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Abstract In this paper, we consider the vector Lié-
nard equation with the constant deviating argument,
τ > 0,

X′′(t) + F
(
X(t),X′(t)

)
X′(t) + H

(
X(t − τ)

) = P(t)

in two cases: (i) P(.) ≡ 0, (ii) P(.) �= 0. Based on
the Lyapunov–Krasovskii functional approach, the
asymptotic stability of the zero solution and the
boundedness of all solutions are discussed for these
cases. We give an example to illustrate the theoretical
analysis made in this work and to show the effective-
ness of the method utilized here.

Keywords Vector Liénard equation · Stability ·
Constant deviating argument

1 Introduction

In applied sciences, some practical problems con-
cerning mechanics, the engineering technique fields,
economy, control theory, physics, chemistry, biol-
ogy, medicine, atomic energy, information theory,
etc. are associated with Liénard or modified Lié-
nard equation. By this time, the qualitative proper-
ties of solutions of scalar Liénard or modified Lié-
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nard equation with and without a deviating argu-
ment have been intensively discussed and are still be-
ing investigated in the literature. We refer the reader
to the papers or books of Ahmad and Rama Mo-
hana Rao [1], Burton [3, 4], Burton and Zhang [5],
Caldeira-Saraiva [6], Cantarelli [7], Èl’sgol’ts [8],
Èl’sgol’ts and Norkin [9], Gao and Zhao [10], Hale
[11], Hara and Yoneyama [12, 13], Heidel [14, 15],
Huang and Yu [16], Jitsuro and Yusuke [17], Kato
[18, 19], Kolmanovskii and Myshkis [20], Krasovskiì
[21], Li [22], Liu and Huang [23, 24], Liu and Xu
[25], Liu [26], Long and Zhang [27], Luk [28], Mal-
yseva [29], Muresan [30], Nápoles Valdés [31], Sugie
[32], Sugie and Amano [33], Sugie et al. [34], Tunç
[38–44], C. Tunç and E. Tunç [46], Yang [47], Ye et al.
[48], Yoshizawa [49], Zhang [50, 51], Zhang and Yan
[52], Zhou and Jiang [53], Zhou and Liu [54], Zhou
and Xiang [55], Wei and Huang [56], Wiandt [57],
and the references therein.

However, to the best of our knowledge from the lit-
erature, the stability and boundedness of solutions for
vector Liénard equation with a deviating argument has
not been discussed in the literature, yet.

In this paper, we are interested in the vector Liénard
equation with the constant deviating argument τ > 0:

X′′(t) + F
(
X(t),X′(t)

)
X′(t) + H

(
X(t − τ)

) = P(t),

(1)

in which t ∈ �+, �+ = [0,∞), t − τ ≥ 0, and X ∈
�n; F is a continuous symmetric n × n matrix, H :
�n → �n and P : �n → �n are continuous, and H is
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also differentiable with H(0) = 0. The existence and
uniqueness of the solutions of Eq. (1) is assumed.

Equation (1) is the vector version for systems of
real second order nonlinear differential equations of
the form:

x′′
i +

n∑

k=1

fik

(
x1, . . . , xn;x′

1, . . . , x
′
n

)
x′
k

+ hi

(
x1(t − τ), . . . , xn(t − τ)

) = pi(t)

(i = 1,2, . . . , n).

Obviously, we can write Eq. (1) in the differential
system form as

X′ = Y,

Y ′ = −F(X,Y )Y − H(X)

+
∫ t

t−τ

JH

(
X(s)

)
Y(s)ds + P(t),

(2)

which was obtained by setting X′ = Y , where X(t)

and Y(t) are respectively abbreviated as X and Y

throughout the paper.
The Jacobian matrix of H(X) is given by

JH (X) =
(

∂hi

∂xj

)
(i, j = 1,2, . . . , n),

where (x1, x2, . . . , xn) and (h1, h2, . . . , hn) are the
components of X and H , respectively. It is also as-
sumed that the Jacobian matrix JH (X) exists and is
continuous.

The symbol 〈X,Y 〉 corresponding to any pair X,Y

in �n stands for the usual scalar product
∑n

i=1 xiyi ,
that is, 〈X,Y 〉 = ∑n

i=1 xiyi ; thus 〈X,X〉 = ‖X‖2, and
λi(Ω)(i = 1,2, . . . , n) are the eigenvalues of the real
symmetric n×n matrix Ω . The matrix Ω is said to be
negative-definite, when 〈ΩX,X〉 ≤ 0 for all nonzero
X in �n.

The motivation of this paper has been inspired by
the results established in the above mentioned papers
and the recent papers of Tunç [35–37] and Tunç and
Ateş [45]. This paper is also the first attempt to investi-
gate the stability and boundedness of solutions to vec-
tor Liénard equation with a deviating argument, and
it is a new improvement and has a contribution to the
subject in the literature, and it may be useful for re-
searchers working on the qualitative behaviors of so-
lutions.

2 Preliminaries

We need the following preliminary results.

Lemma 1 (Bellman [2]) Let A be a real symmetric
n × n matrix and

ā ≥ λi(A) ≥ a > 0 (i = 1,2, . . . , n),

where ā and a are constants.
Then

ā〈X,X〉 ≥ 〈AX,X〉 ≥ a〈X,X〉
and

ā2〈X,X〉 ≥ 〈AX,AX〉 ≥ a2〈X,X〉.

For a given number r ≥ 0, let Cn denote the space
of continuous functions mapping the interval [−r,0]
into �n and for φ ∈ Cn,‖φ‖ = sup−r≤φ≤0 ‖φ(θ)‖.
Cn

H will denote the set of φ in Cn for which ‖φ‖ < H .
For any continuous function x(u) defined on −r ≤
u ≤ B,B > 0, any fixed t,0 ≤ t ≤ B , the symbol xt

will denote the function x(t + θ),−r ≤ θ ≤ 0.
If g(φ) is a functional defined for every φ in Cn

H

and x′(t) is the right-hand side derivative of x(t), we
consider the autonomous functional differential equa-
tion:

x′(t) = g(xt ), t ≥ 0. (3)

We say x(φ) is a solution of Eq. (3) with the initial
condition φ in Cn

H at t = 0 if there is a B > 0 such
that x(φ) is a function from [−r,B) into �n such that
xt (φ) is in Cn

H for 0 ≤ t < B , x0(φ) = φ and x(φ)(t)

satisfies Eq. (3) for 0 ≤ t < B .

Definition 1 (Burton [4]) A continuous function W :
�n → �+ with W(0) = 0,W(s) > 0 if s > 0, and W

strictly increasing is a wedge. (We denote wedges by
W or Wi , where i is an integer.)

Definition 2 (Hale [11]) Let V be a continuous scalar
functional in Cn

H . The derivative of V along the solu-
tions of Eq. (3) will be defined by

V ′(φ) = lim sup
h→0+

V (xh(φ)) − V (φ))

h
.

Lemma 2 (Hale [11]) Suppose g(0) = 0. Let V be a
continuous functional defined on Cn

H with V (0) = 0
and let u(s) be a function, non-negative and continu-
ous for 0 ≤ s < ∞, u(s) → ∞ as s → ∞ with u(0) =
0. If for all φ in Cn

H ,u(‖φ(0)‖) ≤ V (φ),V ′(φ) ≤ 0,
then the solution x = 0 of Eq. (3) is stable.

Let R ⊂ Cn
H be a set of all functions φ ∈ Cn

H where
V ′(φ) = 0. If {0} is the largest invariant set in R, then
the solution x = 0 of Eq. (3) is asymptotically stable.
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Let us consider non-autonomous delay differential
system

x′ = f (t, xt ), xt = x(t + θ),

−r ≤ θ ≤ 0, t ≥ 0,
(4)

where f : �+ × CH → �n is a continuous map-
ping, f (t,0) = 0, and we suppose that F takes
closed bounded sets into bounded sets of �n. Here
(C,‖.‖) is the Banach space of continuous functions
φ : [−r,0] → �n with the supremum norm, r > 0;CH

is the open H -ball in C; CH := {φ ∈ (C[−r,0],�n) :
‖φ‖ < H }. Let S be the set of ϕ ∈ C such that
‖ϕ‖ ≥ H . We shall denote by S• the set of all func-
tions ϕ ∈ C such that |ϕ(0)| ≥ H , where H is large
enough.

Definition 3 (Burton [4]) Let D be an open set in
�n with 0 ∈ D. A function V : [0,∞) × D → [0,∞)

is called positive definite if V (t,0) = 0 and if there
is a wedge W1 with V (t, x) ≥ W1(|x|), and is called
a decrescent function if there is a wedge W2 with
V (t, x) ≤ W2(|x|).

Theorem 1 (Burton [4]) If there is a Lyapunov func-
tional for (4) and wedges satisfying:

(i) W1(|ϕ(0)|) ≤ V (t, ϕ) ≤ W2(‖ϕ‖), (where W1(r)

and W2(r) are wedges),
(ii) V ′(t, ϕ) ≤ 0,

then the zero solution of (4) is uniformly stable.

Theorem 2 (Yoshizawa [49]) Suppose that there ex-
ists a continuous Lyapunov functional V (t, ϕ) defined
for all t ∈ �+ and ϕ ∈ S•, which satisfies the following
conditions:

(i) a(|ϕ(0)|) ≤ V (t, ϕ) ≤ b1(|ϕ(0)|) + b2(‖ϕ‖),
where a(r), b1(r), b2(r) ∈ CI (CI denotes the set of
continuous increasing functions), and are positive for
r > H and a(r) − b2(r) → ∞ as r → ∞,

(ii) V ′(t, ϕ) ≤ 0,

then the solutions of (4) are uniformly bounded.

3 Main results

Let P(.) ≡ 0.
Our first result is the following theorem.

Theorem 3 In addition to the basic assumptions im-
posed on F and G that appear in Eq. (1), we assume
that there exist some positive constants a0, a1 and a2

such that the following conditions hold:

(i) The matrix F is symmetric, and λi(F (.)) ≥ a1 for
all X,Y ∈ �n.

(ii) H(0) = 0,H(X) �= 0, (X �= 0), JH (X) is symmet-
ric and a2 ≤ λi(JH (X)) ≤ a0 for all X ∈ �n.

If

τ <
a1√
na0

,

then the solution X = 0 of Eq. (1) is asymptotically
stable.

Proof We define a continuous differentiable Lyapu-
nov–Krasovskii functional V (.) = V (Xt ,Yt ) by

V (.) =
∫ 1

0

〈
H(σX),X

〉
dσ + 1

2
〈Y,Y 〉

+ λ

∫ 0

−τ

∫ t

t+s

∥∥Y(θ)
∥∥2

dθ ds.

It is clear that V (0,0) = 0. On the other hand, since
H(0) = 0, ∂

∂σ
H(σX) = JH (σX)X and λi(JH (X)) ≥

a2, then we can write

H(X) =
∫ 1

0
JH (σX)X dσ

so that
∫ 1

0

〈
H(σX),X

〉
dσ

=
∫ 1

0

∫ 1

0

〈
σ1JH (σ1σ2X)X,X

〉
dσ2 dσ1

≥
∫ 1

0

∫ 1

0
〈σ1a2X,X〉dσ2 dσ1 ≥ a2

2
‖X‖2.

Hence, it follows that

V ≥ 1

2

(
a2‖X‖2 + ‖Y‖2) + λ

∫ 0

−τ

∫ t

t+s

∥∥Y(θ)
∥∥2

dθ ds

≥ D1
(‖X‖2 + ‖Y‖2) + λ

∫ 0

−τ

∫ t

t+s

∥∥Y(θ)
∥∥2

dθ ds,

= D1
(‖X‖2 + ‖Y‖2) + λ

∫ 0

−τ

∥∥Y(t + θ)
∥∥2

dθ

= D1
(∥∥φ(0)

∥∥2) + λ

∫ 0

−τ

∥∥Y(t + θ)
∥∥2

dθ,

where D1 = min{a2,1}.
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If φ is in Cn
H , then V (xt (φ)) non-increasing implies

u(‖x(φ)(t)‖) ≤ V (xt (φ)) ≤ V (φ) for all t ≥ 0.
Therefore, we can find a continuous function u(s)

such that

u
(∥∥φ(0)

∥∥) ≤ V (φ), u
(∥∥φ(0)

∥∥) ≥ 0.

Calculating the time derivative of the Lyapunov–
Krasovskii functional V (.), along any solution
(X(t), Y (t)) of (2), we get

V ′(.) = d

dt
V (Xt , Yt )

= −〈
H(X),Y

〉 − 〈
F(X,Y )Y,Y

〉

+
〈∫ t

t−τ

JH

(
X(s)

)
Y(s) ds,Y

〉

+ d

dt

∫ 1

0

〈
H(σX),X

〉
dσ

+ d

dt
λ

∫ 0

−τ

∫ t

t+s

∥∥Y(θ)
∥∥2

dθ ds.

Recall that

d

dt

∫ 1

0

〈
H(σX),X

〉
dσ

=
∫ 1

0
σ
〈
JH (σX)Y,X

〉
dσ +

∫ 1

0

〈
H(σX),Y

〉
dσ

=
∫ 1

0
σ

∂

∂σ

〈
H(σX),Y

〉
dσ +

∫ 1

0

〈
H(σX),Y

〉
dσ

= σ
〈
H(σX),Y

〉∣∣1
0 = 〈

H(X),Y
〉

and

d

dt
λ

∫ 0

−τ

∫ t

t+s

∥∥Y(θ)
∥∥2

dθ ds

= λ‖Y‖2τ − λ

∫ t

t−τ

∥∥Y(θ)
∥∥2

dθ.

By the above estimates, we obtain

V ′(.) = −〈
F(X,Y )Y,Y

〉 + λτ 〈Y,Y 〉
+

〈∫ t

t−τ

JH

(
X(s)

)
Y(s) ds,Y

〉

− λ

∫ t

t−τ

∥∥Y(θ)
∥∥2

dθ.

Using the assumptions λi(F (X,Y )) ≥ a1,
λi(JH (X)) ≤ a0 and the inequality 2|a||b| ≤ a2 + b2

(with a and b are real numbers) combined with the
classical Cauchy–Schwartz inequality, it follows that

−〈
F(X,Y )Y,Y

〉 ≤ −a1‖Y‖2,
〈∫ t

t−τ

JH

(
X(s)

)
Y(s) ds,Y

〉

≤ ‖Y‖
∥∥∥∥

∫ t

t−τ

JH

(
X(s)

)
Y(s) ds

∥∥∥∥

≤ √
na0‖Y‖

∫ t

t−τ

∥∥Y(s)
∥∥ds

≤ 1

2

√
na0

∫ t

t−τ

(∥∥Y(t)
∥∥2 + ∥∥Y(s)

∥∥2)
ds

≤ 1

2

√
na0τ‖Y‖2 + 1

2

√
na0

∫ t

t−τ

∥∥Y(s)
∥∥2

ds

so that

V ′(.) ≤ −
{
a1 −

(
1

2

√
na0 + λ

)
τ

}
‖Y‖2

− λ

∫ t

t−τ

∥∥Y(θ)
∥∥2

dθ

+ 1

2

√
na0

∫ t

t−τ

∥∥Y(s)
∥∥2

ds.

Let

λ = 1

2

√
na0.

Hence

V ′(.) ≤ −(a1 − √
na0τ)‖Y‖2.

If τ < a1√
na0

, then we have for some positive constant
α that

V ′(.) ≤ −α‖Y‖2 ≤ 0.

We also observe from previous estimate of V ′(.)
that V ′(.) = 0 (t ≥ 0) necessarily implies that Y = 0
for all t ≥ 0, and therefore also that X = ξ (a constant
vector). The substitution of the estimates

X = ξ, Y = 0 (t ≥ 0)

in (2) leads to the result H(ξ) = 0 ⇔ ξ = 0. Thus
V ′(.) = 0 (t ≥ 0) implies that

X = Y = 0 for all t ≥ 0.

The last estimate shows that the largest invariant set
in Z is Q = {0}, where Z = {φ ∈ CH : V ′(φ) = 0}.
Further, it can be seen that the only solution of Eq. (1)
for which V ′(Xt , Yt ) ≡ 0 is the solution X ≡ 0. Thus,
subject to the above discussion, one can conclude that
the zero solution of Eq. (1) is asymptotically stable.

This completes the proof of Theorem 3. �
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Corollary 1 Under the assumptions of Theorem 3, the
zero solution of Eq. (1) is uniformly stable.

Let P(.) �= 0.
Our second result is the following theorem.

Theorem 4 Let us assume that all the assumptions of
Theorem 3 and
∥∥P(t)

∥∥ ≤ Q(t)

hold, where Q ∈ L1(0,∞), L1(0,∞) is the space of
Lebesgue-integrable functions.

If

τ <
a1√
na0

,

then there exists a positive constant K such that the
solution X(t) of Eq. (1) defined by the initial functions

X(t) = Φ(t), X′(t) = Φ ′(t), t0 − τ ≤ t ≤ t0,

satisfies the estimates
∥
∥X(t)

∥
∥ ≤ K,

∥
∥X′(t)

∥
∥ ≤ K

for all t ≥ t0, where Φ ∈ C1([t0 − τ, t0],�).

Proof We reconsider the Lyapunov–Krasovskii func-
tional which is defined above. Then, under the assump-
tions of Theorem 4, it can be easily seen that

V (.) ≥ D1
(‖X‖2 + ‖Y‖2).

Since P �= 0, the time derivative of V can be bounded
as follows:

V ′(.) ≤ −α‖Y‖2 + 〈
Y,P (t)

〉

≤ ‖Y‖∥∥P(t)
∥∥

≤ ‖Y‖Q(t).

In view of the estimate

‖Y‖ ≤ 1 + ‖Y‖2,

it follows that

V ′(.) ≤ Q(t) + Q(t)‖Y‖2

≤ Q(t) + D2Q(t)V (.)

where D2 = D−1
1 .

Integrating the last estimate from 0 to t (t ≥ 0), we
have

V (Xt ,Yt ) − V (X0, Y0)

≤
∫ t

0
Q(s)ds + D2

∫ t

0
V (Xs,Ys)Q(s) ds.

Let D3 = V (X0, Y0) + ∫ t

0 Q(s)ds. Using Gronwall–
Bellman inequality, we obtain

V (Xt ,Yt ) ≤ D3 exp

(
D2

∫ t

0
Q(s)ds

)
.

This completes the proof of Theorem 4. �

Corollary 2 Subject to the assumptions of Theorem 4,
all the solutions of Eq. (1) are uniformly bounded.

Corollary 3 Consider the vector Liénard equation
with the variable deviating argument τ(t) > 0:

X′′(t) + F
(
X(t),X′(t)

)
X′(t) + H

(
X

(
t − τ(t)

))

= P(t), (5)

in which t ∈ �+,�+ = [0,∞), t − τ(t) ≥ 0, and X ∈
�n; F is a continuous symmetric n × n matrix, H :
�n → �n and P : �n → �n are continuous, and H

and τ(t) are also differentiable with H(0) = 0.
Let us define a continuous differentiable Lyapunov–

Krasovskii functional V1(.) = V1(Xt , Yt ) by

V1(.) =
∫ 1

0

〈
H(σX),X

〉
dσ + 1

2
〈Y,Y 〉

+ λ

∫ 0

−τ(t)

∫ t

t+s

∥∥Y(θ)
∥∥2

dθ ds.

Then, it can be proved that the zero solution of Eq. (5)
is asymptotically stable and uniformly stable when
P(.) ≡ 0, and all the solutions of Eq. (5) are bounded
and uniformly bounded, when P(.) �= 0.

Example As a special case of Eq. (1) for n = 2, we
consider the vector Liénard equation with the constant
deviating argument, τ > 0,

x′′
i +

2∑

k=1

fik

(
x1, . . . , xn;x′

1, . . . , x
′
n

)
x′
k

+ hi

(
x1(t − τ), . . . , xn(t − τ)

) = pi(t) (i = 1,2).

Let

F
(
X,X′) =

[
3 + x4

1 + x′4
1 0

0 3 + x4
2 + x′4

2

]
,

H
(
X(t − τ)

) =
[
x1(t − τ)

x2(t − τ)

]
,

and

P(t) =
[ sin t

1+t2

cos t

1+t2.

]

.
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Then, clearly, the eigenvalues of the matrix F(.) are
given by

λ1(F ) = 3 + x4
1 + x′4

1 and λ2(F ) = 3 + x4
2 + x′4

2

so that

λi(F ) ≥ 3 = a1 > 0 (i = 1,2).

The Jacobian matrix of H(x(t − τ)) is given by

JH (X) =
[

1 0
0 1

]

so that λi(JH (X)) = 1 > 0 and

1 ≤ λi

(
JH (X)

)
< 2 (i = 1,2).

Further, it follows that

∥∥P(t)
∥∥ =

∥∥∥∥∥

[ sin t

1+t2

cos t

1+t2

]∥∥∥∥∥
≤ 2

1 + t2
= Q(t),

∫ ∞

0
Q(s)ds = 2

∫ ∞

0

1

1 + s2
ds = π,

that is, Q ∈ L1(0,∞).
Thus, all the conditions of Theorem 3 and Theo-

rem 4 hold.

Remark It is necessary to remark that all the condi-
tions of Theorem 3 and Theorem 4 are fulfilled when-
ever τ < 3

2
√

2
.

4 Conclusion

A vector Liénard equation with a constant deviating
argument is considered. The stability and bounded-
ness of solutions of this equation is discussed. In prov-
ing our results, we employ the Lyapunov–Krasovskii
functional approach by defining a new Lyapunov–
Krasovskii functional. An example is also constructed
to illustrate our theoretical findings.

Acknowledgement The author of this paper would like to ex-
presses his sincere appreciation to the anonymous referees for
their valuable comments and suggestions which have led to an
improvement in the presentation of the paper.

References

1. Ahmad, S., Mohana Rao M, R.: Theory of Ordinary Differ-
ential Equations. With Applications in Biology and Engi-
neering. East–West Press, New Delhi (1999)

2. Bellman, R.: Introduction to matrix analysis. Reprint of the
second (1970) edition. With a foreword by Gene Golub.
Classics in Applied Mathematics, 19. Society for Indus-
trial and Applied Mathematics (SIAM), Philadelphia, PA
(1997). Reprint of the second (1970) edition. With a fore-
word by Gene Golub

3. Burton, T.A.: On the equation x′′ + f (x)h(x′)x′ + g(x) =
e(t). Ann. Mat. Pura Appl. (4) 85, 277–285 (1970)

4. Burton, T.A.: Stability and Periodic Solutions of Ordinary
and Functional Differential Equations. Academic Press, Or-
lando (1985)

5. Burton, T.A., Zhang, B.: Boundedness, periodicity, and
convergence of solutions in a retarded Liénard equation.
Ann. Mat. Pura Appl. (4) 165, 351–368 (1993)

6. Caldeira-Saraiva, F.: The boundedness of solutions of a Lié-
nard equation arising in the theory of ship rolling. IMA J.
Appl. Math. 36(2), 129–139 (1986)

7. Cantarelli, G.: On the stability of the origin of a non-
autonomous Liénard equation. Boll. Unione Mat. Ital., A
10(7), 563–573 (1996)

8. Èl’sgol’ts, L.È.: Introduction to the Theory of Differential
Equations with Deviating Arguments. Holden-Day, Inc.,
San Francisco (1966). Translated from the Russian by
Robert J. McLaughlin

9. Èl’sgol’ts, L.È., Norkin, S.B.: Introduction to the Theory
and Application of Differential Equations with Deviating
Arguments. Mathematics in Science and Engineering, vol.
105. Academic Press, New York (1973). Translated from
the Russian by John L. Casti

10. Gao, S.Z., Zhao, L.Q.: Global asymptotic stability of gen-
eralized Liénard equation. Chin. Sci. Bull. 40(2), 105–109
(1995)

11. Hale, J.: Sufficient conditions for stability and instability
of autonomous functional-differential equations. J. Differ.
Equ. 1, 452–482 (1965)

12. Hara, T., Yoneyama, T.: On the global center of generalized
Liénard equation and its application to stability problems.
Funkc. Ekvacioj 28(2), 171–192 (1985)

13. Hara, T., Yoneyama, T.: On the global center of generalized
Liénard equation and its application to stability problems.
Funkc. Ekvacioj 31(2), 221–225 (1988)

14. Heidel, J.W.: Global asymptotic stability of a generalized
Liénard equation. SIAM J. Appl. Math. 19(3), 629–636
(1970)

15. Heidel, J.W.: A Liapunov function for a generalized Lié-
nard equation. J. Math. Anal. Appl. 39, 192–197 (1972)

16. Huang, L.H., Yu, J.S.: On boundedness of solutions of gen-
eralized Liénard’s system and its application. Ann. Differ.
Equ. 9(3), 311–318 (1993)

17. Jitsuro, S., Yusuke, A.: Global asymptotic stability of non-
autonomous systems of Lienard type. J. Math. Anal. Appl.
289(2), 673–690 (2004)

18. Kato, J.: On a boundedness condition for solutions of a gen-
eralized Liénard equation. J. Differ. Equ. 65(2), 269–286
(1986)

19. Kato, J.: A simple boundedness theorem for a Liénard
equation with damping. Ann. Pol. Math. 51, 183–188
(1990)

20. Kolmanovskii, V., Myshkis, A.: Introduction to the The-
ory and Applications of Functional Differential Equations.
Kluwer Academic Publishers, Dordrecht (1999)



Stability to vector Liénard equation with constant deviating argument 1251

21. Krasovskiì, N.N.: Stability of Motion. Applications of Lya-
punov’s Second Method to Differential Systems and Equa-
tions with Delay. Stanford University Press, Stanford, Calif
(1963)

22. Li, H.Q.: Necessary and sufficient conditions for complete
stability of the zero solution of the Liénard equation. Acta
Math. Sin. 31(2), 209–214 (1988)

23. Liu, B., Huang, L.: Boundedness of solutions for a class
of retarded Liénard equation. J. Math. Anal. Appl. 286(2),
422–434 (2003)

24. Liu, B., Huang, L.: Boundedness of solutions for a class of
Liénard equations with a deviating argument. Appl. Math.
Lett. 21(2), 109–112 (2008)

25. Liu, C.J., Xu, S.L.: Boundedness of solutions of Liénard
equations. J. Qingdao Univ. Nat. Sci. Ed. 11(3), 12–16
(1998)

26. Liu, Z.R.: Conditions for the global stability of the Liénard
equation. Acta Math. Sin. 38(5), 614–620 (1995)

27. Long, W., Zhang, H.-X.: Boundedness of solutions to a re-
tarded Liénard equation. Electron. J. Qual. Theory Differ.
Equ. 24, 9 (2010)

28. Luk, W.S.: Some results concerning the boundedness of
solutions of Liénard equations with delay. SIAM J. Appl.
Math. 30(4), 768–774 (1976)

29. Malyseva, I.A.: Boundedness of solutions of a Liénard dif-
ferential equation. Differ. Uravn. 15(8), 1420–1426 (1979)

30. Muresan, M.: Boundedness of solutions for Liénard type
equations. Mathematica 40(63), 243–257 (1998)

31. Nápoles Valdés, J.E.: Boundedness and global asymptotic
stability of the forced Liénard equation. Rev. Unión Mat.
Argent. 41(4), 47–59 (2000). 2001

32. Sugie, J.: On the boundedness of solutions of the general-
ized Liénard equation without the signum condition. Non-
linear Anal. 11(12), 1391–1397 (1987)

33. Sugie, J., Amano, Y.: Global asymptotic stability of non-
autonomous systems of Liénard type. J. Math. Anal. Appl.
289(2), 673–690 (2004)

34. Sugie, J., Chen, D.L., Matsunaga, H.: On global asymptotic
stability of systems of Liénard type. J. Math. Anal. Appl.
219(1), 140–164 (1998)

35. Tunç, C.: On the stability of solutions to a certain fourth-
order delay differential equation. Nonlinear Dyn. 51(1–2),
71–81 (2008)

36. Tunç, C.: On the stability and boundedness of solutions to
third order nonlinear differential equations with retarded ar-
gument. Nonlinear Dyn. 57(1–2), 97–106 (2009)

37. Tunç, C.: Stability and bounded of solutions to non-
autonomous delay differential equations of third order.
Nonlinear Dyn. 62(4), 945–953 (2010)

38. Tunç, C.: Some new stability and boundedness results of
solutions of Liénard type equations with deviating argu-
ment. Nonlinear Anal. Hybrid Syst. 4(1), 85–91 (2010)

39. Tunç, C.: A note on boundedness of solutions to a class
of non-autonomous differential equations of second order.
Appl. Anal. Discrete Math. 4(2), 361–372 (2010)

40. Tunç, C.: New stability and boundedness results of Lié-
nard type equations with multiple deviating arguments. Izv.
Akad. Nauk Arm. SSR, Mat. 45(4), 47–56 (2010)

41. Tunç, C.: Boundedness results for solutions of certain non-
linear differential equations of second order. J. Indones.
Math. Soc. 16(2), 115–128 (2010)

42. Tunç, C.: Stability and boundedness of solutions of non-
autonomous differential equations of second order. J. Com-
put. Anal. Appl. 13(6), 1067–1074 (2011)

43. Tunç, C.: On the stability and boundedness of solutions of
a class of Liénard equations with multiple deviating argu-
ments. Vietnam J. Math. 39(2), 177–190 (2011)

44. Tunç, C.: Uniformly stability and boundedness of solu-
tions of second order nonlinear delay differential equations.
Appl. Comput. Math. 10(3), 449–462 (2011)
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