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Abstract This paper focuses on the problem of the
adaptive neural control for a class of a perturbed pure-
feedback nonlinear system. Based on radial basis func-
tion (RBF) neural networks’ universal approximation
capability, an adaptive neural controller is developed
via the backstepping technique. The proposed con-
troller guarantees that all the signals in the closed-loop
system are bounded and the tracking error eventually
converges to a small neighborhood around the origin.
The main advantage of this note lies in that a con-
trol strategy is presented for a class of pure-feedback
nonlinear systems with external disturbances being
bounded by functions of all state variables. A numer-
ical example is provided to illustrate the effectiveness
of the suggested approach.
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1 Introduction

During the past decades, adaptive backstepping con-
trol has become one of the most popular design meth-
ods for nonlinear systems in triangular structure, and
many significant results have been obtained; see, for
instance [1–3] and the reference therein. These re-
searches provide a systematic methodology of solv-
ing tracking or regulation control problems of nonlin-
ear systems without satisfying the matching condition.
However, it is assumed that an accurate model of the
system is available and the unknown parameters ap-
pear linearly with respect to known nonlinear func-
tions. This assumption is not sufficient for many prac-
tical situations, since it is a difficult work to precisely
describe a nonlinear system by known nonlinear func-
tions. Therefore, the investigation on the problem of
controlling nonlinear systems with incomplete model
knowledge is a meaningful issue.

In order to deal with highly uncertain nonlinear
and complex systems, approximator-based adaptive
control approaches have also been extensively stud-
ied in the past decades by using Lyapunov stability
theory. In control design procedure, RBF neural net-
works (or fuzzy logic systems) are used to approx-
imate uncertain nonlinear functions in dynamic sys-
tems because of their universal approximation capa-
bility, and then the backstepping technique is applied
to construct an adaptive controller. Based on this idea,
many interesting control schemes have been proposed
for a large class of strict-feedback nonlinear system
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with uncertain nonlinear functions [5–24]. Using the
universal approximation capability of fuzzy logic sys-
tems, Wang [4] first proposed a stable adaptive fuzzy
control approach for a class of nonlinear systems with
unknown functions. Then many adaptive fuzzy con-
trol schemes were obtained for uncertain nonlinear
systems [7–17]. Alternatively, some adaptive control
approaches were investigated for nonlinear systems
based on RBF neural networks [5, 6, 18–24]. In the
aforementioned papers, however, the research results
are obtained under the condition that the considered
systems are of affine nonlinear systems, in which the
system inputs appear linearly in the state equation.

The nonaffine pure-feedback system stands for a
more general class of triangular systems, which have
no affine appearance of the variables to be utilized as
virtual control inputs. In practice, many nonlinear sys-
tems are of nonaffine structure, such as mechanical
systems [25], biochemical processes [3], and so on.
Therefore, the control of nonaffine pure-feedback non-
linear systems is a meaningful issue and has received
increasing attention in the control community in re-
cent years [26–35]. In [26, 27], a class of much sim-
pler pure-feedback systems where the last one or two
equations were assumed to be affine were investigated.
Using input-to-state stability analysis and the small
gain theorem, an improved adaptive neural control ap-
proach was presented for a class of completely non-
affine pure-feedback systems [28]. Furthermore, many
researchers further considered other types of pure-
feedback nonlinear systems, such as pure-feedback
systems with time-delay [32], with dead-zone [31],
and discrete-time pure-feedback systems [34]. More
recently, in [35], an novel observer-based adaptive
fuzzy output-feedback control scheme is proposed for
a class of MIMO pure-feedback nonlinear systems.
Nevertheless, only a few results have been reported
for the problem of adaptive control for pure-feedback
nonlinear systems with external disturbance [31–33],
in which the unknown external disturbance di(x, t)

maybe the function of all states, but its bounding func-
tion must be the function of x̄i = [x1, x2, . . . , xi]T ,
such as in [31, 32], or an unknown constant [33].

Motivated by the above observations, the problem
of adaptive neural control for a class of pure-feedback
nonlinear systems with external disturbance is inves-
tigated based on backstepping. It is shown that the
proposed controller guarantees that all signals in the
closed-loop systems remain bounded and the tracking

error eventually converges to a small neighborhood
around the origin. The main contributions of this pa-
per lie in that (i) an adaptive neural control scheme
is systematically derived to control a class of nonlin-
ear pure-feedback systems with external disturbances
bounded by functions of all system state variables
which is more general than the existing ones; (ii) only
one adaptive parameter is needed to be estimated on-
line for n order nonlinear systems. As a result, compu-
tational burden is significantly alleviated, which might
render this control design more suitable for practical
application.

The remainder of this paper is organized as follows.
The problem formulation and preliminaries are given
in Sect. 2. A novel adaptive neural control scheme
is presented in Sect. 3. The simulation examples are
given in Sect. 4, followed by Sect. 5, which concludes
the work.

2 Preliminaries and problem formulation

Consider a class of perturbed pure-feedback nonlinear
system in the following form:
⎧
⎪⎨

⎪⎩

ẋi = fi(x̄i , xi+1) + ψi(x, t), 1 ≤ i ≤ n − 1,

ẋn = fn(x̄n, u) + ψn(x, t),

y = x1,

(1)

where x = [x1, x2, . . . , xn]T ∈ Rn, u ∈ R, and y ∈
R are state variable, system input, and system out-
put, respectively, x̄i = [x1, x2, . . . , xi]T ∈ Ri ; fi(·):
Ri+1 → R with fi(0) = 0 are unknown, but smooth
nonaffine nonlinear functions; ψi(·) : Rn → R with
ψi(0) = 0 can be viewed as model uncertainties or un-
known external disturbance functions.

The control objective in this paper is to design an
adaptive neural tracking controller u for the system
(1), such that the system output y converges to a small
neighborhood of the reference signal yd , and all the
signals in the closed-loop remain bounded.

For the control of pure-feedback system (1), define

gi(x̄i , xi+1) = ∂fi(x̄i , xi+1)

∂xi+1
, i = 1,2, . . . , n (2)

with xn+1 = u.

Assumption 1 The signs of gi(x̄i , xi+1), i = 1,2,

. . . , n are known, and there exist constants bm and bM ,
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such that for 1 ≤ i ≤ n,

0 < bm ≤ ∣
∣gi(x̄i , xi+1)

∣
∣ ≤ bM < ∞,

∀(x̄i , xi+1) ∈ Ri × R. (3)

Remark 1 Assumption 1 implies that the unknown
smooth functions gi(x̄i+1), i = 1,2, . . . , n, are strictly
either positive or negative. Without loss of generality,
it is assumed that 0 < bm ≤ gi(x̄i+1) ≤ bM , ∀x̄i+1 ∈
Ri+1. Moreover, since the constants bm and bM are
not used for controller design, their true values are not
necessary to be known.

Assumption 2 For functions ψi(·)s in (1), there exist
strict increasing smooth functions φi(·) : R+ → R+
with φi(0) = 0 such that for i = 1,2, . . . , n,
∣
∣ψi(x, t)

∣
∣ ≤ φi

(‖x‖).

Remark 2 The increasing property of φi(·) means that
if ak ≥ 0, for k = 1,2, . . . , n, then φi(

∑n
k=1 ak) ≤

∑n
k=1 φi(nak). Note that φi(s) is a smooth function

with φi(0) = 0, so there exists a smooth function qi(s)

such that φi(s) = sqi(s), which results in

φi

(
n∑

k=1

ak

)

≤
n∑

k=1

nakqi(nak). (4)

Assumption 3 The desired trajectory yd(t) and its

time derivatives up to the nth order y
(n)
d (t) are con-

tinuous and bounded. It is further assumed that there
exists a positive constant d∗ such that |yd(t)| ≤ d∗.

Throughout this paper, the following RBF neural
networks will be used to approximate any continuous
function f (Z) : Rn → R,

fnn(Z) = WT S(Z), (5)

where Z ∈ ΩZ ⊂ Rq is the input vector with q being
the neural networks input dimension, weight vector
W = [w1,w2, . . . ,wl]T ∈ Rl , l > 1 is the neural net-
works node number, and S(Z) = [s1(Z), s2(Z), . . . ,

sl(Z)]T means the basis function vector with si(Z) be-
ing chosen as the commonly used Gaussian function of
the form:

si(Z) = exp

[

− (Z − μi)
T (Z − μi)

η2
i

]

,

i = 1,2, . . . , l, (6)

where μi = [μi1,μi2, . . . ,μiq ]T is the center of the
receptive field and ηi is the width of the Gaussian
function. In [36], it has been indicated that with suffi-
ciently large node number l, the RBF neural networks
(5) can approximate any continuous function f (Z)

over a compact set ΩZ ⊂ Rq to arbitrary any accuracy
ε > 0 as

f (Z) = W ∗T
S(Z) + δ(Z), ∀z ∈ Ωz ∈ Rq, (7)

where W ∗ is the ideal constant weight vector and de-
fined as

W ∗ := arg min
W∈R̄l

{
sup

Z∈ΩZ

∣
∣f (Z) − WT S(Z)

∣
∣
}
,

where δ(Z) denotes the approximation error and satis-
fies |δ(Z)| ≤ ε.

Lemma 1 [37] Consider the Gaussian RBF networks
(5) and (6). Let ρ := 1

2 mini �=j ‖μi − μj‖, then an up-
per bound of ‖S(Z)‖ is taken as

∥
∥S(Z)

∥
∥ ≤

∞∑

k=0

3q(k + 2)q−1e−2ρ2k2/η2 := s. (8)

It has been shown in [28] that the constant s in
Lemma 3 is a limited value and is independent of the
variable Z and the dimension of neural weights l.

Lemma 2 [38] For any η ∈ R and ε > 0, the following
inequality holds:

0 ≤ |η| − η tanh

(
η

ε

)

≤ δε, δ = 0.2785. (9)

In Sect. 3, an adaptive neural control via back-
stepping technique is proposed for perturbed pure-
feedback nonlinear systems (1). The backstepping de-
sign with n steps is developed based on the following
coordinate transformation:

zi = xi − αi−1
(
x̄T
i−1, θ̂ , ȳ

(i)T
d

)
,

i = 1,2, . . . , n, (10)

where α0 = yd , ȳ
(i)
d denotes the vector of yd and up to

its ith order time derivative and αi is the virtual control
law. θ̂ is the estimation of unknown constant θ which
is specified as

θ = max

{
b2
M

bm

∥
∥W ∗

i

∥
∥2; i = 1,2, . . . , n

}

(11)
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with bm and bM being defined in Assumption 1, and
W ∗

i will be given later.
The adaptive neural controller and adaptive law will

be constructed in the following forms:

αi(Zi) = −kizi − 1

2a2
i

zi θ̂ST
i (Zi)Si(Zi),

1 ≤ i ≤ n, (12)

˙̂
θ =

n∑

k=1

λ

2a2
k

z2
kS

T
k (Zk)Sk(Zk) − k0θ̂ , (13)

where ki , ai , k0, and λ are positive design param-
eters, Si(Zi) is the basis function vector with Zi =
[x̄T

i , θ̂ , ȳ
(i)T
d ]T ∈ ΩZi

⊂ R2i+2 (i = 2, . . . , n). Note
that, when i = n, αn is the actual control input u(t).

Remark 3 It is easy to prove from (13) that if initial
condition θ̂ (0) ≥ 0, then θ̂ (t) ≥ 0 for all t ≥ 0. In fact,
it is always reasonable to choose θ̂ (0) ≥ 0 in a practi-
cal situation, as θ̂ is an estimation of θ . This property
will be used in each design step.

Lemma 3 For the coordinate transformations zi =
xi − αi−1, i = 1,2, . . . , n, the following result holds:

‖x‖ ≤
n∑

i=1

|zi |ϕi(θ̂ ) + d∗ (14)

with ϕi(θ̂) = (ki +1)+ 1
2a2

i

s2θ̂ , for i = 1,2, . . . , n−1,

and ϕn = 1.

Proof From α0 = yd , (10), (12), and Lemma 1, we
have

‖x‖ ≤
n∑

i=1

|xi | =
n∑

i=1

|zi + αi−1| ≤
n∑

i=1

(|zi | + |αi−1|
)

≤
n∑

i=1

|zi | +
n−1∑

i=1

(

ki + 1

2a2
i

θ̂ s2
)

|zi | + |yd |

≤
n∑

i=1

|zi |ϕi(θ̂ ) + d∗.
�

3 Adaptive neural tracking control

In the following, for simplicity, the time variable t will
be omitted from the corresponding functions and let
Si(Zi) = Si .

Step 1. Let us consider the first differential equation
of system (1). Noting z1 = x1 − yd , its derivative is

ż1 = f1(x1, x2) − ẏd + ψ1(x, t). (15)

To design a stabilization control law for (15), consider
a Lyapunov function candidate as

V1 = 1

2
z2

1 + bm

2λ
θ̃2, (16)

where θ̃ = θ − θ̂ is the parameter error. Then the time
derivative of V1 along (15) is given by

V̇1 ≤ z1
(
f1(x1, x2) − ẏd + ψ1(x, t)

) − bm

λ
θ̃

˙̂
θ. (17)

By using Assumption 2, (4), (14), and the completion
of squares, the following result can be obtained easily:

z1ψ1(x, t) ≤ |z1|φ1
(‖x‖)

≤ |z1|φ1

(
n∑

l=1

|zl |ϕl(θ̂) + d∗
)

≤
n∑

l=1

|z1|φ1
(
(n + 1)|zl |ϕl(θ̂)

)

+ |z1|φ1
(
(n + 1)d∗)

≤ 1

2
nz2

1 +
n∑

l=1

1

2
φ2

1

(
(n + 1)|zl |ϕl(θ̂)

)

+ |z1|φ1
(
(n + 1)d∗)

≤ 1

2
nz2

1 +
n∑

l=1

z2
l φ̄

2
1(zl, θ̂ )

+ |z1|φ1
(
(n + 1)d∗), (18)

where φ̄2
1(zl, θ̂ ) = 1

2 (n + 1)2ϕ2
l (θ̂ )q2

1 ((n + 1)|zl | ×
ϕl(θ̂)). Further, applying Lemma 2 to the last term
on the right-hand side in (18) gives

|z1|φ1
(
(n + 1)d∗) − z1φ1

(
(n + 1)d∗)

× tanh

(
z1φ1((n + 1)d∗)

ε1

)

≤ δε1. (19)

Substituting (18) into (17) and using (19) yields

V̇1 ≤ z1(f1(x1, x2) − ẏd + φ1
(
(n + 1)d∗)

× tanh

(
z1φ1((n + 1)d∗)

ε1

)
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+ 1

2
(n + 2)z1 + z1

n−1∑

k=1

k∑

j=1

φ̄2
j (z1, θ̂ )

− z2
1 +

n∑

l=2

z2
l φ̄

2
1(zl, θ̂ )

− z2
1

n−1∑

k=2

k∑

j=1

φ̄2
j (z1, θ̂ ) + δε1 − bm

λ
θ̃

˙̂
θ. (20)

Define a new function w1 = −ẏd + φ1((n + 1)d∗)×
tanh(

z1φ1((n+1)d∗)
ε1

) + 1
2 (n + 2)z1 + k1z1 +

z1
∑n−1

k=1
∑k

j=1 φ̄2
j (z1, θ̂ ). Then (20) can be rewritten

as

V̇1 ≤ z1
(
f1(x1, x2) + w1

) − k1z
2
1

− z2
1 +

n∑

l=2

z2
l φ̄

2
1(zl, θ̂ )

− z2
1

n−1∑

k=2

k∑

j=1

φ̄2
j (z1, θ̂ ) + δε1 − bm

λ
θ̃

˙̂
θ. (21)

Considering that ∂w1
∂x2

= 0, the following inequality
based on Assumption 1 will be obtained:

∂[f1(x1, x2) + w1]
∂x2

≥ bm > 0. (22)

According to Lemma 1 [6], for every value of x1 and
w1, there exists a smooth ideal control input x2 =
ᾱ1(x1,w1) such that

f1(x1, ᾱ1) + w1 = 0. (23)

Applying mean value theorem [39], there exists μ1

(0 < μ1 < 1) such that

f1(x1, x2) = f1(x1, ᾱ1) + gμ1(x2 − ᾱ1), (24)

where gμ1 := g1(x1, xμ1), xμ1 = μ1x2 + (1 − μ1)ᾱ1.
Obviously, Assumption 1 on g1(x1, x2) is still valid
for gμ1 .

Next, substituting (24) into (21) and using the fact
of (23) produces

V̇1 ≤ z1gμ1(x2 − ᾱ1) − k1z
2
1 − z2

1 +
n∑

l=2

z2
l φ̄

2
1(zl, θ̂ )

− z2
1

n−1∑

k=2

k∑

j=1

φ̄2
j (z1, θ̂ ) + δε1 − bm

λ
θ̃

˙̂
θ

≤ z1gμ1(z2 + α1 − ᾱ1) − k1z
2
1

− z2
1 +

n∑

l=2

z2
l φ̄

2
1(zl, θ̂ )

− z2
1

n−1∑

k=2

k∑

j=1

φ̄2
j (z1, θ̂ ) + δε1 − bm

λ
θ̃

˙̂
θ (25)

with z2 = x2 − α1 and α1 being virtual control signal
which will be defined later.

Since ᾱ1 contains unknown function w1, an RBF
neural network WT

1 S1(Z1) is used to model ᾱ1 such
that

ᾱ1 = W ∗T
1 S1(Z1) + δ1(Z1),

∣
∣δ1(Z1)

∣
∣ ≤ ε1, (26)

where δ1(Z1) refers to the approximation error and ε1

is a given constant.
Furthermore, the following inequality is true:

−z1gμ1 ᾱ1

= −z1gμ1W
∗T
1 S1 − z1gμ1δ1

≤ 1

2a2
1

z2
1b

2
M

∥
∥W ∗

1

∥
∥2

ST
1 S1 + 1

2
a2

1 + 1

2
z2

1 + 1

2
b2
Mε2

1

≤ bm

2a2
1

z2
1θST

1 S1 + 1

2
a2

1 + 1

2
z2

1 + 1

2
b2
Mε2

1, (27)

where θ has been defined in (11).
By constructing virtual control law α1 in (12) with

i = 1, and using the fact of θ̂ ≥ 0 and Assumption 1,
the following result can be obtained:

z1gμ1α1 ≤ −k1bmz2
1 − bm

2a2
1

z2
1θ̂ST

1 S1. (28)

Subsequently, by combining (25) together with (27)
and (28), we have

V̇1 ≤ −k1(bm + 1)z2
1 + ρ1

+
n∑

l=2

z2
l φ̄

2
1(zl, θ̂ ) + 1

2
b2
Mz2

2

− z2
1

n−1∑

k=2

k∑

j=1

φ̄2
j (z1, θ̂ )

+ bm

λ
θ̃

(
λ

2a2
1

z2
1S

T
1 S1 − ˙̂

θ

)

, (29)

where ρ1 = δε1 + 1
2a2

1 + 1
2b2

Mε2
1.
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Step 2. The derivative of z2 = x2 − α1 is

ż2 = f2(x̄2, x3) + ψ2(x, t) − α̇1, (30)

where

α̇1 = ∂α1

∂x1

(
f1(x1, x2) + ψ1(x, t)

)

+
1∑

i=0

∂α1

∂y
(i)
d

y
(i+1)
d + ∂α1

∂θ̂

˙̂
θ. (31)

Choose the following Lyapunov function:

V2 = V1 + 1

2
z2

2. (32)

The time derivative of V2 is

V̇2 = V̇1 + z2
(
f2(x̄2, x3) + ψ2(x, t) − α̇1

)

= V̇1 + z2

(

f2(x̄2, x3) + ψ2(x, t)

− ∂α1

∂x1

(
f1(x1, x2) + ψ1(x, t)

)

−
1∑

i=0

∂α1

∂y
(i)
d

y
(i+1)
d − ∂α1

∂θ̂

˙̂
θ

)

. (33)

Following the same line as that used in (18) results in

−z2
∂α1

∂x1
ψ1(x, t)

≤ 1

2
n

(
∂α1

∂x1

)2

z2
2 +

n∑

l=1

z2
l φ̄

2
1(zl, θ̂ )

+ |z2|
∣
∣
∣
∣
∂α1

∂x1

∣
∣
∣
∣φ1

(
(n + 1)d∗), (34)

z2ψ2(x, t) ≤ 1

2
nz2

2 +
n∑

l=1

z2
l φ̄

2
2(zl, θ̂ )

+ |z2|φ2
(
(n + 1)d∗), (35)

where φ̄2
j (zl, θ̂ ) = 1

2 (n + 1)2ϕ2
l (θ̂ )q2

j ((n + 1)|zl | ×
ϕl(θ̂)), j = 1,2.

Let U2 = | ∂α1
∂x1

|φ1((n + 1)d∗) + φ2((n + 1)d∗).
Then, applying Lemma 2, we obtain

|z2|U2 − z2U2 tanh

(
z2U2

ε2

)

≤ δε2. (36)

In addition, by applying the definition of ˙̂
θ in (13), one

has

∂α1

∂θ̂

˙̂
θ = ∂α1

∂θ̂

(
2∑

j=1

λ

2a2
j

z2
j S

T
j Sj − k0θ̂

)

+ ∂α1

∂θ̂

n∑

j=3

λ

2a2
j

z2
j S

T
j Sj . (37)

Furthermore, by substituting (29), (34), and (35) into
(33) and using (36)–(37), we can rewrite (33) as

V̇2 ≤ −k1(bm + 1)z2
1 − k2z

2
2 + z2

(
f2(x̄2, x3) + w2

)

− z2
2 +

2∑

s=1

s∑

j=1

n∑

l=3

z2
l φ̄

2
j (zl, θ̂ )

−
2∑

s=1

n−1∑

k=3

k∑

j=1

z2
s φ̄

2
j (zs, θ̂ ) + ρ1 + δε2

+ bm

λ
θ̃

(
λ

2a2
1

z2
1S

T
1 S1 − ˙̂

θ

)

− z2
∂α1

∂θ̂

n∑

j=3

λ

2a2
j

z2
j S

T
j Sj , (38)

where

w2 = −∂α1

∂x1
f1(x1, x2) −

1∑

i=0

∂α1

∂y
(i)
d

y
(i+1)
d

+ 1

2
(n + 2)z2 + 1

2
n

(
∂α1

∂x1

)2

z2

+ z2

n−1∑

k=1

k∑

j=1

φ̄2
j (z2, θ̂ )

− ∂α1

∂θ̂

(
2∑

j=1

λ

2a2
j

z2
j S

T
j Sj − k0θ̂

)

+ U2 tanh

(
z2U2

ε2

)

+ k2z2. (39)

Noting the fact that ∂w2
∂x3

= 0, the following inequality
holds:

∂[f2(x̄2, x3) + w2]
∂x3

> bm > 0.
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For every value of x̄2 and w2, there exists a smooth
ideal virtual control input x3 = ᾱ2(x̄2,w2) such that

f2(x̄2, ᾱ2) + w2 = 0. (40)

Using mean value theorem [39], there exists μ2 (0 <

μ2 < 1) such that

f2(x̄2, x3) = f2(x̄2, ᾱ2) + gμ2(x3 − ᾱ2), (41)

where gμ2 := g2(x̄2, xμ2), xμ2 = μ2x3 + (1 − μ2)ᾱ2.
Apparently, Assumption 1 is still valid for gμ2 . Com-
bining (38), (40), and (41), we have

V̇2 ≤ −k1(bm + 1)z2
1 − k2z

2
2 + z2gμ2(x3 − ᾱ2)

− z2
2 +

2∑

s=1

s∑

j=1

n∑

l=3

z2
l φ̄

2
j (zl, θ̂ )

−
2∑

s=1

n−1∑

k=3

k∑

j=1

z2
s φ̄

2
j (zs, θ̂ ) + ρ1 + δε2

+ bm

λ
θ̃

(
λ

2a2
1

z2
1S

T
1 S1 − ˙̂

θ

)

− z2
∂α1

∂θ̂

n∑

j=3

λ

2a2
j

z2
j S

T
j Sj . (42)

By employing an RBF neural network W ∗T
2 S2(Z2) to

approximate ᾱ2, for any given constant ε2 > 0, ᾱ2 can
be expressed as

ᾱ2 = W ∗T
2 S2(Z2) + δ2(Z2), (43)

where the approximate error δ2(Z2) satisfies |δ2(Z2)|
≤ ε2. Repeating the method utilized in (27) gives

−z2gμ2 ᾱ2

≤ bm

2a2
2

z2
2θST

2 S2 + 1

2
a2

2 + 1

2
z2

2 + 1

2
b2
Mε2

2. (44)

Then, by choosing virtual control signal α2 in (12)
with i = 2 and following the similar method to (28),
we have

z2gμ2α2 ≤ −k2bmz2
2 − bm

2a2
2

z2
2θ̂ST

2 S2. (45)

By adding and subtracting virtual control signal α2

in (42) and using (44)–(45), (42) can be rewritten as

V̇2 ≤ −k1(bm + 1)z2
1 − k2z

2
2 + z2gμ2(z3 + α2 − ᾱ2)

− z2
2 +

2∑

s=1

s∑

j=1

n∑

l=3

z2
l φ̄

2
j (zl, θ̂ )

−
2∑

s=1

n−1∑

k=3

k∑

j=1

z2
s φ̄

2
j (zs, θ̂ ) + ρ1 + δε2

+ bm

λ
θ̃

(
λ

2a2
1

z2
1S

T
1 S1 − ˙̂

θ

)

− z2
∂α1

∂θ̂

n∑

j=3

λ

2a2
j

z2
j S

T
j Sj

≤ −(bm + 1)

2∑

j=1

kj z
2
j +

2∑

s=1

s∑

j=1

n∑

l=3

z2
l φ̄

2
j (zl, θ̂ )

−
2∑

s=1

n−1∑

k=3

k∑

j=1

z2
s φ̄

2
j (zs, θ̂ )

+ bm

λ
θ̃

(
2∑

j=1

λ

2a2
j

z2
j S

T
j Sj − ˙̂

θ

)

+
2∑

j=1

ρj

− z2
∂α1

∂θ̂

n∑

j=3

λ

2a2
j

z2
j S

T
j Sj + 1

2
b2
Mz2

3, (46)

where z2 = x3 − α2, ρj = δεj + 1
2a2

j + 1
2b2

Mε2
j ,

j = 1,2.

Remark 4 The adaptive law ˙̂
θ in (13) is a function

of all the error variables. So, unlike the conventional
approximation-based adaptive control schemes, the

term ∂α1

∂θ̂

˙̂
θ in (31) cannot be approximated directly by

the RBF neural networks W ∗T
2 S2(Z2). To solve this

problem, in (37), ∂α1

∂θ̂

˙̂
θ is decomposed into two parts.

The first term on the right-hand side of (37) can be
contained in f̄2(Z2) modeled by W ∗T

2 S2(Z2), and the
last one in (37), which is the function of the latter error
variables, namely zi , i = 3, . . . , n, will be dealt with in
the later design steps. This design idea will be repeated
at the following steps.

Step i (3 ≤ i ≤ n − 1). For zi = xi+1 − αi , the time
derivative of zi is given by

żi = ẋi − α̇i−1

= fi(x̄i , xi+1) + ψi(x, t) − α̇i−1, (47)
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where

α̇i−1 =
i−1∑

j=1

∂αi−1

∂xj

(
fj (x̄j , xj+1) + ψj(x, t)

)

+ ∂αi−1

∂θ̂

˙̂
θ +

i−1∑

j=0

∂αi−1

∂y
(j)
d

y
(j+1)
d . (48)

Define the following Lyapunov function candidate:

Vi = Vi−1 + 1

2
z2
i . (49)

Then the derivative of Vi in (49) along with (47) can
be expressed as

V̇i = V̇i−1 + zi

(

fi(x̄i , xi+1) + ψi(x, t)

−
i−1∑

j=1

∂αi−1

∂xj

(
fj (x̄j , xj+1) + ψj(x, t)

)

− ∂αi−1

∂θ̂

˙̂
θ −

i−1∑

j=0

∂αi−1

∂y
(j)
d

y
(j+1)
d

)

, (50)

where the term V̇i−1 in (50) can be obtained in the
below form by following the procedures outlined in
Step 2:

V̇i−1 ≤ −(bm + 1)

i−1∑

j=1

kj z
2
j +

i−1∑

s=1

s∑

j=1

n∑

l=i

z2
l φ̄

2
j (zl, θ̂ )

−
i−1∑

s=1

n−1∑

k=i

k∑

j=1

z2
s φ̄

2
j (zs, θ̂ )

+ bm

λ
θ̃

(
i−1∑

j=1

λ

2a2
j

z2
j S

T
j Sj − ˙̂

θ

)

+
i−1∑

j=1

ρj

−
i−2∑

m=1

zm

∂αm

∂θ̂

n∑

j=i

λ

2a2
j

z2
j S

T
j Sj

+ 1

2
b2
Mz2

i . (51)

Following the procedures outlined in Step 2, one can
get the following two inequalities:

−zi

i−1∑

j=1

∂αi−1

∂xj

ψj (x, t)

≤ 1

2
nz2

i

i−1∑

j=1

(
∂αi−1

∂xj

)2

+
i−1∑

j=1

n∑

l=1

z2
l φ̄

2
j (zl, θ̂ )

+ |zi |
i−1∑

j=1

∣
∣
∣
∣
∂αi−1

∂xj

∣
∣
∣
∣φj

(
(n + 1)d∗), (52)

ziψi(x, t) ≤ 1

2
nz2

i +
n∑

l=1

z2
l φ̄

2
i (zl, θ̂ )

+ |zi |φi

(
(n + 1)d∗), (53)

where φ̄2
j (zl, θ̂ ) = 1

2 (n + 1)2ϕ2
l (θ̂ )q2

j ((n + 1)|zl | ×
ϕl(θ̂)), j = 1,2, . . . , i. Furthermore, similar to (36),
the following result is true:

|zi |Ui − ziUi tanh

(
ziUi

εi

)

≤ δεi, (54)

where Ui = ∑i−1
j=1 | ∂αi−1

∂xj
|φj ((n + 1)d∗) + φi((n +

1)d∗).
For the term ∂αi−1

∂θ̂

˙̂
θ , by using (13), we have

∂αi−1

∂θ̂

˙̂
θ = ∂αi−1

∂θ̂

(
i∑

j=1

λ

2a2
j

z2
j S

T
j Sj − k0θ̂

)

+ ∂αi−1

∂θ̂

n∑

j=i+1

λ

2a2
j

z2
j S

T
j Sj . (55)

Subsequently, combining (50) with (51)–(55) pro-
duces

V̇i ≤ −(bm + 1)

i−1∑

j=1

kj z
2
j − kiz

2
i

+ zi

(
fi(x̄i , xi+1) + wi

) − z2
i

+
i∑

s=1

s∑

j=1

n∑

l=i+1

z2
l φ̄

2
j (zl, θ̂ )

−
i∑

s=1

n−1∑

k=i+1

k∑

j=1

z2
s φ̄

2
j (zs, θ̂ )
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+ bm

λ
θ̃

(
i−1∑

j=1

λ

2a2
j

z2
j S

T
j Sj − ˙̂

θ

)

+
i−1∑

j=1

ρj + δεi

−
i−1∑

m=1

zm

∂αm

∂θ̂

n∑

j=i+1

λ

2a2
j

z2
j S

T
j Sj , (56)

where

wi = −
i−1∑

j=1

∂αi−1

∂xj

fj (x̄j , xj+1)

−
i−1∑

j=0

∂αi−1

∂y
(j)
d

y
(j+1)
d + 1

2
(n + 2)zi

+ 1

2
nzi

i−1∑

j=1

(
∂αi−1

∂xj

)2

− ∂αi−1

∂θ̂

(
i∑

j=1

λ

2a2
j

z2
j S

T
j Sj − k0θ̂

)

− λ

2a2
i

ziS
T
i Si

i−2∑

m=1

zm

∂αm

∂θ̂

+ zi

n−1∑

k=1

k∑

j=1

φ̄2
j (zi , θ̂ )

+ Ui tanh

(
ziUi

εi

)

+ kizi . (57)

Considering the fact that ∂wi

∂xi+1
= 0, one has

∂[fi(x̄i , xi+1) + wi]
∂xi+1

> bm > 0.

According to Lemma 1 [6], by viewing xi+1 as a vir-
tual control input, for every value of x̄i and wi , there
exists a smooth ideal control input xi+1 = ᾱi (x̄i ,wi)

such that

fi(x̄i , ᾱi) + wi = 0. (58)

Applying mean value theorem [39], there exists μi

(0 < μi < 1) such that

fi(x̄i , xi+1) = fi(x̄i , ᾱi ) + gμi
(xi+1 − ᾱi ), (59)

where gμi
:= gi(x̄i , xμi

), xμi
= μixi+1 + (1 − μi)ᾱi .

Note that Assumption 1 is still valid for gμ2 .

Substituting (59) into (56) and using (58) results in

V̇i ≤ −(bm + 1)

i−1∑

j=1

kj z
2
j − kiz

2
i

+ zigμi
(xi+1 − ᾱi) − z2

i

+
i∑

s=1

s∑

j=1

n∑

l=i+1

z2
l φ̄

2
j (zl, θ̂ )

−
i∑

s=1

n−1∑

k=i+1

k∑

j=1

z2
s φ̄

2
j (zs, θ̂ )

+ bm

λ
θ̃

(
i−1∑

j=1

λ

2a2
j

z2
j S

T
j Sj − ˙̂

θ

)

+
i−1∑

j=1

ρj + δεi

−
i−1∑

m=1

zm

∂αm

∂θ̂

n∑

j=i+1

λ

2a2
j

z2
j S

T
j Sj . (60)

Next, using an RBF neural networks W ∗T
i Si(Zi) to ap-

proximate ᾱi , then constructing virtual control signal
αi in (12) and following the same line as the proce-
dures used from (43)–(46), one has

V̇i ≤ −(bm + 1)

i∑

j=1

kj z
2
j +

i∑

s=1

s∑

j=1

n∑

l=i+1

z2
l φ̄

2
j (zl, θ̂ )

−
i∑

s=1

n−1∑

k=i+1

k∑

j=1

z2
s φ̄

2
j (zs, θ̂ )

+ bm

λ
θ̃

(
i∑

j=1

λ

2a2
j

z2
j S

T
j Sj − ˙̂

θ

)

+
i∑

j=1

ρj

−
i−1∑

m=1

zm

∂αm

∂θ̂

n∑

j=i+1

λ

2a2
j

z2
j S

T
j Sj + 1

2
b2
Mz2

i+1,

(61)

where zi+1 = xi+1 − αi , ρj = δεj + 1
2a2

j + 1
2b2

Mε2
j ,

j = 1,2, . . . , i.
Step n. This is the final step; the actual control input

u will be constructed. For zn = xn − αn−1, we have

żn = fn(x̄n, u) + ψn(x, t) − α̇n−1, (62)

where α̇n−1 is given in (48) with i = n Take the Lya-
punov function as

Vn = Vn−1 + 1

2
z2
n. (63)
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With the straightforward derivation similar to those
employed in Step i, the derivative of Vn satisfies the
following inequality:

V̇n ≤ −(bm + 1)

n−1∑

j=1

kj z
2
j +

n−1∑

j=1

ρj

+ bm

λ
θ̃

(
n−1∑

j=1

λ

2a2
j

z2
j S

T
j Sj − ˙̂

θ

)

+ zn

(

fn(x̄n, u) + ψn(x, t) − α̇n−1

+
n−1∑

s=1

s∑

j=1

znφ̄
2
j (zn, θ̂ )

− λ

2a2
n

znS
T
n Sn

n−2∑

m=1

zm

∂αm

∂θ̂
+ 1

2
b2
Mzn

)

≤ −(bm + 1)

n−1∑

j=1

kj z
2
j −

(

kn + 1

2

)

z2
n

+ zn

(
fn(x̄n, u) + wn

)

+
n−1∑

j=1

ρj + bm

λ
θ̃

(
n−1∑

j=1

λ

2a2
j

z2
j S

T
j Sj − ˙̂

θ

)

, (64)

where wn is defined as

wn = ψn(x, t) − α̇n−1 +
n−1∑

s=1

s∑

j=1

znφ̄
2
j (zn, θ̂ )

− λ

2a2
n

znS
T
n Sn

n−2∑

m=1

zm

∂αm

∂θ̂
+ 1

2
b2
Mzn

+
(

kn + 1

2

)

zn. (65)

From (65), Assumption 1 and Lemma 1 [6], for every
value x̄n and wn, there exists a smooth ideal control
input u = ᾱn(x̄n,wn) such that

fn(x̄n, ᾱn) + wn = 0. (66)

Using mean value theorem [39], there exists μn (0 <

μn < 1) such that

fn(x̄n, u) = fn(x̄n, ᾱn) + gμn(u − ᾱn), (67)

with gμn := gn(x̄n, xμn), xμn = μnu+(1−μn)ᾱn. As-
sumption 1 is still valid for gμn .

By combining (64) together with (66) and (67), one
has

V̇n ≤ −(bm + 1)

n−1∑

j=1

kj z
2
j −

(

kn + 1

2

)

z2
n

+ zngμn(u − ᾱn)

+
n−1∑

j=1

ρj + bm

λ
θ̃

(
n−1∑

j=1

λ

2a2
j

z2
j S

T
j Sj − ˙̂

θ

)

. (68)

Similarly, for any given positive constant εn, an RBF
neural network W ∗T

n Sn(Zn) is utilized to approximate
the unknown function ᾱn. Following the same line as
used in (27), we have

−zngμnᾱn

≤ bm

2a2
n

z2
nθST

n Sn + 1

2
a2
n + 1

2
z2
n + 1

2
b2
Mε2

n. (69)

Now, construct the actual control signal u in (12) with
i = n, then the following inequality holds:

zngμnu ≤ −knbmz2
n − bm

2a2
n

z2
nθ̂ST

n Sn. (70)

Further, substituting (69) and (70) into (68) and taking
(13) into account result in

V̇n ≤ −(bm + 1)

n∑

j=1

kj z
2
j − bm

2λ
k0θ̃

2 +
n∑

j=1

ρj , (71)

where the inequality k0bm

λ
θ̃ θ̂ ≤ − bm

2λ
k0θ̃

2 + bm

2λ
k0θ

2

has been used in (71) and ρj = δεj + 1
2a2

j + 1
2b2

Mε2
j ,

j = 1,2, . . . , n − 1, ρn = 1
2a2

n + 1
2b2

Mε2
n + bm

2λ
k0θ

2.
To date, the adaptive neural control design has been

completed based on backstepping technique. The main
result of this note will be summarized by the following
theorem.

Theorem 1 Consider the pure-feedback nonlinear
system (1), the controller (12), and the adaptive law
(13) under Assumptions 1–3. Assume there exist suffi-
ciently large compacts ΩZi

, i = 1,2, . . . , n such that
Zi ∈ ΩZi

for all t ≥ 0. Then, for bounded initial con-
ditions with θ̂ (0) ≥ 0, all signals in the closed-loop
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system remain bounded and the following inequality
holds:

lim
t→∞ z2

1 ≤ 2
b0

a0
(72)

with a0 = min{2(1 + bm)kj , k0, j = 1,2, . . . , n} and
b0 = ∑n

j=1 ρj .

Proof For the stability analysis of the closed-loop
system, choose the Lyapunov function as V = Vn.
From (71), it follows

V̇ ≤ −a0V + b0, t ≥ 0, (73)

where a0 = min{2(1 + bm)kj , k0, j = 1,2, . . . , n} and
b0 = ∑n

j=1 ρj .
Then the following result is true:

V (t) ≤
(

V (0) − b0

a0

)

e−a0t + b0

a0
, (74)

which implies that all the signals in the closed-loop
system are bounded.

Especially, from definition of V , one has

z2
1 ≤ 2

(

V (0) − b0

a0

)

e−a0t + 2
b0

a0
.

As a result, (72) can be obtained immediately. The
proof is thus completed. �

Remark 5 In this research, the external disturbance
ψi(x, t) in (1) and its bounding function are assumed

to be the function of all states. However, in many prac-
tical situations, the disturbance may be only the func-
tion of time, i.e., ψi(x, t) = di(t). In this case, a com-
mon restriction to external disturbance di(t) is that
there exists a constant di such that |di(t)| ≤ di . Then,
similar to the method proposed in [33], with a minor
change of the virtual control signal (12), the similar re-
sult can be obtained by repeating the aforementioned
procedures.

4 Simulation example

Example 1 To demonstrate the proposed control
scheme, consider the following second-order pure-
feedback nonlinear system:

ẋ1 = x2 + 0.15x3
2 + x2

1x2 sin2(t),

ẋ2 = x2
1x2 + 0.1u3 + sin(u)

+ (
1 + cos

(
x2

1

))
x2 cos(1.5t),

y = x1,

where x1 and x2 are the state variables, y and u de-
note the system output, and the actual control in-
put, respectively. The control objective is to design
an adaptive neural controller such that all the sig-
nals in the closed-loop system remain bounded and
the system output y follows the given reference signal
yd = 0.5(sin(t)+ sin(0.5t)). According to Theorem 1,

Fig. 1 System output y(t)

and reference signal yd(t)
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Fig. 2 State variable x2

Fig. 3 The true control
input u

the virtual control law, the actual control law, and the
adaptive laws are designed as

α1 = −k1z1 − 1

2a2
1

z1θ̂ST
1 (Z1)S1(Z1),

u = −k2z2 − 1

2a2
2

z2θ̂ST
2 (Z2)S2(Z2),

˙̂
θ =

2∑

k=1

λ

2a2
k

z2
kS

T
k (Zk)Sk(Zk) − k0θ̂ ,

where z1 = x1 − yd, z2 = x2 − α1 and Zi = [x̄T
i , θ̂ ,

ȳ
(i)T
d ]T (i = 1,2), and the design parameters are taken

as follows: k1 = k2 = 5, a1 = a2 = 2, k0 = 0.3, and
λ = 1. The simulation are run with the initial condi-
tions [x1(0), x2(0)]T = [0.2,0.1]T , and θ̂ (0) = 0.

The simulation results are shown in Figs. 1–4. Fig-
ure 1 shows the system output y and the reference sig-
nal yd . From Fig. 1, we can see that the good tracking
performance has been achieved. Figure 2 shows that
the state variable x2 is bounded. Figure 3 displays the
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Fig. 4 The adaptive
parameter θ̂

control signal u. Figure 4 shows that the adaptive pa-
rameters θ̂ is bounded.

5 Conclusion

In this paper, an adaptive neural control scheme has
been proposed for a class of nonaffine pure-feedback
nonlinear system with external disturbance. The de-
veloped adaptive neural tracking controller guarantees
that all the signals involved are bounded, while the
tracking error eventually converges to a small neigh-
borhood of the origin. Moreover, the suggested con-
troller contains only one adaptive parameter needed to
be updated online. This makes our design scheme may
be easily implemented in practical applications. Simu-
lation results further illustrate the effectiveness of the
proposed scheme.
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