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Abstract In this paper, we propose an image encryp-
tion algorithm that is based on GF(28) transforma-
tions, using the Arnold cat map and incorporating the
nonlinear chaotic algorithm. The plain image is pro-
cessed with the nonlinear chaotic algorithm and is
shuffled iteratively with the Arnold cat map, while
transforming the image pixel values into GF(28). We
show that the encryption characteristics of this ap-
proach are better as compared to some well known en-
cryption algorithms.
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1 Introduction

In this fast growing telecommunication field, huge vol-
umes of data are transmitted on unsecure transmission
lines, and it is imperative to ensure security of indi-
vidual users who utilize these communication facili-
ties. In order to mitigate the cryptanalysts deciphering
methods, robust and efficient cryptographic algorithms
are required. The chaotic systems, with their attractive
properties such as unpredictability, randomness, and
control by virtue of initial conditions, are becoming
popular in encryption applications [1, 2]. Several ap-
proaches are seen in the literature that applies to con-
cepts from the chaotic systems. In [3], a hyperchaotic
encryption scheme is presented. This scheme shuffles
the image matrix and creates confusion by applica-
tion of hyperchaotic systems. The use of the chaotic
Kolmogorov is also demonstrated in the application to
the encryption of data [4]. While the use of chaotic
approach in two- dimensional system provides some
interesting results, the application of 3D chaotic cat
maps assisted in establishing more secure systems [5].
The cat map based algorithms provide the shuffling
capability and exhibit inherent property of repeating
within a definite time period. The Arnold cat map [5,
6] exhibits this property, therefore, in this work, we
employ an encryption system that overcomes the is-
sues of small time period, which is inherent in this
system. A detailed study of nonlinear components of
block ciphers is presented in [10–27].
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Table 1 Cameraman’s iterated period

f

1 2 3 4 5 6 7 8 9 10

e 1 192 128 192 256 96 64 96 256 192 128

2 128 128 64 128 128 128 32 128 128 128

3 192 64 192 256 48 48 96 056 192 16

4 256 128 256 64 256 256 256 64 256 128

5 96 128 48 256 192 192 192 256 48 128

6 64 128 128 128 16 16 128 128 64 128

7 96 32 96 256 192 192 192 256 12 64

8 256 128 256 64 256 256 256 32 256 128

9 192 128 192 256 48 64 12 256 192 128

10 128 128 16 128 128 128 64 128 128 128

2 The proposed encryption algorithm

The proposed image encryption algorithm is a two-
step process. In the first step, the objective is to shuffle
the pixel locations in the original image. The second
step employs the nonlinear chaotic algorithm (NCA)
chaotic map to encrypt the image.

2.1 Arnold cat map

The Arnold cat map is classified as a two-dimensional
invertible chaotic map [5, 6]. The discrete form of this
two-dimensional map with dimensions of M × M is
defined as[
xn+1

yn+1

]
=

[
a b

c d

][
xn

yn

]
mod M. (1)

In Eq. (1), the original location of the pixel (xn, yn)

is transformed to new coordinates, (xn+1, yn+1). The
positive integers a, b, c, and d are used in this trans-
formation, with the condition that ad − bc = 1. All
the quantities in Eq. (1) are integers and are bounded
by the dimension “M” where M can take values
{0,1,2, . . . ,M − 1} and the values of a, b, c, and d

are chosen in such a way that ab − cd is always equal
to 1. Equation (1) can be modified as[
xn+1

yn+1

]
=

[
1 e

f ef + 1

][
xn

yn

]
mod M. (2)

The value of the secret key can be mapped as suitable
parameters in Eq. (2). For example, the parameters e

and f in combination with number of iterations N ,
can be extracted from the key, and incorporated in the

Arnold cat map. With the progression of iterations, the
pixels are randomized, and ultimately a stage arrives,
which restores the original locations of the pixels. In
other words, if the period is represented by T , the orig-
inal image is reconstructed after T number of itera-
tions. The choice of N is critical with reference to the
inherent period T that depends upon other initial con-
ditions. In image encryption applications, it is desired
to have a large value of Cameraman’s periods, given
as T . Table 1 lists the Cameraman’s period for Arnold
cat map with parameters f and e from Eq. (2). It is ad-
visable to choose the number of iterations by keeping
in view the period and its implications.

2.2 NCA map

The nonlinear chaotic algorithm map evolved in
an effort to address the security concerns of one-
dimensional logistic chaotic maps. This NCA map re-
lies on nonlinear functions, time and space parame-
ters, and continuous change in the encryption key [7].
In this work, the power function (1 − x)β is applied to
NCA maps. In addition, the tangent function is used in
place of linear functions, originally proposed for the
one-dimensional chaotic maps, therefore, the NCA is
defined as

XN+1 = λ tg(αXN)(1 − XN)β

where

XN ∈ (0,1), n = 0,1,2, . . . .

The values of the parameters λ, α and β are critical,
therefore, it is important to list some important prop-
erties pertaining to their selection. These parameters
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take positive values with the slope not less than 1 and
xN+1 > xN when XN = 1/(1 + β). The parameter λ

can be defined as

λ = μ ctg

(
α

1 + β

)(
1 + 1

β

)β

,

and

μ > 0.

The final version of the NCA map after the incorpora-
tion of μ = 1 − β−4, which is obtained from experi-
mental analysis, is given as

XN+1 = (
1 − β−4) ctg

(
α

1 + β

)(
1 + 1

β

)β

tg(αXN)

× (1 − XN)β

where xn ∈ (0,1), α ∈ (0,1.4], β ∈ [5,43], or xn ∈
(0,1), α ∈ (1.4,1.5], β ∈ [9,38], or similarly these
variable are also defined as xn ∈ (0,1), α ∈ (1.5,1.57],
β ∈ [3,15]. The range of α and β are determined by
iterative experimental analysis.

2.3 Galois field exponent transformation

A primitive irreducible polynomial, x8 + x4 + x3 +
x2 + 1 is selected from Table 2 and its elements from
Galois field GF(28) in binary and exponent form are
listed in Table 3. Multiple irreducible polynomials are
available to generate the elements of GF(28). These
polynomials are listed in Table 2.

2.4 The proposed image encryption system

In order to distort the image, the pixels are shuffled so
that it becomes difficult to reconstruct or identify the
original image after certain number of iterations. The
Galois field GF(28) transformation is applied to image
data so that the picture appears distorted. It is difficult
to figure out the period of the Arnold cat map of a dis-
torted image. The design of the key accommodates the
information about the block size and seed of NCA for
various parameters. The three subsystems of the pro-
posed encryption system utilize the NCA map, Arnold
cat map, and GF(28) exponent substitution. The NCA
map incorporates the shuffle capability in subblocks
of equal sizes. The subblocks can be of sizes 128, 64,
32, 16, 8, 4, and 2 pixels. The smaller subsizes incur
more processing overhead and as a result, increase the
complexity of the proposed algorithm. For example,

Table 2 Primitive irreducible polynomial of degree 8

Sr # Primitive Irreducible Polynomial

1 x8 + x4 + x3 + x2 + 1

2 x8 + x5 + x3 + x1 + 1

3 x8 + x5 + x3 + x2 + 1

4 x8 + x6 + x3 + x2 + 1

5 x8 + x6 + x4 + x3 + x2 + x + 1

6 x8 + x6 + x5 + x + 1

7 x8 + x6 + x5 + x2 + 1

8 x8 + x6 + x5 + x3 + 1

9 x8 + x6 + x5 + x4 + 1

10 x8 + x7 + x3 + x2 + 1

11 x8 + x7 + x5 + x3 + 1

12 x8 + x7 + x6 + x + 1

13 x8 + x7 + x6 + x3 + x2 + x + 1

14 x8 + x7 + x6 + x5 + x2 + x + 1

15 x8 + x7 + x6 + x5 + x4 + x2 + 1

for an image of dimensions 256 × 256 and subblock
size of 16 × 16, the original image is split in to 256
(16 × 16) nonoverlapping linearly organized blocks.
The subblocks are numbered from 1 to 256, so that in
the next step of the algorithm, a sequence Si of NCA
maps is generated. These maps are scaled by a factor
of 1000 and the resulting values are quantized in the
integer interval of [1,256]. The exponent values are
substituted to distort the image and to enhance the con-
fusion capability of the proposed algorithm (see Ta-
ble 3). This process is similar to the substitution and
introduces nonlinearity in the original data.

2.5 Security analysis

In this work, we test the resistance of the proposed en-
cryption method against statistical attacks. We present
the results of correlation analysis, number of pixel
change rate (NPCR) analysis, and unified averaged
changed intensity (UACI) analysis. These analyses
provide an insight into encryption capability of the
proposed algorithm.

3 Correlation

In a plain image, the adjacent pixels show a high
level of correlations. The encryption process organizes
and substitutes data in order to increase randomness.
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Table 3 The element of Galois field GF(28) in binary and exponent form with respect to primitive irreducible polynomial x8 + x4 +
x3 + x2 + 1

Binary
values

GF(28) Binary
values

GF(28) Binary
values

GF(28) Binary
values

GF(28) Binary
values

GF(28)

00000000 0 11100100 w33 01110010 w34 10101110 w21 00111001 w35

10000000 1 00010100 w53 11110010 w136 01101110 w121 10111001 w32

01000000 w 10010100 w147 00001010 w54 11101110 w43 01111001 w137

11000000 w25 01010100 w142 10001010 w208 00011110 w78 11111001 w46

00100000 w2 11010100 w218 01001010 w148 10011110 w212 00000101 w55

10100000 w50 00110100 w240 11001010 w206 01011110 w229 10000101 w63

01100000 w26 10110100 w18 00101010 w143 11011110 w172 01000101 w209

11100000 w198 01110100 w130 10101010 w150 00111110 w115 11000101 w91

00010000 w3 11110100 w69 01101010 w219 10111110 w243 00100101 w149

10010000 w223 00001100 w29 11101010 w189 01111110 w167 10100101 w188

01010000 w51 10001100 w181 00011010 w241 11111110 w87 01100101 w207

11010000 w238 01001100 w194 10011010 w210 00000001 w7 11100101 w205

00110000 w27 11001100 w125 01011010 w19 10000001 w112 00010101 w144

10110000 w104 00101100 w106 11011010 w92 01000001 w192 10010101 w135

01110000 w199 10101100 w39 00111010 w131 11000001 w247 01010101 w151

11110000 w75 01101100 w249 10111010 w56 00100001 w140 11010101 w178

00001000 w4 11101100 w185 01111010 w70 10100001 w128 00110101 w220

10001000 w100 00011100 w201 11111010 w64 01100001 w99 10110101 w252

01001000 w224 10011100 w154 00000110 w30 11100001 w13 01110101 w190

11001000 w14 01011100 w9 10000110 w66 00010001 w103 11110101 w97

00101000 w52 11011100 w120 01000110 w182 10010001 w74 00001101 w242

10101000 w141 00111100 w77 11000110 w163 01010001 w222 10001101 w86

01101000 w239 10 111100 w228 00100110 w195 11010001 w237 01001101 w211

11101000 w129 01111100 w114 10100110 w72 00110001 w49 11001101 w171

00011000 w28 11111100 w166 01100110 w126 10110001 w197 00101101 w20

10011000 w193 00000010 w6 11100110 w110 01110001 w254 10101101 w42

01011000 w105 10000010 w191 00010110 w107 11110001 w24 01101101 w93

11011000 w248 01000010 w139 10010110 w58 00001001 w227 11101101 w158

00111000 w200 11000010 w98 01010110 w40 10001001 w165 00011101 w132

10111000 w8 00100010 w102 11010110 w84 01001001 w153 10011101 w60

01111000 w76 10100010 w221 00110110 w250 11001001 w119 01011101 w57

11110000 w113 01100010 w48 10110110 w133 00101001 w38 11011101 w83

00000100 w5 11100010 w253 01110110 w186 10101001 w184 00111101 w71

10000100 w138 00010010 w226 11110110 w61 01101001 w180 10111101 w109

01000100 w101 10010010 w152 00001110 w202 11101001 w124 01111101 w65

11000100 w47 01010010 w37 10001110 w94 00011001 w17 11111101 w162

00100100 w225 11010010 w179 01001110 w155 10011001 w68 00000011 w31

10100100 w36 00110010 w16 11001110 w159 01011001 w146 10000011 w45

01100100 w15 10110010 w145 00101110 w10 11011001 w217 01000011 w67

11000011 w216 01010011 w73 00011011 w251 10000111 w89 01110111 w44

00100011 w183 11010011 w236 10011011 w96 01000111 w95 11110111 w215

10100011 w123 00110011 w126 01011011 w134 11000111 w176 00001111 w79
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Table 3 (Continued)

Binary
values

GF(28) Binary
values

GF(28) Binary
values

GF(28) Binary
values

GF(28) Binary
values

GF(28)

01100011 w164 10110011 w12 11011011 w177 00100111 w156 10001111 w174

11100011 w118 01110011 w111 00111011 w187 10100111 w169 01001111 w213

00010011 w196 11110011 w246 10111011 w204 01100111 w160 11001111 w233

10010011 w23 00001011 w108 01111011 w62 11100111 w81 00101111 w231

10101011 w157 10001011 w161 11111011 w90 00010111 w11 10101111 w230

11101011 w170 11001011 w82 00101011 w41 01010111 w22 11101111 w232

00111111 w168 01111111 w88 01011111 w244 11010111 w235 00011111 w116

10111111 w80 11111111 w175 11011111 w234 00110111 w122 10011111 w214

Fig. 1 (a) Colored
plain-image.
(b) Cipher-image

With the data transformed into highly random format,
the correlation of adjacent pixels decreases drastically.
Therefore, a measure of correlation among pixels is a
good indication in determining the resistance to sta-
tistical attacks [8]. The correlation coefficient for each
pair of pixels is determined as

RAB = cov(A,B)√
D(A)

√
D(B)

where

D(A) = 1

N

N∑
i=1

(
Ai − E(A)

)2

and

cov(A,B) = 1

N

N∑
i=1

(
Ai − E(A)

)(
Bi − E(B)

)

the quantity E(A) is determined as

E(A) = 1

N

N∑
i=1

Ai.

Table 4 Correlation coefficients of Red, Green, Blue compo-
nents of plain image and ciphered image

Correlation Red
component

Green
component

Blue
component

Plain image 0.817970 0.816331 0.729072

Ciphered image −0.040889 −0.048110 −0.007104

The gray scale values of two adjacent pixels are rep-
resented by A and B . The image used in this work is
shown in Fig. 1 and 3,000 pairs of adjacent pixel sam-
ples are randomly selected. Figures 1(a) and 1(b) show
the original image and its encrypted version, respec-
tively. It is evident from Table 4 that the correlation co-
efficient of the red, green, and blue component is dras-
tically reduced after applying the proposed encryption
algorithm; hence, the zero correlation property is ap-
proximately satisfied. In addition, the proposed algo-
rithm reduces the correlation between red, green, and
blue components.
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Table 5 Same position correlations between Red, Green, Blue components

Correlation Same position
between red, green
components

Same position
between red, blue
components

Same position
between green, blue
components

Plain image 0.735625 0.569469 0.713084

Ciphered image −0.003803 −0.050968 0.021267

Table 6 Adjacent position correlations between Red, Green, Blue components

Correlation Adjacent position
between red, green
components

Adjacent position
between red, blue
components

Adjacent position
between green, blue
components

Plain image 0.724585 0.560971 0.710684

Ciphered image −0.021694 −0.00775 −0.045334

Table 7 Comparison of correlations between Red, Green, Blue components

Correlation Adjacent position
between red, green
components

Adjacent position
between red, blue
components

Adjacent position
between green, blue
components

Proposed scheme −0.021694 −0.00775 −0.076334

Rhouma’s 0.248026 0.139054 0.171310

Sahar’s 0.305352 0.204247 0.252515

Liu’s 0.231220 0.125403 0.161153

In order to further enhance the correlation analy-
sis, we test the same position correlation and relative
adjacent position correlation, and apply it to all three
layers of color.

The results of same position correlation analysis for
red, green, and blue colors are shown in Table 5. This
table shows that the correlation coefficient for the ci-
pher image is very close to zero. In Table 6, the corre-
lation analysis is performed for adjacent position anal-
ysis for all layers of colors. Once again, the results
show that the encryption process substantially reduces
the correlation coefficients.

A comparison of correlation coefficient among
Rhouma’s, Sahar’s, and Liu’s methods is presented
in Table 7. The values of the results of the correla-
tion analysis for the proposed algorithm depict better
performance for all the three colors.

3.1 NPCR and UACI analysis

The number of pixel change rate analysis tests the be-
havior of all the pixels in an image in response to a

change in one pixel in the original image. A value
closer to 1 shows high sensitivity of the encryption
system in a reaction to a single change in the input.
The mathematical representation is presented as fol-
lows:

NPCR =
∑

l,m,n D(l,m,n)

P × Q × 3
.

In another test called UACI, the average intensity of
difference between original image and encrypted im-
age is evaluated. The higher values of UACI show
more effectiveness of the encryption algorithm and re-
sistance to differential attacks. The expression for this
test is given as

UACI = 1

P × Q × 3

×
( ∑

l,m,n

|C1(l,m,n) − C2(l,m,n)|
255

)
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Table 8 NPCR and UACI of ciphered image with one bit different between the plain images

Image name Analysis item Layer Image size 512 × 512

Proposed Ref. [8] Ref. [9]

White flowers NPCR Red 0.8758463 0.8360365 0.0003814

Green 0.8758011 0.8359035 0.0003814

Blue 0.8758070 0.8359488 0.0003814

UACI Red 0.3551028 0.3339424 0.0000580

Green 0.3543820 0.3349684 0.0000534

Blue 0.3542398 0.3338638 0.0000291

where C1 and C2 are cipher images resulting from two
images that differ only by one byte. The D(l,m,n) is
of size M ∗ N ∗ 3 and is defined as

D(l,m,n) =
{

1, if C1(l,m,n) = C2(l,m,n)

0, otherwise.

The results of NPCR and UACI analyses are shown
in Table 8. The proposed encryption algorithm shows
relatively lower values of NPCR, while the UACI anal-
ysis yields comparable results to the benchmark algo-
rithm. The performance of the proposed algorithms is
better than the method presented in [8, 9].

4 Conclusion

In this work, a novel encryption method based on Ga-
lois field GF(28) transformation, Arnold cat map and
NCA chaotic system is proposed. The behavior of this
method is similar to the substitution box like encryp-
tion algorithms. The proposed algorithm is tested for
its encryption strength by the use of statistical anal-
ysis. The results show that the performance of the
proposed algorithms is comparable to other prevailing
methods.
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