved.
a

(m)
0 ∼ 1 for Ω ∈ (3.0,3.5). In Fig. 5(iii), the subhar-

monic amplitude A1/4 ∼ 10−1 for period-4 motion is
presented and A1/4 = 0 for period-2 and period-1 mo-
tions. In Fig. 5(iv), the subharmonic amplitude A1/2 ∼
10−1 for period-2 and period-4 motions are presented
and A1/2 = 0 for period-1 motion. In Fig. 5(v), the



Analytical solutions for asymmetric periodic motions to chaos in a hardening Duffing oscillator 429

Fig. 5 The analytical routes of asymmetric period-1 motion to
chaos based on 40 harmonic terms (HB40): (i) and (ii) con-
stant term a

(m)
0 , (iii)–(xiv) harmonic amplitudes Ak/m (k =

1,2, . . . ,12, m = 4), (xv)–(xx) harmonic amplitudes Ak/m

(k = 16,20, . . . ,36, m = 4), (xxi)–(xxxiv) harmonic amplitudes
Ak/m (k = 37,38,39,40, m = 4). (δ = 0.2, α = 1.0, β = 4,
Q0 = 100.0)

subharmonic amplitude A3/4 ∼ 10−2 for period-4 mo-
tion is presented and A3/4 = 0 for period-2 and period-
1 motions. In Fig. 5(vi), the harmonic amplitude A1

for period-1, period-2, period-4 motions are presented
and A1 ∈ (2.8,3.13) for Ω ∈ (3.0,3.5). In Fig. 5(vii),
the subharmonic amplitude A5/4 ∼ 10−2 for period-
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Fig. 5 (Continued)

4 motion is presented and A5/4 = 0 for period-2 and
period-1 motions. In Fig. 5(viii), the subharmonic am-
plitude A3/2 ∼ 10−1 for period-2 and period-4 mo-
tions are presented and A3/2 = 0 for period-1 motion.
In Fig. 5(ix), the subharmonic amplitude A7/4 ∼ 10−1

for period-4 motion is presented and A7/4 = 0 for
period-2 and period-1 motions. In Fig. 5(x), the har-
monic amplitude A2 for period-1, period-2, period-
4 motions are presented and A2 ∈ (0.75,1.40) for
Ω ∈ (3.0,3.5). In Fig. 5(xi), the subharmonic ampli-
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Fig. 5 (Continued)

tude (A9/4 ∼ 10−1) for period-4 motion is presented

and A9/4 = 0 for period-2 and period-1 motions. In

Fig. 5(xii), the subharmonic amplitude A5/2 ∼ 100

for period-2 and period-4 motions are presented and

A5/2 = 0 for period-1 motion. In Fig. 5(xiii), the

subharmonic amplitude (A11/4 ∼ 10−2) for period-4

motion is presented and A11/4 = 0 for period-2 and

period-1 motions. In Fig. 5(xiv), the harmonic ampli-

tude A3 for period-1, period-2 and period-4 motions

are presented and A3 ∈ (0.45,1.0) for Ω ∈ (3.0,3.5).
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Fig. 5 (Continued)

Due to limitation of the number of pages, only har-
monic terms Ak/m (m = 4, k = 16,20, . . . ,36) are
presented in Fig. 5(xvi)–(xx) or period-1, period-2,
and period-4 motions. A4,5,6 ∼ 10−1 and A7,8,9 ∼
10−2. To show convergence, in Fig. 5(xxi), the sub-
harmonic amplitude (A37/4 ∼ 10−3) for period-4 mo-

tion is presented and A37/4 = 0 for period-2 and
period-1 motions. In Fig. 5(xxii), the subharmonic
amplitude A19/2 ∼ 10−3 for period-2 and period-
4 motions are presented and A19/2 = 0 for period-
1 motion. In Fig. 5(xxiii), the subharmonic ampli-
tude (A39/4 ∼ 10−3) for period-4 motion is pre-
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sented and A39/4 = 0 for period-2 and period-1 mo-
tions. In Fig. 5(xxiv), the harmonic amplitude A10 for
period-1, period-2 and period-4 motions are presented
and A10 ∈ (0.0015,0.0075) for Ω ∈ (3.0,3.5). The
harmonic phases for right and left asymmetry have a
relation like ϕL

k/m = mod(ϕR
k/m + (k/m + 1)π,2π),

which is not presented because of limitation of the
number of pages.

4 Numerical illustrations

In this section, the initial conditions for numerical sim-
ulations are computed from approximate analytical so-
lutions of periodic solutions. In all plots, circular sym-
bols gives approximate solutions, and solid curves give
numerical simulation results. The acronym “I.C.” with
a large circular symbol represents initial condition for
all plots. The numerical solutions of periodic motions
are generated via the symplectic scheme.

The displacement and trajectory in phase plane for
the approximate solutions of stable and unstable sym-
metric period-1 motion are illustrated in Fig. 6(a)–
(f). In addition, the numerical simulations are super-
imposed, and the initial conditions are obtained from
the approximate solutions of period-1 motion. The an-
alytical solution of period-1 motion is given by the
Fourier series with the ten harmonic terms (HB10).
For the upper branch of stable symmetric period-1 mo-
tion, the initial conditions are t0 = 0.0, x0 ≈ 6.296950
and y0 ≈ 11.422100 for Ω = 10 with other parame-
ters in Eq. (31). For the lower branch of stable sym-
metric period-1 motion with same parameters, the ini-
tial conditions are t0 = 0.0, x0 ≈ −1.045500, and y0 ≈
0.220845 for Ω = 10. For the middle branch of unsta-
ble symmetric period-1 motion with same parameters,
the initial conditions are t0 = 0.0, x0 ≈ −5.192940,
and y0 ≈ 6.918470 for Ω = 10.

In Fig. 6(a) and (b), the analytical and numerical
solutions overlap each other for the displacement and
trajectory of the symmetric period-1 motion. The sym-
metry of displacement is observed. For 40 periods, the
analytical and numerical trajectories of the symmetric
period-1 motion in phase plane are plotted and both
analytical and numerical results match very well. The
motion for one period is labeled. The analytical and
numerical solutions for the displacement of the sym-
metric period-1 motion on the lower branch are pre-
sented in Fig. 6(c) and (d), respectively. The analyti-
cal and numerical results are in good agreement. For

the unstable symmetric period-1 motion, the numeri-
cal and analytical displacement and trajectory are pre-
sented in Fig. 6(e) and (f), respectively. For the first
few periods, analytical and numerical unstable period-
1 motions match very well. However, after a few pe-
riods, the numerical unstable period-1 motion moves
away and arrives at a new periodic motion. Such a new
stable periodic motion is symmetric period-3 motion,
which will be discussed in sequel.

In this paper, asymmetric periodic motion is of
great interest. The displacement, velocity and trajec-
tory in phase plane will be illustrated. Taking account
of Ω = 4.1, a stable asymmetric motion and an unsta-
ble symmetric motion coexist. For the stable asymmet-
ric period-1 motion, the initial condition is t0 = 0.0,
x0 ≈ 2.735740, and y0 ≈ −19.407900. For the unsta-
ble symmetric period-1 motion, the initial condition is
t0 = 0.0, x0 ≈ 4.137450, and y0 ≈ 1.295130. Numeri-
cal and analytical solutions match very well. After 40
excitation periods, the numerical and analytical solu-
tions of the stable asymmetric period-1 motion per-
fectly match as shown in Fig. 7. Compared to the un-
stable symmetric period-1 motion in Fig. 6(e) and (f),
this unstable symmetric period-1 motion possesses a
different trajectory shape and its numerical solutions
moves away to a stable asymmetric period-1 motion.

In Fig. 8, the unstable asymmetric period-1 mo-
tions and the stable asymmetric period-2 motions
are presented for Ω = 3.4. The initial conditions are
t0 = 0.0, x0 ≈ 2.936730, and y0 ≈ −1.173750 (un-
stable period-1 motion) and t0 = 0.0, x0 ≈ 3.358240,
and y0 ≈ −1.225180 (stable period-2 motion). In
Fig. 8(a)–(c), displacement, velocity and trajectory
for the unstable asymmetric period-1 motions are
presented. The unstable asymmetric period-1 motion
moves to the stable asymmetric period-2 motion. The
analytical solution of the unstable period-1 motion
is given by the Fourier series solution with 10 har-
monic terms. For the stable asymmetric period-2 mo-
tion, the corresponding analytical solution is given by
the Fourier series solution with 20 harmonic terms,
and the analytical and numerical solutions of dis-
placement, velocity and trajectories are presented in
Fig. 8(d)–(f), respectively. For the further demonstra-
tion of the analytical tree of periodic motions from
asymmetric period-1 motion, consider an excitation
frequency of Ω = 3.32 for which the unstable period-
1, unstable period-2 and stable period-4 motions co-
exist on the analytical bifurcation tree from the asym-
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Fig. 6 A stable, symmetric period-1 motions (HB10) (upper
branch): (a) displacement and (b) phase plane (x0 ≈ 6.296950,
y0 ≈ 11.422100). A stable, symmetric period-1 motion (HB10)
(lower branch): (c) displacement and (d) phase plane (x0 ≈

−1.045500, y0 ≈ 0.220845). An unstable, symmetric period-1
motion (HB10) (middle branch): (e) displacement and (f) phase
plane (x0 ≈ −5.192940, y0 ≈ 6.918470). (Ω = 10, δ = 0.2,
α = 1.0, β = 4, Q0 = 100.0)

metric period-1 motion. The displacements and tra-

jectories for three periodic motions are presented in

Fig. 9(a)–(f). The analytical solutions for period-1,

period-2 and period-4 motions are expressed by the
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Fig. 7 A stable, asymmetric period-1 motions (HB10): (a) dis-
placement, (b) velocity and (c) phase plane (x0 ≈ 2.735740,
y0 ≈ −19.407900). An unstable, asymmetric period-1 motion

(HB10): (d) displacement, (e) velocity and (f) phase plane (x0 ≈
4.960370, y0 ≈ 3.734470). (Ω = 4.1, δ = 0.2, α = 1.0, β = 4,
Q0 = 100.0)

Fourier series with 10, 20 and 40 harmonic terms. The
numerical solutions for the unstable period-1 and un-
stable period-2 motions go away from the correspond-

ing analytical solutions to the stable period-4 motion.
However, the analytical and numerical solutions for
period-4 motions match very well.
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Fig. 8 An unstable, asymmetric period-1 motions (HB10):
(a) displacement, (b) velocity, and (c) phase plane (x0 ≈
2.936730, y0 ≈ −1.173750). A stable asymmetric period-2 mo-

tion (HB20): (d) displacement, (e) velocity, and (f) phase plane
(x0 ≈ 3.358240, y0 ≈ −1.225180). (Ω = 3.4, δ = 0.2, α = 1.0,
β = 4, Q0 = 100.0)
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Fig. 9 An unstable, asymmetric period-1 motions (HB10):
(a) displacement and (b) phase plane (x0 ≈ 3.034700, y0 ≈
−1.134240). An unstable asymmetric period-2 motion (HB20):
(c) displacement and (d) phase plane (x0 ≈ 3.629530, y0 ≈

−0.926901). A stable period-4 motion (HB40): (e) displace-
ment and (f) phase plane (x0 ≈ 3.654920, y0 ≈ −0.869122).
(Ω = 3.32, δ = 0.2, α = 1.0, β = 4, Q0 = 100.0)
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5 Conclusions

In this paper, the analytical solutions of periodic mo-
tions in the periodically forced, hardening Duffing os-
cillator are obtained. The asymmetric periodic mo-
tions for the hardening Duffing oscillators were ob-
tained in order to find chaos in the hardening Duffing
oscillator analytically. The bifurcation tree from asym-
metric period-1 motions to chaos was presented, and
the stable and unstable periodic motions in the harden-
ing Duffing oscillator were presented. The analytical
and numerical solutions for stable and unstable peri-
odic motions were illustrated. The results presented in
this paper can help one comprehensively understand
chaos mechanism in the hardening Duffing oscillator.
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