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Abstract Based on the theory of stabilization of
fractional-order LTI interval systems, a simple con-
troller for stabilization of a class of fractional-order
chaotic systems is proposed in this paper. We consider
the structure of the chaotic systems as fractional-order
LTI interval systems due to the limited amplitude of
chaotic trajectories. We introduce a simple feedback
controller for the interval system and then, based on
a recently established theorem for stabilization of in-
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terval systems, we reach to a linear matrix inequality
(LMI) problem. Solving the LMI yields an appropri-
ate decoupling feedback control law which suffices
to bring the chaotic trajectories to the origin. Several
illustrative examples are given which show the effec-
tiveness of the method.

Keywords Chaos control · Fractional-order systems ·
Interval system · Linear matrix inequality (LMI)

1 Introduction

Fractional calculus has been attracting the attention of
scientists and engineers from 300 years ago. Since the
nineties of the last century, fractional calculus has been
rediscovered and applied in an increasing number of
fields, namely in several areas of physics, control engi-
neering, signal processing, and system modelling [1].

Since Hartley et al. have shown that there are
chaotic solutions in fractional-order systems [2], there
has been a surge of interest in control and synchroniza-
tion of fractional-order chaotic systems. For example,
control and synchronization of fractional-order Modi-
fied Van der Pol-Duffing systems is presented by Ma-
touk in [3] using the active control method. Synchro-
nization of different fractional-order chaotic systems
via active control is studied in [4]. Synchronization of
fractional-order Genesio–Tesi systems via active con-
trol and sliding mode control is reported by Faieghi
and Delavari in [5]. Control of fractional Liu systems
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via the fuzzy fractional-order sliding mode is stud-
ied in [6]. In [7], synchronization of fractional chaotic
systems with non-identical fractional orders is investi-
gated. The authors used a compensation controller to
make error dynamics dependent on the order of the re-
sponse system and then derive an active control law to
realize synchronization. Design of a sliding mode con-
troller for a class of fractional-order chaotic systems is
presented in [8], and in [9] an adaptive fuzzy approach
is proposed for H∞ synchronization of uncertain frac-
tional chaotic systems.

Most of the control methods proposed in the lit-
erature tackling with suppression and synchroniza-
tion of fractional-order chaotic systems are nonlinear.
For example, the active control law contains nonlin-
ear terms used to cancel nonlinearities in the control
systems. The sliding mode control method results a
nonlinear control law integrated with a switching con-
trol law. The fuzzy-based methods are obviously non-
linear. Nonlinear controllers have complicated struc-
ture. Despite their high performance, from practical
point of view, usually, implementation of nonlinear
controllers is not suitable due to the complicated struc-
ture. Thus, it is desired to make the controllers sim-
pler while maintaining their consistent performance.
Linear controllers have much simpler structure than
nonlinear controllers. Moreover, since chaotic sys-
tems are highly nonlinear and the stability theory of
fractional-order nonlinear systems is still considered
as an open problem, the stability problem of closed-
loop fractional chaotic systems in the presence of a
linear controller is a challenging problem. Note that
most of existing methods rely on transforming the
chaotic systems to linear ones by utilizing some form
of nonlinear controllers. After that, a stability theory
of fractional-order linear systems is applied; see, for
example, [3, 4, 7].

In this paper, we employ a simple feedback con-
troller to control of fractional chaotic systems. The
control law is multivariable, but it is set to be linear
and decoupling, which ease the implementation. Here,
a decoupling control law means that each control in-
put depends on only a single state. We consider a class
of fractional chaotic systems and introduce a feedback
controller. Since the chaotic systems are dissipative,
it can be concluded that all the chaotic trajectories are
bounded. Having this in mind, we treat with fractional-
order chaotic systems as fractional-order LTI interval
systems which their interval uncertainty can be deter-
mined readily by the bounds of chaotic states. Based

on the theory of stabilization of interval LTI systems
[10], the control problem is summarized to solving a
LMI. Existence of a feasible solution for the LMI re-
sults in asymptotic stability of fractional-order LTI in-
terval systems, which implies that the chaotic trajecto-
ries will be brought to the origin eventually. Moreover,
the solution of LMI will give us appropriate values for
the feedback gains. The idea is originally brought from
[11] and in this present paper we extend the results to
a class of chaotic systems, which several chaotic sys-
tems belongs to this class. The prominent feature of
this controller is its simplicity and guarantee of closed-
loop stability.

This paper is organized as follows: Mathematical
preliminaries are presented in Sect. 2. Main results are
included in Sect. 3. Numerical simulations are pre-
sented in Sect. 4, and concluding remarks are given
in Sect. 5.

2 Mathematical preliminaries

2.1 Basic definitions

A fractional-order differentiator can be denoted by a
general fundamental operator as a generalization of
differential and integral operators. It is defined as fol-
lows:

aD
q
t =

⎧
⎨

⎩

dq

dtq
, q > 0

1, q = 0
∫ t

a
(dτ )−q, q < 0

(1)

where q is the fractional order, the constants a and t

are the bounds of the operation. The three common
definitions used for the general fractional differinte-
gral are the Grünwald–Letnikov (GL) definition, the
Riemann–Liouville (RL), and the Caputo definition.
Let q be a rational number and n be the first integer
which is not less than q , i.e. n − 1 < q < n.

Definition 1 The GL definition of q-th order of frac-
tional derivative is given by

aD
q
t f (t) = lim

N→∞

[
t − a

N

]−q

×
N−1∑

j=0

(−1)j
(

q

j

)

f

(

t − j

[
t − a

N

])

(2)
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Definition 2 The RL definition q-th order of frac-
tional derivative is given by

aD
q
t f (t) = 1

�(n − q)

dn

dtn

∫ t

0
(t − τ)n−q−1f (τ) dτ

(3)

where n is the first integer which is not less than q , i.e.
n − 1 < q < n and � is a Gamma function.

Definition 3 The Caputo definition q-th order of frac-
tional derivative is given by

aD
q
t f (t) = 1

�(n − q)

∫ t

a

(t − τ)n−q−1f (n)(τ ) dτ (4)

An in-depth discussion can be found in [1].

2.2 Fractional-order LTI interval system

A fractional-order LTI interval system is described as
[10]

Dqx = Ăx + B̆u (5)

where the system matrices Ă and B̆ are interval uncer-
tain satisfying

Ă ∈ [
Al,Au

] = {[aij ] : al
ij ≤ aij ≤ au

ij ,1 ≤ i, j ≤ n
}

(6)

B̆ ∈ [
Bl,Bu

] = {[bij ] : bl
ij ≤ bij ≤ bu

ij ,1 ≤ i, j ≤ n
}

(7)

The following notations are used in the following the-
orem:

A0 = 1

2

(
Au + Al

)
(8)

�A = 1

2

(
Au − Al

) = [γij ] (9)

B0 = 1

2

(
Bu + Bl

)
(10)

�B = 1

2

(
Bu − Bl

) = [βij ]T (11)

DA = [√
γ11e

n
1 . . .

√
γ1ne

n
1 . . .

√
γn1e

n
n . . .

√
γnne

n
n

]

(12)

EA = [√
γ11e

n
1 . . .

√
γ1ne

n
1 . . .

√
γn1e

n
n . . .

√
γnne

n
n

]T

(13)

DB = [√
β11e

n
1 . . .

√
β1ne

n
1 . . .

√
βn1e

n
n . . .

√
βnne

n
n

]

(14)

EB = [√
β11e

n
1 . . .

√
β1ne

n
1 . . .

√
βn1e

n
n . . .

√
βnne

n
n

]T

(15)

where e
p
i is the p-column vector with the ith element

being 1 and all the other being 0.

Theorem 1 [10] The interval system (5) with input
u = Kx and 0 < q < 1 is asymptotically stablizable if
there are a m×n real matrix X, a symmetric positive-
definite real matrix Q, and four real positive scalars
α1, α2, β1, and β2 such that

[
�11 �12

�12 �22

]

< 0 (16)

where

�11 =
2∑

i=1

Sym
{
Θi1 ⊗ (A0Q + B0X)

}

+
2∑

i=1

αi

{
I2 ⊗ (

DADT
A

)}

+
2∑

i=1

βi

{
I2 ⊗ (

DBDT
B

)}
(17)

�12 = [
I2 ⊗ (EAQ)T I2 ⊗ (EAQ)T

I2 ⊗ (EBX)T I2 ⊗ (EBX)T
]

(18)

�22 = −diag(α1, α2, β1, β2) ⊗ I2n (19)

Θ11 =
[

sin(θ) − cos(θ)

cos(θ) sin(θ)

]

(20)

Θ12 =
[

cos(θ) sin(θ)

− sin(θ) cos(θ)

]

(21)

Θ21 =
[

sin(θ) cos(θ)

− cos(θ) sin(θ)

]

(22)

Θ22 =
[− cos(θ) sin(θ)

− sin(θ) − cos(θ)

]

(23)
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θ = q
π

2
(24)

Sym{Z} = ZT + Z (25)

and ⊗ denotes the Kronecker product. Moreover, a sta-
bilization feedback gain matrix is given by

K = XQ−1 (26)

Note that the condition (16) given in the theorem
is a LMI in X,Q,α1, α2, β1, β2, and it can be eas-
ily solved by various LMI solvers such as MATLAB’s
Robust Control Toolbox.

2.3 Numerical methods for fractional-order
differential equations

Since most of the fractional-order differential equa-
tions do not have exact analytic solutions, approxima-
tion and numerical techniques must be used. Several
analytical and numerical methods have been proposed
to solve the fractional-order differential equations. In
[12], it is declared that frequency domain methods
are not suitable for chaos recognizing. Hence, in the
simulations of this paper, we employ an Adams-type
predictor-corrector method proposed in [13–15]. To
give the approximate solution of nonlinear fractional-
order differential equations by means of this algo-
rithm, consider the following differential equation:

Dqy(t) = r
(
t, y(t)

)
, 0 ≤ t ≤ T and

(27)

y(k)(0) = y
(k)
0 , k = 0,1, . . . ,m − 1

This differential equation is equivalent to the Volterra
integral equation

y(t) =
�q	−1∑

k=0

y
(k)
0

tk

k! + 1

�(q)

∫ t

0
(t − s)q−1r

(
s, y(s)

)
ds

(28)

Now, set h = T/N, tn = nh(n = 0,1,2, . . . ,N). Then
(28) can be discretized as follows:

yh(tn+1) =
�q	−1∑

k=0

y
(k)
0

tkn+1

k! + hq

�(q + 2)
r
(
tn+1, y

p
h (tn+1)

)

+ hq

�(q + 2)

n∑

j=0

aj,n+1r
(
tj , yh(tj )

)
(29)

where the predicted value yh(tn+1) is determined by

y
p
h (tn+1) =

�q	−1∑

k=0

y
(k)
0

tkn+1

k!

+ 1

�(q)

n∑

j=0

bj,n+1r
(
tj , yh(tj )

)
(30)

in which

aj,n+1 =

⎧
⎪⎪⎨

⎪⎪⎩

nq+1 − (n − q)(n + 1)q, j = 0
(n − j + 2)q+1 + (n − j)q+1

− 2(n − j + 1)q+1, 1 ≤ j ≤ n

1, j = n + 1

and

bj,n+1 = hq

q

(
(n + 1 − j)q − (n − j)q

)
.

In the simulations of this paper, we set the step size
h = 0.001.

3 Main results

Consider the following class of fractional-order differ-
ential equations:

Dqx = y · f (x, y, z) + z · Φ(x,y, z) − αx

Dqy = x · g(x, y, z) − βy (31)

Dqz = y · h(x, y, z) − x · Φ(x,y, z) − γ z

where f (.), g(.), h(.) , and Φ(.) are smooth nonlinear
functions. Many fractional-order chaotic systems be-
long to this class (see Table 1). In order to suppress
the chaos governed by (31), let us introduce a multi-
variable control strategy with three control inputs as
follows:

Dqx = y · f (x, y, z) + z · Φ(x,y, z) − αx + u1(t)

Dqy = x · g(x, y, z) − βy + u2(t) (32a)

Dqz = y · h(x, y, z) − x · Φ(x,y, z) − γ z + u3(t)

or
⎡

⎣
Dqx

Dqy

Dqz

⎤

⎦ =
⎡

⎣
−α f (x, y, z) Φ(x, y, z)

g(x, y, z) −β 0
Φ(x,y, z) h(x, y, z) −γ

⎤

⎦
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Table 1 Some of the chaotic systems which belongs to the proposed class

No. Name Model f (x, y, z) g(x, y, z) h(x, y, z) Φ(x, y, z)

1 Lorenz Dqx = a(y − x) a b − z x 0

Dqy = x(b − z) − y

Dqz = xy − cz

2 Chen Dqx = a(y − x) a d − z x 0

Dqy = dx − xz + cy

Dqz = xy − bz

3 Lü Dqx = a(y − x) a −z x 0

Dqy = −kxz + by

Dqz = mxy − cz

4 Liu Dqx = −ey2 − ax −ey −kz mx 0

Dqy = −kxz + by

Dqz = mxy − cz

5 Lu–Chen Dqx = −xy + cx −x a x 0

Dqy = a(x − y)

Dqz = xy − bz

6 Newton–Leipnik Dqx = −ax + y + 10yz 1 + 10z −1 + 5z −5x 0

Dqy = −x − 0.4y + 5xz

Dqz = bz − 5xy

7 Rossler* Dqx = −y − z −1 1 a − y −1

Dqy = x

Dqz = ay − y2 + cz

*We have replaced x by z in the original Rossler system to adopt the system with Eq. (31)

×
⎡

⎣
x

y

z

⎤

⎦ +
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦

⎡

⎣
u1

u2

u3

⎤

⎦ (32b)

We want to determine a simple linear control law
to suppress the chaos. Here, we propose a decoupling
control structure as follows:

u1 = k1x, u2 = k2y, u3 = k3z (33)

This simple and decoupling structure ease in imple-
mentation. It is worth to notice that the chaotic sys-
tems are dissipative. This means that all the system or-
bits will ultimately be confined to a specific subset of
zero volume and the asymptotic motion settles onto an
attractor. As a result, all the states have bounded am-

plitude. This implies that, in a particular time t there
are some positive constants ci, i = 1, . . . ,4 such that
the following boundness conditions hold:

∣
∣f (x, y, z)

∣
∣ ≤ c1,

∣
∣g(x, y, z)

∣
∣ ≤ c2,

(34)∣
∣h(x, y, z)

∣
∣ ≤ c3,

∣
∣Φ(x,y, z)

∣
∣ ≤ c4

Therefore, the system (32a), (32b) can be written in
the form (5) with

Al =
⎡

⎣
−α −c1 −c4

−c2 −β 0
−c4 −c3 −γ

⎤

⎦
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Au =
⎡

⎣
−α c1 c4

c2 −β 0
c4 c3 −γ

⎤

⎦ (35)

Bl = Bu =
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦

By assuming that there exist X,Q,α1, α2, β1, β2

fulfilling the condition (16) in Theorem 1, the con-
troller u = Kx,K = XQ−1, asymptotically sup-
presses the chaotic behavior of the fractional-order
chaotic system (31) as desired. Moreover, in order to
achieve the proposed decoupling control structure, we
constrain X and Q being diagonal matrices.

4 Numerical simulations

Two fractional-order chaotic systems from the class of
the chaotic systems (31) are employed as illustrative
examples. They are fractional-order Liu system and
fractional-order Lorenz system.

First, let us consider the fractional-order Liu system
[6]

Dqx = −ax − ey2

Dqy = by − kxz (36)

Dqz = −cz + mxy

where a = e = 1, b = 2.5, c = 5 , and k = m = 4. It
is obvious that the system (36) belongs to the class of
chaotic systems (31) by choosing α = a,f (x, y, z) =
−ey,β = −b,g(x, y, z) = −kz, γ = c,h(x, y, z) =
mx, and Φ(x,y, z) = 0. Thus, by adding three con-
trol inputs to the system, we can write (36) in the form
of (32a), (32b) as follows:

⎡

⎣
Dqx

Dqy

Dqz

⎤

⎦ =
⎡

⎣
−a −ey 0
−kz b 0

0 mx −c

⎤

⎦

⎡

⎣
x

y

z

⎤

⎦

+
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦

⎡

⎣
u1

u2

u3

⎤

⎦ (37)

Next step is to determine the bounds of Ă and B̆ for the
system (37). Numerical simulations can be used here
to determine these bounds. A set of the state trajec-
tories of the system are shown in Fig. 1 for q = 0.98

Fig. 1 State trajectories of fractional-order Liu system for var-
ious initial conditions

starting from various initial conditions. From the sim-
ulation curves, we found −8 < x < 5,−8 < y < 7,
and −6 < z < 8. Thus, one can define the upper and
lower bounds of the above functions as c1 = 8, c2 =
32, c3 = 32, and c4 = 0. Solving the LMI for the sys-
tem (37) yields

Q =
⎡

⎣
0.1666e + 8 0 0

0 0.1653e + 8 0
0 0 1.4055e + 8

⎤

⎦

X =
⎡

⎣
−3.5598e + 8 0 0

0 −9.0719e + 8 0
0 0 −0.2610e + 8

⎤

⎦

α1 = 3.7732e + 7, α2 = 3.7732e + 7

β1 = 1.1310e + 8, β2 = 1.1310e + 8
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Fig. 2 State trajectories of fractional-order Liu system with the
controller

and

K =
⎡

⎣
−21.3707 0 0

0 −54.8760 0
0 0 −0.1857

⎤

⎦

Therefore, the control inputs are

u1 = −21.3707x

u2 = −54.8760y (38)

u3 = −0.1857z

In order to verify the effectiveness of the obtained con-
troller, simulations have been carried out and the re-
sults are depicted in Fig. 2. It is shown that controller
is capable to bring the chaotic trajectories to the origin
magnificently.

As another example, let us consider the stabiliza-
tion problem of the fractional-order Lorenz system [8]

Fig. 3 State trajectories of fractional-order Lorenz system for
various initial conditions

Dqx = a(y − x)

Dqy = x(b − z) − y (39)

Dqz = xy − cz

where a = 10, b = 28 and c = 8/3 yield chaotic
trajectory. By setting α = a,f (x, y, z) = a, β =
1, g(x, y, z) = b − z, γ = c, h(x, y, z) = x and
Φ(x,y, z) = 0, it can be concluded that the system
(39) is in the form of (31). Thus, by adding three con-
trol inputs to the system, we can write (38) in the form
of (32a), (32b) as follows:
⎡

⎣
Dqx

Dqy

Dqz

⎤

⎦ =
⎡

⎣
−a a 0

b − z −1 0
0 x −c

⎤

⎦

⎡

⎣
x

y

z

⎤

⎦

+
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦

⎡

⎣
u1

u2

u3

⎤

⎦ (40)

The bounds of uncertainty can be determined by ob-
servation of state trajectories of the fractional-order
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Fig. 4 State trajectories of fractional-order Lorenz system with
the controller

Lorenz system. Starting from various initial conditions

with q = 0.993 the state trajectories are depicted in

Fig. 3. In order to find feasible solution for LMI we

set −20 < x < 30,−25 < y < 30 and 0 < z < 50.

Thus, one can define the upper and lower bounds of

the above functions as c1 = 10, c2 = 78, c3 = 30, and

c4 = 0. Solving the LMI for the system (40) yields

Q =
⎡

⎣
0.0930e + 8 0 0

0 0.0928e + 8 0
0 0 1.2106e + 8

⎤

⎦

X =
⎡

⎣
−3.6902e + 8 0 0

0 −9.0679e + 8 0
0 0 −0.4025e + 8

⎤

⎦

α1 = 1.8663e + 7, α2 = 1.8663e + 7

β1 = 1.0780e + 8, β2 = 1.0780e + 8

and

K =
⎡

⎣
−36.6974 0 0

0 −97.7525 0
0 0 −0.3325

⎤

⎦

Therefore, the control laws become as follows:

u1 = −36.6974x

u2 = −97.7525y (41)

u3 = −0.3325z

Simulation results for the closed-loop system are de-
picted in Fig. 4. It is shown that the controller suppress
the chaotic trajectories with a fast response.

We have clarified the design procedure by giving
two illustrative examples. The same procedure can be
used for other chaotic systems belong to this class.
Moreover, the method might be used for other chaotic
systems, which do not belong to this class just by
some modifications. The concept of dissipativity and
the idea of considering fractional-order chaotic sys-
tems as fractional-order LTI interval systems can be
used for all chaotic systems, however, the LMI prob-
lem formulation might change according to the struc-
ture of the systems.

5 Conclusion

In this paper, a simple linear controller is proposed for
stabilization of a class of fractional-order chaotic sys-
tems. The main idea is to consider the chaotic systems
as fractional-order LTI interval systems due to attrac-
tiveness of chaotic attractors. This allows us to employ
the theory of stabilization of interval systems to sup-
press the chaotic trajectories. In this manner, the sta-
bilization problem of fractional-order chaotic systems
is converted to solving a LMI. The solution will also
give us appropriate values for the feedback gains. Two
illustrative examples are given for the fractional-order
Liu system and fractional-order Lorenz system, which
shows the effectiveness of the proposed method.
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