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Abstract A novel nonlinear control scheme of induc-
tion motor (IM) is presented based on state error port-
controlled Hamiltonian (PCH) systems and energy-
shaping (ES) principle. The PCH model of IM system
is established. Using interconnection assignment and
damping injection method, the desired state error PCH
structure is assigned to the closed-loop IM system by
the ES principle. The controllers are designed when
the load torque is known and unknown, respectively.
A load torque estimator is developed in the presence
of the load torque disturbance. Moreover, an observer
is proposed to estimate the unknown load torque. The
stability of the closed-loop system is also verified. Fi-
nally, speed regulation of the IM drive system is imple-
mented based on space vector pulse-width modulation
technology. The simulation results show that the sys-
tem has good load disturbance attenuation and speed
tracking performances.
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1 Introduction

Induction motors (IMs) are widely used in electrical
drives and servo systems. From the control point of
view, IMs represent complex multivariable nonlinear
problems and constitute one of the important areas of
application for control theory. The control problems
are further complicated by the fact that IM drive sys-
tems are subject to unknown load torque disturbances
and the motor parameters are of great uncertainty. Ex-
isting solutions to these problems have been given,
for instance, field orientation control (FOC), direct
torque control (DTC) and sensorless control [1]. With
the development of computer control technology [2]
and control theory, IM dirves control strategies such
as L2 gain disturbance attenuation [3], passivity-based
control [4], back-stepping principle [5], sliding mode
control [6], adaptive control [7], feedback lineariza-
tion [8], and intelligent control [9] have made impor-
tant progress. However, these nonlinear control meth-
ods are too complicated to be implemented easily. Re-
cently, the Energy-Shaping (ES) and Port-Controlled
Hamiltonian (PCH) theory have attracted a lot of atten-
tion [10–15]. The PCH systems with dissipation has
become an important design tool for nonlinear control
systems.

The ES consists in shaping the energy function of
the system in order to obtain a new closed-loop energy
function that has a minimum point at the desired equi-
librium point, preserving the original interconnection
structure and dissipative function. Thus, the closed-
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loop system preserves the PCH form with a stable
equilibrium point at the state of minimum energy. IMs
can be viewed as two-port (electrical port and mechan-
ical port) energy-transformation device. The action of
a controller may also be understood in energy terms
as another dynamical system-interconnected with the
electromechanical system to modify its behavior. The
control problem can then be described as finding a dy-
namical system and an interconnection pattern such
that the overall energy function takes the desired form.
The energy-shaping approach is applied to IMs con-
trol systems. Attention of the control method is now
focused on the interconnection and damping structures
of the system. Energy is injected into the electrical port
for determining the full system’s behavior. Many theo-
retical extensions and practical applications have been
reported in the literature [15–18], for instance, per-
manent magnet synchronous motor systems [15, 16],
stepper motor systems [17], and induction motor sys-
tems [18].

In this paper, based on a novel state error PCH and
energy-shaping control principle, the modeling and
pulse width modulation (PWM) control of IM drive
system, which consists of IM and power converter
are studied. The main characteristic of the method is
that the system has PCH structure. The closed-loop
energy function can be used as Lyapunov (or stor-
age) function rendering the stability analysis more
transparent. Based on the interconnection assignment
and damping injection and energy-shaping principle,
the PCH controller is designed when the load torque
is known. The proportional integral (PI) control ac-
tion of speed error is added into the system which is
used to estimate the load torque disturbance. The load
torque observer is also developed to estimate the un-
known load torque. Using space vector pulse-width
modulation (SVPWM) signal transformation technol-
ogy, speed regulation of IM drive system is imple-
mented by controlling the state of each switch in the
inverter.

2 Control principle of the state error PCH systems

2.1 PCH systems

Consider an affine nonlinear system{
ẋ = f (x) + g(x)u,

y = h(x).
(1)

The system (1) is passive if it is possible to find a
nonnegative function V (x) such that V (0) = 0 and

V
(
x(t)

) − V
(
x(0)

) ≤
∫ t

0
yT (τ )u(τ) dτ. (2)

The PCH systems with dissipation can be expressed
as [8]{

ẋ = [J (x) − R(x)] ∂H(x)
∂x

+ g(x)u,

y = gT (x)
∂H(x)

∂x
,

(3)

where x ∈ �n is the state vector, u,y ∈ �m are the
input and output vector, respectively, inputs and out-
puts are conjugated variables whose product has units
of power, R(x) = RT (x) ≥ 0 represents the dissipa-
tion, the interconnection structure is captured in matrix
g(x) and the skew-symmetric matrix J (x) = −J T (x),
and H(x) is the total stored energy function of the sys-
tem.

The most important feature of PCH systems is its
input-output passivity and stability properties. Given a
dynamical system (3), the variation of internal energy
equals the dissipated power plus the power provided
to the system by the environment. The energy balance
equation for system (3) is given by

dH(x)

dt
=

[
∂H(x)

∂x

]T

ẋ

= yT u −
[
∂H(x)

∂x

]T

R(x)
∂H(x)

∂x
≤ yT u (4)

then, integrating (4) over an time-interval [0, t] re-
sults in the following well-known dissipative inequal-
ity,which ascertains the passivity properties of PCH
systems

H
(
x(t)

) − H
(
x(0)

) ≤
∫ t

0
yT (τ )u(τ) dτ,

which is the same as (2).

2.2 Control principle of the state error PCH systems

The final design objective of the PCH system (3) is
to find a feedback u = β(x) such as the closed-loop
dynamics is a state error PCH system with dissipation.
The following theorem presents a general formulation
of the controller design technique.
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Theorem 1 Consider the PCH system (3), given
H(x), J (x), R(x) and g(x), let x0 be a desired equi-
librium and x̃ = x − x0 be the state error. Assign a
closed-loop system desired energy function Hd(x̃) > 0
and Hd(0) = 0. Assume we can find β(x), Ja and Ra ,
satisfying

Jd(x̃) = J (x̃) + Ja = −J T
d (x̃),

Rd(x̃) = R(x̃) + Ra = RT
d (x̃) ≥ 0,

(5)

u = β(x) (6)

and the closed-loop PCH system (3) with u = β(x)

takes a the state error PCH form

˙̃x = [
Jd(x̃) − Rd(x̃)

]∂Hd(x̃)

∂x̃
. (7)

Then x̃ = 0 is stable equilibrium of the closed-loop
system (7). Furthermore, it is asymptotically sta-
ble if, in addition, the largest invariant set under
the closed-loop dynamics contained in {x̃ ∈ Rn |
[ ∂Hd(x̃)

∂x̃
]T Rd(x̃)

∂Hd(x̃)
∂x̃

= 0} equals {0}.

Proof Since Jd(x̃) is skew-symmetric matrix, thus

[
∂Hd(x̃)

∂x̃

]T

Jd(x̃)
∂Hd(x̃)

∂x̃
= 0. (8)

As Rd(x̃) ≥ 0, therefore, along the trajectories of the
system (7), the time derivative of Hd(x̃) is

dHd(x̃)

dt
=

[
∂Hd(x̃)

∂x̃

]T ˙̃x

= −
[
∂Hd(x̃)

∂x̃

]T

Rd(x̃)
∂Hd(x̃)

∂x̃
≤ 0. (9)

Applying Lyapunov’s stability theorem, x̃ = 0 is stable
equilibrium of the closed-loop system (7). The asymp-
totic stability follows immediately invoking La Salle’s
invariance principle.

Theorem 1 shows that the system (3) can be ex-
pressed as the form of system (7) by u = β(x). More-
over, applying Theorem 2 below, the feedback control
law u = β(x) can be solved. �

Theorem 2 Consider the system of Theorem 1 in
closed-loop with u = β(x), if

J (x̃ + x0) = J (x̃) + J (x0), (10)

H(x) = 1

2
xT D−1x,Hd(x̃) = 1

2
x̃T D−1x̃, (11)

g(x)β(x) = [
Ja − Ra − J (x0)

]
D−1x̃

− J (x̃)D−1x0 + g(x0)u0 (12)

then the closed-loop state error PCH system can be
rewritten in the form (7).

Proof Define x̃ = x − x0. Then x = x̃ + x0, substitut-
ing into (3), we get

˙̃x = [
J (x̃ + x0) − R

]
D−1(x̃ + x0)

+ g(x̃ + x0)β(x) − ẋ0, (13)

where

∂H(x)

∂x
= D−1x

and

∂Hd(x̃)

∂x̃
= D−1x̃.

From (3), we have

ẋ0 = [
J (x0) − R

]
D−1x0 + g(x0)u0.

Substitution of above formula and (10) into (13) gives
that the state error system model is

˙̃x = [
J (x̃) − R

]
D−1x̃ + J (x0)D

−1x̃ + J (x̃)D−1x̃0

+ g(x + x0)β(x) − g(x0)u0. (14)

Let

ξ = −[
Ja − Ra − J (x0)

]
D−1x + J (x̃)D−1x0

+ g(x)β(x) − g(x0)u0. (15)

Then, according to (5) and (15), Eq. (14) can be writ-
ten as

˙̃x = [
Jd(x̃) − Rd

]∂Hd(x̃)

∂x̃
+ ξ. (16)

The above equation can be expressed as the system (7),
provided that ξ = 0. Obviously, Eq. (12) ensures that
ξ = 0.

Theorem 2 provides the solution of the controller,
feedback control u = β(x) can be obtained from
(12). �
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3 Controller design of induction motor drives

3.1 PCH model of the induction motor

The model of the induction motor can be described in
a synchronously rotating d − q reference frame, and
then we get the electrical subsystem

{
λ̇s = −Rsis − ωsJ2λs + us,

λ̇r = −Rrir − (ωs − npω)J2λr

(17)

and the mechanical subsystem

Jmω̇ = τ − τL −Rmω = npλT
r J2ir − τL −Rmω, (18)

where

τ = npλT
r J2ir = np

Lm

Lr

iTs J2λr, (19)

λ = Li, (20)

L = [ LsI2 LmI2
LmI2 LrI2

]
, I2 = [ 1 0

0 1

]
, J2 = −J T

2 = [ 0 −1
1 0

]
,

and λ = [λT
s λT

r ]T = [λsd λsq λrd λrq ]T ,
i = [iTs iTr ]T = [isd isq ird irq ]T , us = [usd usq ]T ,
τ and τL are electromagnetic torque and load torque,
respectively, the subscripts s and r indicate the vari-
ables for the stator and the rotor, respectively, Jm is
the moment of inertia, Ls , Lr , Lm are the stator, rotor,
mutual inductances, respectively, Rs and Rr are the re-
sistances for the stator and the rotor, respectively, np is
the number of pole pairs, ωs is electrical angular speed
of the stator (the rotating speed of the synchronously
d −q reference frame), ω is mechanical angular speed
of the rotor, ωr is electrical angular speed of the rotor,
Rm is the friction coefficient of the rotor, and

ωr = npω. (21)

We define the mechanical momentum, state vector and
input vector as follows:

p = Jmω, x = [
λT

s λT
r p

]T
,

u = [
uT

s ωs −τL

]T
.

(22)

Using (18) and (22), we can get

ṗ = Jmω̇ = npλT
r J2ir − Rmω − τL. (23)

The Hamiltonian (storage) function of the IM system
is given by

H(x) = 1

2
xT D−1x = 1

2
λT L−1λ + 1

2

p2

Jm

, (24)

D =
[

L 0

0 Jm

]
. (25)

Equations (17) and (23) can be rewritten in (3), and
then the PCH model of IM can be written as

ẋ =
⎡
⎢⎣

⎛
⎜⎝

0 0 0

0 0 npJ2λr

0 npλrJ2 0

⎞
⎟⎠

−
⎛
⎜⎝

RsI2 0 0

0 RrI2 0

0 0 Rm

⎞
⎟⎠

⎤
⎥⎦ ∂H(x)

∂x

+
⎡
⎢⎣

I2 −J2λs 0

0 −J2λr 0

0 0 1

⎤
⎥⎦u, (26)

where

∂H(x)

∂x
= D−1x =

⎡
⎢⎣

is

ir

ω

⎤
⎥⎦ ,

J (x) =
⎡
⎢⎣

0 0 0

0 0 npJ2λr

0 npλT
r J2 0

⎤
⎥⎦ ,

(27)

R(x) =
⎡
⎢⎣

RsI2 0 0

0 RrI2 0

0 0 Rm

⎤
⎥⎦ ,

g(x) =
⎡
⎢⎣

I2 −J2λs 0

0 −J2λr 0

0 0 1

⎤
⎥⎦ .

(28)

3.2 The case of known load torque

Assuming that rotor flux vector has been aligned with
the d-axis of the d − q reference frame. Following the
idea of field orientation, given λr0, then the desired
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equilibrium is

x0 =
⎡
⎢⎣

λs0

λr0

Jmω0

⎤
⎥⎦ , λs0 =

[
λsd0

λsq0

]
,

λr0 =
[

λrd0

0

]
.

(29)

We can get x0 from λs0. Using (17) and (18) yield

{
us0 = ωs0J2λs0 + Rsis0,

(ωs0 − npω0)J2λr0 = −Rrir0,
(30)

τ0 = τL + Rmω0. (31)

From (30), we obtain

ird0 = 0, (32)

ωs0 − npω0 = −Rrirq0

λrd0
= −Rrirq0

λrd0
, (33)

λrd0 = Lmisd0 + Lrird0 = Lmisd0 = λrd0, (34)

then

isd0 = λrd0

Lm

. (35)

Using (19) and (31), we can get

isq0 = Lrτ0

Lmnpλrd0
(36)

since

λrq0 = Lmisq0 + Lrirq0 = 0,

thus

irq0 = −Lm

Lr

isq0 = − τ0

npλrd0
. (37)

Substituting (37) into (33), we have

ωs0 = npω0 + Rrτ0

npλ2
rd0

, (38)

λs0 = Lsis0 + Lmir0. (39)

Since Eq. (27) satisfying (10), thus from (12) we get

⎡
⎢⎣

us − ωsJ2λs

−ωsJ2λr

−τL

⎤
⎥⎦

= [
Ja − Ra − J (x0)

]
⎡
⎢⎢⎣

ĩs

ĩr

ω̃

⎤
⎥⎥⎦ −

⎡
⎢⎣

0

npJ2λ̃rω0

npλ̃T
r J2ir0

⎤
⎥⎦

+
⎡
⎢⎣

us0 − ωs0J2λs0

−ωs0J2λr0

−τL

⎤
⎥⎦ . (40)

Supposing

Ja(x) =
⎡
⎢⎣

0 0 J13

0 0 J23

−J T
13 −J T

23 0

⎤
⎥⎦ ,

Ra =
⎡
⎢⎣

rsI2 0 0

0 0 0

0 0 0

⎤
⎥⎦

(41)

and substituting into (40), we have

us − ωsJ2λs = −rs ı̃s + J13ω̃ + us0 − ωs0J2λs0, (42)

−ωsJ2λr = (J23 − npJ2ir0)ω̃ − npJ2λ̃rω0

− ωs0J2λr0, (43)

−J T
13 ı̃s − (

J T
23 + npλT

r0J2
)
ı̃r − npλ̃rJ2ir0 = 0. (44)

To ensure that Eq. (42) holds, we choose

J13 = −npLmJ2ir0, J23 = npLmJ2is0. (45)

Substituting (43) into (41), we can obtain

λrωs = npLrir0ω̃ + λr0ωs0 + npλ̃rω0,

ωs = λT
r (npω0λ̃r + npω̃Lr ir0 + ωs0λr0)

‖λr‖2
.

(46)

Substituting (43) into (40), we get the controller

us = ωsJ2λs − rs ı̃s − npLmJ2ir0ω̃

+ us0 − ωs0J2λs0. (47)
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From (20), we have

λs = Lsis + Lmir , λr = Lmis + Lrir ,

ir = λr − Lmis

Lr

,
(48)

λs = Lsis + Lm

Lr

(λr − Lmis)

=
(

Ls − L2
m

Lr

)
is + Lm

Lr

λr . (49)

Substituting (29) and (38) into (46), and substituting
(30) and (49) into (47), the controller can be written as

ωs = npω0 + λrd

‖λr‖2

Rrτ0

npλrd0

+ npLr(ω − ω0)λrqirq0

‖λr‖2
, (50)

us = Rsis0 − rs(is − is0) − npLmJ2ir0(ω − ω0)

+ ωsJ2

[(
Ls − L2

m

Lr

)
is + Lm

Lr

λr

]
. (51)

λr in (50) and (51) is not directly measurable, so an
observer is needed to estimate it. In order to get rid
of rotor resistance changes, we use an open-loop rotor
flux observer. From (17) and (20), we get the observer
as follows:

λ̇s = us − Rsis − ωsJ2λs, (52)

λr = Lr

Lm

λs +
(

Lm − LsLr

Lm

)
is . (53)

3.3 Load torque disturbance attenuation

The proportional integral (PI) control action of speed
error is lead into the system in the presence of load
torque disturbance. The integral separation principle
is used to avoid being integral saturation aiming at the
load torque estimating problem. So, we design the load
torque estimator as follows:

τ̂L =

⎧⎪⎨
⎪⎩

−kp(ω − ω0), |ω − ω0| > ρ,

−kp(ω − ω0)

− ki

∫ t

t0
(ω − ω0) dt, |ω − ω0| ≤ ρ,

(54)

where ρ is integral action separation threshold value.
Then (31) can be replaced by τ0 = τ̂L + Rmω0, and

new equilibrium can be obtained. With the controller
in (50) and (51), speed control of induction motor is
implemented when load torque is unknown.

3.4 The case of unknown load torque

In practical applications, the load torque is unknown,
thus we need to design load torque observer. When the
load torque is known and constant, from (18) and (19),
we get{

ω̇ = npLm

JmLr
iTs J2λr − τL

Jm
− Rmω

Jm
,

τ̇L = 0.
(55)

In a practical motor running system, the load torque
is unknown. Because ω and is are measurable, and
λr can be obtained using rotor flux observer,the load
torque observer equations are given by{ ˙̂ω = npLm

JmLr
iTs J2λr − τ̂L

Jm
− Rmω̂

Jm
+ k1(ω − ω̂),

˙̂τL = k2(ω − ω̂),
(56)

where k1 and k2 are the parameters to be designed. Let
ω̃ = ω − ω̂ and τ̃L = τL − τ̂L, the observation error
equation has the form[ ˙̃ω

˙̃τL

]
=

[−(k1 + Rm

Jm
) − 1

Jm

−k2 0

][
ω̃

τ̃L

]
. (57)

This is a linear and homogeneous system, which is
asymptotically stable for all positive k1 and nega-
tive k2. The poles of the observer can be obtained from
(57)

s1,2 =−k1Jm + Rm

2Jm

± 1

2Jm

√
(Jmk1 + Rm)2 + 4Jmk2.

All the poles of the observer are set to be s1 =
s2 = −sp by selection of parameters as

k1 = 2sp − Rm

Jm

, k2 = −Jms2
p. (58)

Thus, the load torque estimation errors decay rapidly
to zero by the pole placement. We can replace τL with
τ̂L in (31), τ0 = τ̂L +Rmω0, and then we get new equi-
librium. With the controller in (50) and (51), speed
regulation of induction motor is implemented when
load torque is unknown.

When load torque is unknown, the condition of (5)
still holds, and PCH structure of closed-loop system is
preserved. So, equilibrium of the closed-loop system
is asymptotically stable when load torque is unknown.
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4 Controller implementation and simulation
results

4.1 Controller implementation

The main circuit diagram of IM control system is
shown in Fig. 1. The IM is connected to the converter
including a three-phase AC/DC diode-rectifier and a
three-phase DC/AC voltage-source inverter. The out-
puts of the inverter are connected to the three-phase
stator windings of IM which are Wye-connected, UDC

is the output DC voltage of the rectifier which is es-
sentially constant. Moreover, using the SVPWM sig-
nal transformation technology, speed regulation of IM
drive systems is implemented, and the speed control
of IM can be implemented by controlling the state of
each switch in the inverter to provide the desired three-
phase voltages. Transforming us = [usd usq ]T in (51)
to uαβ = [uα uβ ]T through the dq − αβ transforma-
tion matrix,we get[

uα

uβ

]
=

[
cosωst − sinωst

sinωst cosωst

][
usd

usq

]
. (59)

Then, applying SVPWM signal transformation princi-
ple, we can get six pulses which are used to control
the power converter to provide the desired three-phase
voltages usabc = [ua ub uc]T . The motor is just con-
trolled by usabc . Therefore, the speed regulation of IM
can be implemented by controlling uαβ .

4.1.1 Sector of composed voltage vector

Composed voltage vector of the three-phase voltages
provided to the motor is uN (N = 1,2,3,4,5,6),
which is shown in different sectors in Fig. 2. usα and
usβ are the voltages of us in α − β reference frame,
respectively.

We choose

a = Usβ, b =
√

3

2
Usα − 1

2
Usβ,

Fig. 1 Main circuit diagram of IM control system

c = −
√

3

2
Usα − 1

2
Usβ,

N = sign(a) + 2 sign(b) + 4 sign(c),

sign(z) =
{

1, z > 0,

0, z ≤ 0.

We can decide the sector of composed voltage by the
value of N . The relationship of the sector and N is
shown in Table 1.

4.1.2 Operation time of two neighbor composed
voltages

We choose

X =
√

2usβTs

UDC
, Y = (

√
6usα + √

2usβ)Ts

2UDC
,

Z = (−√
6usα + √

2usβ)Ts

2UDC
.

The relationship between operation time of two
neighbor composed voltages and the sector is shown in
Table 2, where, Ts is the switching frequency of IGBT

Fig. 2 Sector of composed voltage vector

Table 1 The relationship between operation time and the sector

Sector I II III IV V VI

t1 −Z Z X −X −Y Y

t2 X Y −Y Z −Z −X

Table 2 The relationship of the sector and N

N 1 2 3 4 5 6

Sector II VI I IV III V
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Table 3 The relationship between the switching time and the
sector

Sector I II III IV V VI

tcm1 ta tb tc tc tb ta

tcm2 tb ta ta tb tc tc

tcm3 tc tc tb ta ta tb

inverter switches. When t1 + t2 > Ts , we choose

t ′1 = t1
Ts

t1 + t2
, t ′2 = t2

Ts

t1 + t2
.

4.1.3 Switching time of composed voltage vector

Given ta = (Ts−t ′1−t ′2)
4 , tb = ta+t ′1

2 and tc = tb+t ′2
2 , the

switching time of V1, V2, and V3 is tcm1, tcm2, and tcm3,
respectively, and the relationship between the switch-
ing time and the sector is shown in Table 3.

4.1.4 Implementation of SVPWM

Comparing tcm1, tcm2, and tcm3 with an isosceles trian-
gle which frequency is Ts , and the amplitude is Ts

2 , we
get three PWM waves to control V1, V3, and V5. The
two switches of the same bridge are on alternatively,
then we can get the other three PWM waves to con-
trol V4, V6, and V2. Then the SVPWM control can be
implemented.

4.2 Simulation results

In order to evaluate the performance of proposed con-
trol method, the simulation is performed for the IM
drives. The parameters of the IM are: Rs = 0.687 
,
Rr = 0.642 
, np = 2, Ls = 0.084 H, Lr = 0.0852 H,
Lm = 0.0813 H, Jm = 0.3 kg m2, np = 2, Rm =
0.001 kg m2/s.

The IM is initially at standstill with zero load
torque. At startup, the load torque τL is set to 3 Nm,
bus voltage UDC = 220 V, and the desired speed ω0

is set to 60 rad/s, λrd0 = 1 Wb. From Eqs. (32), (35),
(36), and (37) , we get the equilibriums as follows:
isd0 = 12.3001 A, isq0 = 1.572 A, ird0 = 0 A, irq0 =
−1.5 A. Figure 3 gives the speed responses of different
damping parameters (rs = −0.2, rs = 0 and rs = 0.5).
From Fig. 3, we can know that speed response is faster
when rs = −0.2. Thus, we select rs = −0.2 as the sim-
ulating condition below. At t = 1 s, the desired speed

Fig. 3 Speed curve with known load torque

Fig. 4 Speed tracking curve

ω0 is set to 80 rad/s. Figure 4 shows that the system
has good speed tracking performance.

At t = 1 s, different load disturbances are added to
the system, and the magnitudes of the disturbances are
3 Nm and 6 Nm. Figure 5 shows that the rotor speed
ω decreases and the steady-state error exists when the
load torque disturbance increases. The PI parameters
of load torque estimator are kp = 0.1 and ki = 150.
Figure 6 shows that the estimator has good load torque
tracking performance, and Fig. 7 exhibits that the con-
troller has good speed tracking performance. Figure 8
shows the phase current response when the load torque
disturbance is added to the system at t = 1 s. From
Fig. 8, we can see that the frequency and the ampli-
tude of current turns to be larger.
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Fig. 5 Speed curve without an estimator

Fig. 6 Estimated load torque curve

Fig. 7 Speed curve with an estimator

Fig. 8 A-phase current curve with an estimator

Fig. 9 Speed curve with unknown load torque

When the load torque is initially unknown (3 Nm),
at t = 1 s, we add an unknown load torque distur-
bance (3 Nm) again. Figure 9 shows that rotor speed
response exists steady-state error when the load torque
is unknown. In order to track the changes of the load
torque better, we add a load torque observer to the
system. At t = 1 s, unknown load torque is added
to the system, the magnitude of the unknown load
torque is 3 Nm. Figure 10 gives the responses of the
load torque observer for various values of sp (sp =
−500,−200,−100). Figure 10 also shows that the ob-
server has better unknown load torque tracking perfor-
mance when sp = −500. Moreover, Fig. 11 shows that
rotor speed steady-state error is eliminated when the
load torque observer is used. From Fig. 12, we can see
that the amplitude of current turns to be larger.
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Fig. 10 Responses of the load observer

Fig. 11 Speed curve with an observer

5 Conclusion

Based on energy-shaping and state error Port-Control
Hamiltonian systems theory, nonlinear control of IM
drives is presented. The clear-cut definition of the in-
terconnection structure and the damping is given in
the PCH model. It has very clear physical meanings.
Based on the interconnection assignment and damping
injection method, the desired state error PCH struc-
ture is assigned to the closed-loop IM drive systems
by energy-shaping control. Following the idea of field
orientation, the desired equilibrium of the system is
obtained. The equilibrium stability of the closed-loop
system is also verified according to Lyapunov’s sta-

Fig. 12 A-phase current curve with an observer

bility theorem. Feedback stabilization controller is de-
signed when the load torque is known. An estimator
is designed in the presence of the load torque distur-
bance. The load torque observer is developed when
the load torque is unknown. Applying SVPWM sig-
nal transformation technology, speed regulation of IM
drive system is implemented by controlling the state
of each switch in the inverter. Theoretical analysis
and simulation results show that the system has good
load disturbances attenuation and speed tracking per-
formance. The designed controller is simple and can
be implemented easily.
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