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Abstract In drive-response complex-variable sys-
tems, projective synchronization with respect to a real
number, real matrix, or even real function means that
drive-response systems evolve simultaneously along
the same or inverse direction in a complex plane. How-
ever, in many practical situations, the drive-response
systems may evolve in different directions with a con-
stant intersection angle. Therefore, this paper investi-
gates projective synchronization in drive-response net-
works of coupled complex-variable chaotic systems
with respect to complex numbers, called complex pro-
jective synchronization (CPS). The adaptive feedback
control method is adopted first to achieve CPS in a
general drive-response network. For a special class of
drive-response networks, the CPS is achieved via pin-
ning control. Furthermore, a universal pinning control
scheme is proposed via the adaptive coupling strength
method, several simple and useful criteria for CPS are
obtained, and all results are illustrated by numerical
examples.
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1 Introduction

Synchronization and control of coupled dynamical
systems have attracted much attention from scientists
and engineers [1–14]. For explaining collective phe-
nomena better, many kinds of synchronization man-
ners are introduced, such as complete synchronization,
phase synchronization, lag synchronization, projective
synchronization, and so on. Projective synchronization
(PS) in drive-response systems has been extensively
investigated in virtue of its broad potential applica-
tions [15, 16]. According to the form of the projective
factor, the concept of PS has been extended to many
other forms, such as generalized projective synchro-
nization [17, 18], modified projective synchroniza-
tion [19, 20], hybrid projective synchronization [21],
and function projective synchronization [7, 22]. In
[13, 14, 22], the authors considered the drive-response
network of 1 + N coupled identical partially linear
chaotic systems.

All the above research only considered the synchro-
nization of coupled dynamical systems with real vari-
ables. On the other hand, dynamical systems with a
complex variable are used to model real systems as
well, for example, the complex Lorenz system [23] is
used to describe and simulate rotating fluids and de-
tuned laser [24, 25]. Recently, many researchers de-
voted much effort to study synchronization and control
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in coupled complex-variable dynamical systems [26–
32]. In [27], Mahmoud et al. introduced complex Chen
and Lü systems and well investigated the global syn-
chronization of coupled identical systems. Further-
more, Mahmoud et al. [28] studied the chaos synchro-
nization of two different complex Chen and Lü sys-
tems via active control. In [29], Nian et al. proposed
the concept of module-phase synchronization and in-
vestigated the synchronization in complex dynamical
systems. In [30], Hu et al. investigated hybrid projec-
tive synchronization in a chaotic complex dynamical
system with respect to a scaling matrix.

It is notable that all the factors in the above pro-
jective synchronization are real numbers or real matri-
ces, or even real valued functions. That is to say, the
drive-response systems evolve in the same or inverse
direction in complex plane simultaneously. For com-
plex dynamical systems, however, in many practical
situations, the drive-response systems may evolve in
different directions with a constant intersection angle,
for example, y = ρejθx, where x denotes the drive
system, y denotes the response system, ρ > 0 denotes
the zoom rate, θ ∈ [0,2π) denotes the rotation angle
and j = √−1. Therefore, in [33], we investigated pro-
jective synchronization with respect to a complex fac-
tor, called complex projective synchronization (CPS),
in drive-response complex-variable chaotic systems.

Motivated by the above discussions, in this paper,
we will further investigate complex projective syn-
chronization in a drive-response network of 1+N par-
tially linearly coupled complex-variable chaotic sys-
tems. These kind of networks was first introduced in
[14], in which the response systems are not only driven
by the central node (drive system), but also coupled
via a linear and mutual coupling scheme. Their idea
comes from some practical instance, for example, in
a social network or games in economic activities, and
behaviors of individuals (those response systems) will
be affected not only by powerful one (the drive system
used in the present paper), but also those with a simi-
lar role as themselves [13, 14, 22]. The CPS in a gen-
eral drive-response network is investigated via adap-
tive feedback control firstly, in which the outer cou-
pling matrix only need to be symmetrical. Moreover,
the CPS in a special class of drive-response networks
is investigated via pinning control. Furthermore, a uni-
versal pinning control scheme is proposed via adaptive
coupling strength method.

The rest of this paper is organized as follows. In
Sect. 2, the model of a drive-response network coupled

with partially linear complex-variable chaotic systems
and some preliminaries are introduced. In Sect. 3,
complex projective synchronization is investigated via
adaptive control and pinning control, respectively. In
Sect. 4, several numerical examples are provided to
verify the effectiveness of the theoretical results. Con-
clusions are drawn in Sect. 5.

Notation Throughout this paper, for Hermite matrix
H , the notation H > 0 (H < 0) means that the ma-
trix H is positive definite (negative definite). For any
complex (real) matrix M , Ms = MT + M . For any
complex number (or complex vector) x, the notations
xr and xi denote its real and imaginary parts, respec-
tively, and x̄ denotes the complex conjugate of x.

2 Model description and preliminaries

Consider a drive-response network coupled with 1 + N

identical partially linear chaotic systems [13, 22],
which can be described by

ẋ(t) = M(z(t))x(t),

ż(t) = f (x(t), z(t)),
(1)

ẏi (t) = M
(
z(t)

)
y(t) + ε

N∑

k=1

aikΓ yk(t),

i = 1,2, . . . ,N, (2)

where x(t) = (x1, x2, . . . , xm)T ∈ Cm and z(t) ∈ R are
the drive system variables, yi(t) = (yi1, yi2, . . . , yim)T

∈ Cm is the state variable of a node i in the response
network. M(z(t)) ∈ Rm×m is a complex matrix func-
tion of z(t) and f : Cm × R → R is a nonlinear func-
tion, ε > 0 is the coupling strength and Γ ∈ Rm×m

is the inner coupling matrix. Matrix A = (aij )N×N

is the zero-row-sum outer coupling matrix, which de-
notes the network topology and is defined as follows:
If there is a connection from node j to node i (i �= j),
then aij �= 0; otherwise, aij = 0.

Definition 1 Matrix A = (aik)
N
i,k is said to belong to

class A1, denoted as A ∈ A1, if:

(1) aik ≥ 0, i �= k, aii = −∑N
k=1,k �=i aik =

−∑N
i=1,i �=k aik , i = 1,2, . . . ,N ;

(2) A is irreducible.
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Definition 2 The drive-response network (1) and (2)
is said to achieve complex projective synchroniza-
tion, if there exists a complex number α such that
limt→∞ ‖yi(t) − αx(t)‖ = 0, where the norm of any
complex vector x is ‖x‖ = √

xT x̄.
Without loss of generality, let α = ρ(cos θ +

j sin θ), where ρ = |α| is the module of α and θ ∈
[0,2π) is the phase of α. Therefore, the projective
synchronization is achieved when θ = 0 or π . Further-
more, the complete synchronization is achieved when
ρ = 1 and θ = 0, the antisynchronization is achieved
when ρ = 1 and θ = π .

Our objective here is to achieve CPS in the drive-
response network (1) and (2) by applying proper con-
trollers ui(t) on the response network. Then the con-
trolled response network is

ẏi (t) = M
(
z(t)

)
yi(t) + ε

N∑

k=1

aikΓ yk(t) + ui(t),

i = 1,2, . . . ,N. (3)

The following lemmas and assumption are required
for deriving the main results.

Lemma 1 [34] Let m × m complex matrix H be Her-
mitian, then

(a) xT Hx is real for all x ∈ Cm;
(b) All the eigenvalues of H are real.

Assumption 1 Suppose that there exits a constant L

such that the largest eigenvalue of Ms(z(t)) satisfies

λmax
(
Ms

(
z(t)

)) ≤ L.

It is easy to verified that all the chaotic systems sat-
isfy the assumption due to z(t) is bounded.

Lemma 2 [3] If G = (gij )N×N is an irreducible ma-
trix with Rank(G) = N −1 and satisfies gij = gji ≥ 0
for i �= j , and

∑N
j=1 gij = 0, for all i = 1,2, . . . ,N .

Then all eigenvalues of the matrix

⎡

⎢⎢⎢
⎣

g11 − ε g12 · · · g1N

g21 g22 · · · g2N

...
...

. . .
...

gN1 gN2 · · · gNN

⎤

⎥⎥⎥
⎦

are negative for any positive constant ε > 0.

3 Main results

In this section, several sufficient conditions for achiev-
ing CPS in drive-response network (1) and (3) will be
provided by adopting different control schemes. Let
ei(t) = yi(t) − αx(t), then one has

ėi (t) = M
(
z(t)

)
ei(t) + ε

N∑

k=1

aikΓ ek(t) + ui(t),

i = 1,2, . . . ,N. (4)

Firstly, consider CPS between (1) and (3) via the
following adaptive linear feedback controllers

ui(t) = −d(t)ei(t), i = 1,2, . . . ,N,

(5)

ḋ(t) = δ

N∑

i=1

eT
i (t)ei(t),

where δ > 0 is the adaptive gain.

Theorem 1 Suppose that Assumption 1 holds. The
CPS in the drive-response network (1) and (3) with
the controllers (5) can be achieved for a small positive
constant δ.

Proof Consider the following Lyapunov function can-
didate:

V (t) =
N∑

i=1

eT
i (t)ei(t) + 1

2δ

(
d(t) − d∗)2

.

Its derivative along the trajectories of (4) is

V̇ (t) =
N∑

i=1

(
ėT
i (t)ei(t) + eT

i (t)ėi (t)
)

+ 1

δ

(
d(t) − d∗)ḋ(t)

=
N∑

i=1

(
eT
i (t)MT (z)ei(t) + eT

i (t)M(z)ei(t)
)

+ ε

N∑

i=1

N∑

k=1

aik

(
eT
k (t)Γ T ei(t) + eT

i (t)Γ ek(t)
)

−
N∑

i=1

d∗eT
i (t)ei(t)
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≤
N∑

i=1

(
L − d∗)eT

i (t)ei(t)

+ ε

N∑

i=1

N∑

k=1

aik

(
eT
k (t)Γ T ei(t)

+ eT
i (t)Γ ek(t)

)
.

Let e(t) = (eT
1 , eT

2 , . . . , eT
N)T and D = diag(d1, . . . ,

dN), then one has

V̇ (t) ≤ eT (t)
((

L − d∗)INm + ε(A ⊗ Γ )s
)
e(t).

Then one can choose a sufficiently large d∗ such that
V̇ (t) < 0. According to Lyapunov stability theory, the
CPS can be achieved, therefore, the proof is com-
pleted. �

Remark 1 In Theorem 1, the outer coupling matrix A

need not to be symmetric and irreducible. And syn-
chronization speed can be adjusted by choosing proper
adaptive gain δ.

Secondly, consider CPS between (1) and (3) via
pinning control under the assumptions A ∈ A1 and
Γ > 0. Especially, only one node is pinned for achiev-
ing CPS.

Theorem 2 Suppose that Assumption 1 holds, A ∈ A1
and Γ > 0. The CPS in the drive-response network (1)
and (3) with the following single controller:

u1(t) = −εd1Γ e1(t),

(6)
ui(t) = 0, i = 2,3, . . . ,N,

can be achieved if the following condition is satisfied

LINm + ε
(
As − D1

) ⊗ Γ < 0, (7)

where d1 > 0 and D1 = diag(2d1,0, . . . ,0).

Proof Consider the following Lyapunov function can-
didate:

V (t) =
N∑

i=1

eT
i (t)ei(t).

Its derivative along the trajectories of (4) is

V̇ (t) =
N∑

i=1

(
ėT
i (t)ei(t) + eT

i (t)ėi (t)
)

=
N∑

i=1

(
eT
i (t)MT (z)ei(t) + eT

i (t)M(z)ei(t)
)

+ ε

N∑

i=1

N∑

k=1

aik

(
eT
k (t)Γ ei(t) + eT

i (t)Γ ek(t)
)

− 2εd1e
T
1 (t)Γ e1(t)

≤
N∑

i=1

LeT
i (t)ei(t) + ε

N∑

i=1

N∑

k=1

aik

(
eT
k (t)Γ T ei(t)

+ eT
i (t)Γ ek(t)

) − 2εd1e
T
1 (t)Γ e1(t)

= eT (t)
(
LINm + ε

(
As − D1

) ⊗ Γ
)
e(t).

Then, if condition (7) is satisfied, one has V̇ (t) < 0.
According to Lyapunov stability theory, the CPS can
be achieved, hence the proof is completed. �

Remark 2 Due to outer coupling matrix A ∈ A1, one
can easily verify that matrix As satisfies the conditions
in Lemma 2 and As − D1 < 0. Then one can choose
proper coupling strength ε such that condition (7) is
satisfied for any given network. However, one cannot
find a fixed ε such that condition (7) is satisfied for all
networks. That is to say, a universal control method for
all networks needs to be further explored.

Thirdly, consider CPS between (1) and (3) via pin-
ning control and adaptive coupling strength method
under the assumptions A ∈ A1 and Γ > 0. Then the
controlled response network can be rewritten as

ẏ1(t) = M
(
z(t)

)
y1(t) + ε(t)

N∑

k=1

a1kΓ yk(t)

− ε(t)d1Γ e1(t),

ẏi(t) = M
(
z(t)

)
yi(t) + ε(t)

N∑

k=1

aikΓ yk(t), (8)

i = 2,3, . . . ,N,

ε̇(t) = σ

N∑

i=1

eT
i (t)Γ ei(t),

where σ > 0 is the adaptive gain.

Theorem 3 Suppose that Assumption 1 holds, A ∈ A1
and Γ > 0. The CPS in the drive-response network (1)
and (8) can be globally achieved for a small positive
constant σ .
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Proof Consider the following Lyapunov function can-
didate:

V (t) =
N∑

i=1

eT
i (t)ei(t) + μ

2σ

(
ε(t) − ε∗)2

,

where μ and ε∗ are positive constants to be deter-
mined. The derivative of V (t) along the trajectories
of (8) can be calculated as

V̇ (t) =
N∑

i=1

(
ėT
i (t)ei(t) + eT

i (t)ėi (t)
)

+ μ

σ

(
ε(t) − ε∗)ε̇(t)

≤ eT (t)
(
LINm + ε(t)

(
As − D1 + μIN

) ⊗ Γ

− με∗INm

)
e(t).

Due to As −D1 < 0, one can choose sufficiently small
μ such that As − D1 + μIN < 0. When μ is chosen,
one can choose sufficiently large ε∗ such that LINm +
ε(t)(As −D1 +μIN)⊗Γ −με∗INm < 0, which leads
V̇ (t) < 0. Then the CPS is achieved, and the proof is
completed. �

Remark 3 Clearly, for a class of networks coupled
with chaotic systems satisfying assumptions A ∈ A1
and Γ > 0, this control scheme is effective and univer-
sal. Moreover, it can also make the coupling strength
as small as possible by choosing a proper initial value
and an adaptive gain, which is important in applica-
tions.

Remark 4 When the size of the network is large
enough, coupling strength may be chosen very large
for achieving CPS of the controlled network with a
single controller, and the synchronization speed may
be very slow. To solve the problem, more nodes should
be controlled, e.g., the first l (2 ≤ l < N) nodes
are controlled. Synchronization criterion for achieving
CPS in a drive-response network with more than one
controllers can be derived directly from Theorems 2
and 3.

4 Numerical simulations

Consider a drive-response network coupled with the
following complex Lorenz systems:

Fig. 1 A chaotic attractor of the complex Lorenz system with
initial values x1(0) = 1 + 2j , x2(0) = 3 + 4j , z = 5

Fig. 2 The norms of synchronization errors ei(t) and the orbit
of d(t)

ẋ = M(z)x,

(9)
ż = −bz + 1/2(x̄1x2 + x1x̄2),

where

M(z) =
( −σ σ

r − z −a

)
,

which exhibit chaotic behavior when σ = 2, b = 0.8,
r = 60 + 0.02j and a = 1 − 0.06j . Figure 1 shows a
chaotic attractor of the complex Lorenz system with
initial values x1(0) = 1 + 2j , x2(0) = 3 + 4j , z = 5,
which is the synchronization orbit in the following
simulations.

Firstly, consider CPS in a drive-response network
coupled with 1 + 6 identical complex Lorenz systems
via adaptive feedback control, where the outer cou-
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Fig. 3 The norms of synchronization errors ei(t)

Fig. 4 The norms of synchronization errors ei(t) and the orbit
of ε(t)

pling matrix A is

A =

⎛

⎜⎜⎜
⎜⎜⎜
⎝

−4 3 0 2 0 −1
3 −5 4 0 0 −2
0 4 1 −2 −3 0
2 0 −2 −3 3 0
0 0 −3 3 −2 2

−1 −2 0 0 2 1

⎞

⎟⎟⎟
⎟⎟⎟
⎠

.

In numerical simulations, choose α = 1 + 2j , ε = 1,
Γ = diag(1,1), δ = 0.01, the initial values of d(t) as
d(0) = 0.2, and the initial values of complex state vari-
ables yi(t) (i = 1,2, . . . ,6) randomly. Figure 2 shows
the norms of synchronization errors ei(t) and the orbit
of d(t).

Secondly, consider CPS in a drive-response net-
work coupled with 1 + 10 identical complex Lorenz

systems via only a single controller, where the outer
coupling matrix A is

A =

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢
⎣

−7 1 0 2 0 3 0 0 1 0
0 −6 0 1 0 1 2 1 0 1
3 0 −9 0 3 0 0 2 0 1
1 1 0 −8 1 0 2 0 3 0
0 1 0 0 −9 0 3 2 1 2
0 0 3 1 0 −7 0 1 0 2
2 0 0 3 0 2 −8 0 0 1
0 2 3 0 2 0 1 −8 0 0
1 0 3 0 1 1 0 0 −6 0
0 1 0 1 2 0 0 2 1 −7

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

which belongs to A1. According to Eq. (9), one can
easily calculate the eigenvalues of Ms(z(t)): λ1,2 =
−(σ + 1)±√

(σ − 1)2 + |σ − z + r|2. From Fig. 1, it
is found that 20 ≤ z ≤ 100, and then one can choose
L = 40 such that Assumption 1 holds.

In numerical simulations, choose α = cos(3π/5) +
j sin(3π/5), Γ = diag(1,1) and d1 = 10. By simple
calculation, one has the largest eigenvalue of As − D

is −0.8566, and then one can choose ε = 47 such
that condition (7) holds. The initial values of com-
plex state variables yi(t) (i = 1,2, . . . ,10) are cho-
sen as yi1(0) = (1 + 0.5i) + j (2 + 0.5i) and yi2(0) =
(10 − 0.5i) + j (11 − 0.5i). Figure 3 shows the norms
of synchronization errors ei(t).

Finally, consider CPS in a drive-response network
coupled with 1 + 10 identical complex Lorenz via a
single controller and adaptive coupling strength. In nu-
merical simulations, choose σ = 0.001 and the initial
value of ε(t) as ε(0) = 2. The other parameters are
chosen the same as those in the second example. Fig-
ure 4 shows the norms of synchronization errors ei(t)

and orbit of ε(t). From Fig. 4, one can see that the
needed coupling strength value is much less than that
calculated by inequality (7) in the second example.

5 Conclusions

Complex projective synchronization in a drive-re-
sponse network coupled with identical partially linear
complex-variable chaotic systems has been studied in
this paper. CPS in a general drive-response network is
investigated first via adaptive linear feedback control.
Next, a class of special drive-response networks are
well studied via pinning control. Moreover, a universal
pinning control scheme is proposed via adaptive cou-
pling strength method. According to Lyapunov stabil-
ity theory, several simple and useful criteria for CPS
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are obtained. Numerical simulations are provided to
verify the correctness and effectiveness of the derived
theoretical results.
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