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Abstract In this paper, we consider a classical van der
Pol equation with a general delayed feedback. Firstly,
by analyzing the associated characteristic equation, we
derive a set of parameter values where the Hopf bi-
furcation occurs. Secondly, in the case of the stan-
dard Hopf bifurcation, the stability of bifurcating peri-
odic solutions and bifurcation direction are determined
by applying the normal form theorem and the center
manifold theorem. Finally, a generalized Hopf bifur-
cation corresponding to non-semisimple double imag-
inary eigenvalues (case of 1:1 resonance) is analyzed
by using a normal form approach.

Keywords Delay · Hopf bifurcation ·
Non-semisimple · Stability · Normal form · Center
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1 Introduction

The van der Pol oscillator is an oscillator with nonlin-
ear damping governed by the second-order differential
equation

ẍ − ε
(
1 − x2)ẋ + x = 0. (1)
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This model was originally proposed by Balthasar van
der Pol [1]. The van der Pol equation, which was later
extensively studied as a host of a rich class of dynam-
ical behavior, including relaxation oscillations, quasi-
periodicity, elementary bifurcations and chaos, plays
an important role in electronics and mathematics dy-
namical systems.

Recently, the van der Pol equations with time delay
have been studied by many researchers. Atay [2] has
studied the behavior of the limit cycle of the van der
Pol equations of the following forms:

ẍ − ε
(
1 − x2)ẋ + x = εkx(t − τ) (2)

and

ẍ − ε
(
1 − x2)x(t − τ) + x = 0. (3)

Meanwhile, it has been shown how the presence of de-
lay can change the amplitude of limit oscillations, or
suppress them altogether. Wei & Jiang [3] have found
that there are stability switches when the delay varies
and the above systems undergo a Hopf bifurcation at
the origin when τ passes through a sequence of crit-
ical values. Moreover, using the normal form theory
and the center manifold theorem, the stability of the
bifurcating periodic solutions and the direction of the
Hopf bifurcation are determined. Furthermore, Jiang
& Wei [4] considered the following van der Pol equa-
tion with delayed feedback:

ẍ − ε
(
1 − x2)ẋ + x = εg

(
x(t − τ)

)
, (4)

where

g(0) = 0, g′(0) = k �= 0,
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and showed that there were Bogdanov–Takens bifur-
cation, triple zero, and Hopf-zero singularities for the
system under certain conditions. As shall be seen, the
non-semisimple 1:1 resonance case in which the char-
acteristic equation of either (2) or (4) has two equal
nonzero imaginary roots has not been studied and this
case arises very naturally. Surprisingly, this phenom-
ena has not been discovered in the literatures.

In this paper, we consider the following van der
Pol equation with delayed feedback, including Eqs. (2)
and (4) as special cases,

ẍ − ε
(
1 − x2)ẋ + x = f

(
x(t − τ)

)
, (5)

where x is a dynamical variable and the forcing
f (x(t − τ)) is a delayed feedback of the position x.
Throughout this paper, we always assume that func-
tion f : R → R satisfies

f (0) = f ′′(0) = 0, f ′(0) = γ, and

f ′′′(0) = δ.
(6)

We see that system (5) undergoes a Hopf bifurca-
tion at the origin when (ε, τ, γ ) passes through a crit-
ical set. Our motivation is two-fold. First of all, we
unify and improve the existing results in reference [3].
The other reason is that we want to obtain explicit ex-
pressions in terms of the coefficients of the original
systems that determine whether either no branch, or
one, or two branches of periodic solutions exist as the
parameter (ε, τ, γ ) varies.

In Sect. 2, we establish a set H of parameter values
at which Hopf bifurcation of the equilibrium solution
x = 0 of (5) occurs. In Sect. 3, we perform a center
manifold reduction and normal form approach on (5),
obtaining formulae determining the Hopf direction
and stability of bifurcating periodic solutions when the
eigenvalues of the infinitesimal generator associated
with the linearization equation of (5) at the zero so-
lution are a pair of simple purely imaginary complex
number at the critical parameter (ε, τ, γ ) ∈ H.

As we shall see in Sect. 2, at some points of the
Hopf bifurcation surface H, the infinitesimal genera-
tor has a pair of double purely imaginary eigenvalues,
which are non-semisimple, i.e., their geometric multi-
plicities not equal to their algebraic multiplicities. Sur-
prisingly, this phenomena has not been discovered in
delayed van der Pol equation (5). In Sect. 4, a cen-
ter manifold combined with normal formal analysis is
used to predict a set of ordinary differential equations
approximating the flow of the full equation near these

nonsemisimple 1:1 resonant Hopf bifurcation points.
This, together with the works by van Gils et al. [5],
implies that Eq. (5) may have 0, 1, or 2 periodic orbits
near these non-semisimple 1:1 resonant Hopf bifurca-
tion points. In Sect. 5, we show numerical simulations
of Eq. (5) for parameter values in the neighborhood of
the critical point of Sect. 3.

2 Hopf bifurcation analysis

In this section, we shall investigate the occurrence of
Hopf bifurcation and the stability of the zero solution.

The characteristic equation of the linearization of
(5) about the equilibrium point x = 0 is

λ2 − ελ + 1 = γ e−λτ . (7)

First, we know that ±iω (ω > 0) are a pair of purely
imaginary roots of (7) if and only if ω satisfies
{

1 − ω2 = γ cos τω,

εω = γ sin τω.
(8)

Hence, the Hopf bifurcation surface is given by

H = {(ε, τ, γ ) : 1 − ω2 = γ cos τω, εω = γ sin τω,

ω ∈ R
+}.

Then it follows from (8) that ω satisfies
εω

1 − ω2
= tan τω. (9)

Next, we consider the simplicity of ±iω. If iω is
not simple, then we have

d

dλ

(
λ2 − ελ + 1 − γ e−λτ

)∣∣
λ=iω = 0,

that is
(
2λ − ε + τγ e−λτ

)∣∣
λ=iω = 0,

i.e.,

2iω − ε + τγ (cosωτ − i sinωτ) = 0.

Separating the real and imaginary parts, we obtain

ε = τγ cosωτ,

2ω = τγ sinωτ.
(10)

It follows from (8) and (10) that

τε = 2,

τ
(
1 − ω2

)= ε,

τω = ξ,

(11)
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where x = ξ > 0 is a solution to the equation x =
tanx. Then it follows from (11) that

τ =
√

2 + ξ2,

ε = 2
√

2 + ξ2
,

ω = ξ
√

2 + ξ2
.

(12)

Let {ξn}∞n=1 be the monotonic increasing sequence of
the positive solutions of x = tanx, and

τ ∗
n =

√
2 + ξ2

n , ε∗
n = 2

√
2 + ξ2

n

,

ω∗
n = ξn√

2 + ξ2
n

, γ ∗
n = 2ξn

(2 + ξ2
n ) sin ξn

.

(13)

Then we have the following results.

Lemma 1 At and only at (ε, τ, γ ) ∈ H\{(ε∗
n, τ

∗
n ,

γ ∗
n )}∞n=1, Eq. (7) has a pair of simple purely imagi-

nary solutions ±iω, where ω is a solution to (8). More-
over, at and only at (ε, τ, γ ) = (ε∗

n, τ
∗
n , γ ∗

n ) for some
n ∈ N

+, Eq. (7) has a pair of double purely imaginary
solutions ±iω∗

n.

Now we consider what happen to the solutions
of Eq. (7) as the point (ε, τ, γ ) passes through the
Hopf bifurcation surface H. We start with the case
where (ε0, τ0, γ0) ∈ H\{(ε∗

n, τ
∗
n , γ ∗

n )}∞n=1. By the im-
plicit function theorem, there exist a neighborhood
N(ε0, τ0, γ0) and a mapping λ : N(ε0, τ0, γ0) → C

such that λ(ε0, τ0, γ0) = λ0 = iω0, and for each
(ε, τ, γ ) ∈ N(ε0, τ0, γ0), λ(ε, τ, γ ) is always the so-
lution to (7), where ω0 > 0 satisfies ε0ω0

1−ω2
0

= tan τ0ω0.

Using the implicit differentiation, we have

λ′
ε(ε0, τ0, γ0)

= λ0

2λ0 − ε0 + τ0γ0e−λ0τ0

= 1

Δ

[
ω2

0(2 − ε0τ0) + iω0
(
τ0 − τ0ω

2
0 − ε0

)]
,

λ′
τ (ε0, τ0, γ0)

= −γ0λ0e−λ0τ0

2λ0 − ε0 + τ0γ0e−λ0τ0

= 1

Δ

[
ω2

0

(
2ω2

0 + ε2
0 −2

)− iω0
(
τ0γ

2
0 − ε0ω

2
0 − ε0

)]
,

λ′
γ (ε0, τ0, γ0)

= e−λ0τ0

2λ0 − ε0 + τ0γ0e−λ0τ0

= 1

γ0Δ

[(
τ0γ

2
0 − ε0

(
1+ω2

0

))− iω0
(
2−2ω2

0 − ε2
0

)]
,

where

Δ = (τ0γ0 cosω0τ0 − ε0)
2 + (2ω0 − τ0γ0 sinω0τ0)

2.

Thus, we have

Reλ′
ε(ε0, τ0, γ0) = ω2

0

Δ
(2 − ε0τ0);

Reλ′
τ (ε0, τ0, γ0) = ω2

0

Δ

(
2ω2

0 + ε2
0 − 2

);

Reλ′
γ (ε0, τ0, γ0) = 1

γ0Δ

[
τ0γ

2
0 − ε0

(
1 + ω2

0

)]
.

Then we can summarize the above discussion as fol-
lows.

Lemma 2 Suppose that (ε0, τ0, γ0) ∈ H\{(ε∗
n, τ

∗
n ,

γ ∗
n )}∞n=1, then

(i) Fixing (τ, γ ) = (τ0, γ0) and regarding ε as a bi-
furcation parameter, suppose that ε0τ0 �= 2 (i.e.,
the transversality condition holds), then system
(5) undergoes a Hopf bifurcation at the origin
when ε = ε0.

(ii) Fixing (ε, γ ) = (ε0, γ0) and regarding τ as a bi-
furcation parameter, suppose that 2ω2

0 + ε2
0 −

2 �= 0 (i.e., the transversality condition holds),
then system (5) undergoes a Hopf bifurcation at
the origin when τ = τ0.

(iii) Fixing (ε, τ ) = (ε0, τ0) and regarding γ as
a bifurcation parameter, suppose that τ0γ

2
0 −

ε0(1 + ω2
0) �= 0 (i.e., the transversality condition

holds), then system (5) undergoes a Hopf bifur-
cation at the origin when γ = γ0.

Finally, we consider the stability of the zero solu-
tion. Wei & Jiang [3] have investigated the stability of
the zero solution by regarding τ as a bifurcation pa-
rameter. Hence, in the sequel, we will fix (ε, τ ) and
regard γ as a parameter. Firstly, using a similar argu-
ment to that in [6], we have the following result.

Lemma 3 For each fixed (ε, τ ) /∈ {(ε∗
n, τ

∗
n ) : n ∈ N},

there exists a sequence {γj }j∈Z\{0} satisfying · · · <

γ−j < · · · < γ−1 < 0 < γ1 < · · · < γj < · · ·, such that
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Eq. (7) with γ = γj has a simple pair of purely imag-
inary roots ±iωj , where ωj is a positive solution of
Eq. (9) and γj = εωj

sinωj τ
.

Now we consider the case where the characteris-
tic equation of system (5) has zero solution. Clearly,
Eq. (7) is the same as that of Eq. (4) with εk replaced
by γ . So, we obtain the following results similar to
that in [4].

Lemma 4 Suppose that γ = 1 is satisfied. Then

(i) λ = 0 is a simple solution to Eq. (7) when τ �= ε;
(ii) λ = 0 is a double solution to Eq. (7) when τ =

ε �= √
2;

(iii) λ = 0 is a triple solution to Eq. (7) when τ = ε =√
2;

(iv) there exists a sequence {τj }∞j=0 satisfying τj+1 >

τj such that Eq. (7) with τ = τj has a pair of
purely imaginary roots ±iω̄, where ω̄ = √

2 − ε2,
and

τj =

⎧
⎪⎨

⎪⎩

1
ω̄
(arcsin εω̄ + 2jπ), 1 < ε <

√
2,

1
ω̄
(π − arcsin εω̄ + 2jπ),

0 < ε ≤ 1, j = 0,1, . . . .

Theorem 1 For system (5), γ = 1 + μ is regarded as
a bifurcation parameter.

(i) If γ = 1 and 0 < τ < ε, then Eq.(7) has at least
one positive real root, so the zero solution of sys-
tem (5) is unstable.

(ii) If ε < τ < τ0 and 0 < ε <
√

2, then system (5)
undergoes a pitchfork bifurcation at the origin
when μ = 0.

(iii) If τ = ε and 0 < ε <
√

2, then system (5) under-
goes a Bogdanov–Takens bifurcation at the origin
when μ = 0.

(iv) If τ = τ0 �= ε and 0 < ε <
√

2, then system (5)
undergoes a Hopf-zero bifurcation at the origin
when μ = 0.

(v) If τ = ε = √
2, then system (5) undergoes a triple

zero bifurcation at the origin when μ = 0.

Theorem 2 Suppose that ε < τ < τ0 and 0 < ε <
√

2.
Then

(i) The zero solution of (5) with γ = 1 is asymptot-
ically stable (respectively, unstable) when δ < 0
(respectively, >0).

(ii) For system (5) with γ = 1 + μ, μ ∈ R is suf-
ficiently small. Then the zero solution is asymp-
totically stable when μ < 0 and unstable when
μ > 0.

The proofs of Theorems 1–2 are similar to that
in [4], and hence are omitted.

Here, we will only consider the case where τ �= ε

and Eq. (13) is not valid for (ε, τ ). According to
Lemmas 3 and 4, the characteristic eigenvalues with
Reλ = 0 of Eq. (5) are all simple. By Rouché’s theo-
rem [7], as γ varies the sum of the multiplicities of the
roots of Eq. (7) in the open right half-plane can change
only if a root appears on, or crosses the imaginary axis.

Note that when γ = 0, Eq. (7) becomes

λ2 − ελ + 1 = 0, (14)

whose roots are λ1,2 = 1
2 (ε ± √

ε2 − 4). Clearly, there
are two roots λ1,2 satisfying Reλ1,2 > 0. It is easy to
see that the stability of zero solution can change a fi-
nite number of times, at most, and eventually it be-
comes unstable as γ is increased from γ1 to infinity
(or decreased from γ−1 to infinity). In a summary, we
have the following results.

Theorem 3 Suppose that ε �= τ , Eq. (13) is not valid
for (ε, τ ) and the transversality condition Reλ′

γ (ε, τ,

γj ) �= 0 for each γj ∈ {γj }j∈Z\{0}. Then we have the
following information about the stability of the zero
solution.

(i) If γ ∈ (γ−1,min{1, γ1}), the instability degree of
system (5) (the multiplicity of roots with positive
real parts of Eq.(7)) equals to two, then the zero
solution of system (5) is unstable.

(ii) When γ increases and passes through γj

(γj �= 1), the instability degree of system (5)
increases (respectively, decreases) by two if
Reλ′

γ (ε, τ, γj ) > 0 (respectively, <0).
(iii) If 0 < τ < ε and τ /∈ {τj }∞j=0 (defined in Lem-

ma 4), then Eq. (7) with γ = 1 has a simple
zero solution and there exists an integer i ∈ N,
such that 1 ∈ (γi, γi+1), where γ0 = 0. For each
γ ∈ (γi, γi+1), Eq. (7) has at least one positive
real root, i.e., the zero solution of system (5) is
unstable. Moreover, the instability degree of sys-
tem (5) decreases by 1 when γ increases and
passes through 1.

(iv) If 0 < τ < ε and τ ∈ {τj }∞j=0, then Eq. (7) with
γ = 1 has a simple zero solution and a pair of
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simple imaginary roots ±iω̄, and there exists an
integer i ∈ N

+, such that γi = 1. Similarly, for
all γ ∈ (γi−1, γi+1), Eq. (7) has at least one pos-
itive real root, i.e., the zero solution of system
(5) is unstable. Moreover, the instability degree
of system (5) increases by 1 if Reλ′

γ (ε, τ,1) > 0
or decreases by 3 if Reλ′

γ (ε, τ,1) < 0 when γ

increases and passes through 1.
(v) If 0 < ε < τ < τ0, then Eq. (7) with γ = 1 has

a simple zero solution and there exists an in-
teger i ∈ N, such that 1 ∈ (γi, γi+1). The in-
stability degree of system (5) increases by 1
when γ increases and passes through 1. Fur-
thermore, suppose that 0 < ε <

√
2, the zero so-

lution of system (5) with γ = 1 is asymptotically
stable (respectively, unstable) when δ < 0 (re-
spectively, >0); the zero solution of system (5)
with γ ∈ (γi,1) (respectively, γ ∈ (1, γi+1)) is
asymptotically stable (respectively, unstable).

(vi) If 0 < ε < τ , τ ∈ {τj }∞j=0 and 0 < ε <
√

2,
then Eq. (7) with γ = 1 has a simple zero so-
lution and a pair of simple imaginary roots
±iω̄. There exists an integer i ∈ N

+, such that
γi = 1. As γ increases and passes through 1,
the instability degree of system (5) increases
by 3 if Reλ′

γ (ε, τ,1) > 0 or decreases by 1 if
Reλ′

γ (ε, τ,1) < 0.
(vii) If 0 < ε < τ and τ /∈ {τj }∞j=0, or 0 < ε < τ and

ε >
√

2, then Eq. (7) with γ = 1 has a simple
zero solution and there exists an integer i ∈ N,
such that 1 ∈ (γi, γi+1). The instability degree
of system (5) increases by 1 when γ increases
and passes through 1.

(viii) There exists an integer m ≥ 1, such that for all
γ > γm or γ < γ−m, the zero solution of system
(5) is unstable.

3 Direction and stability of Hopf bifurcation
at simple eigenvalues

Let ẋ(t) = y(t), then Eq. (5) becomes

ẋ(t) = y(t),

ẏ(t) = −x(t) + ε
(
1 − x2(t)

)
y(t) + f

(
x(t − τ)

)
.

(15)

Assume that system (5) undergoes a Hopf bifurcation
at the origin when (ε, τ, γ ) = (ε0, τ0, γ0) and the cor-
responding characteristic equation has a pair of simple
imaginary roots ±iω0.

Firstly, we rescale the time by t → t
τ

to normalize
the delay, then the above system becomes

ẋ(t) = τy(t),

ẏ(t) = −τx(t) + ετ
(
1 − x2(t)

)
y(t)

+ τf
(
x(t − 1)

)
.

(16)

For convenience, set μ = (ε, τ, γ )−(ε0, τ0, γ0), where
μ ∈ R

3. Then μ = 0 is the Hopf bifurcation value for
system (16), and the corresponding eigenvalues are
±iτ0ω0.

As usual, the phase space C = C([−1,0],R
2)

is the Banach space of continuous functions from
[−1,0] to R

2 with the supremum norm ‖φ‖ =
sup−1≤θ≤0 |φ(θ)| for φ ∈ C. For ϕ ∈ C, let

Lμϕ = τB1ϕ(0) + τγ B2ϕ(−1), (17)

where

B1 =
(

0 1
−1 ε

)
and B2 =

(
0 0
1 0

)
,

and

F(μ,ϕ)

=
(

0
−τεϕ2

1(0)ϕ2(0) + τf (ϕ1(−1)) − τγ ϕ1(−1)

)
.

By the Riesz representation theorem, there exists a
2×2 matrix-valued function η(θ,μ) : [−1,0]×R

3 →
R

4, whose elements are bounded variation functions,
such that

Lμϕ =
∫ 0

−1
dη(θ,μ)ϕ(θ), ϕ ∈ C.

In fact, we can choose

η(θ,μ) =
{

τB1, θ = 0,

−τγ B2δ(θ + 1), θ ∈ [−1,0),

where δ(θ) is the Dirac delta function. Next, we define
for ϕ ∈ C1([−1,0],R

2)

A(μ)ϕ =
{

dϕ(θ)
dθ

, θ ∈ [−1,0),

Lμϕ, θ = 0

and

X0 =
{

I2, θ = 0,

0, θ ∈ [−1,0),

where In is n-order identity matrix. Then we can
rewrite Eq. (16) as

u̇t = A(μ)ut + X0F(μ,ut ), (18)

where u = (u1, u2)
T ,ut = u(t + θ) for θ ∈ [−1,0].
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For ψ ∈ C1([0,1],R
2∗), define

A∗ψ(s) =
{− dψ(s)

ds
, s ∈ (0,1],

∫ 0
−1 ψ(−s)dη(s,0), s = 0.

Then, for ϕ ∈ C, and ψ ∈ C1([0,1],R
2∗), define the

bilinear form

〈ψ,ϕ〉 = ψ(0)ϕ(0)

−
∫ 0

−1

∫ θ

0
ψ(ξ − θ)dη(θ,0)ϕ(ξ)dξ. (19)

It is easy to check that A∗ and A(0) are adjoint oper-
ators, and ±iτ0ω0 are eigenvalues of A(0). Thus, they
are also eigenvalues of A∗. By direct computation, we
obtain the following lemma.

Lemma 5 q(θ) = (1, iω0)
T eiτ0ω0θ is the eigenvec-

tor of A(0) associated with iτ0ω0; p(s) = D(ε0 +
iω0,−1)eiτ0ω0s is the eigenvector of A∗ associated
with −iτ0ω0, where D = (ε0 + 2iω0 − γ0τ0eiτ0ω0)−1.
Moreover, 〈p,q〉 = 1, and 〈p, q̄〉 = 0.

Let � = (p,p) and � = (q,q). By the center man-
ifold theorem, we obtain the reduced equation

ż = iτ0ω0z + g(μ, z, z̄), (20)

where g(μ, z, z̄) = p(0)F(μ,2 Re{z(t)q(θ)} + w(μ,

z, z̄)) and w(μ, z, z̄) satisfies that

ẇ = Aw + H(z, z̄, θ) (21)

with H(z, z̄, θ) = [X0 −��(0)]F(μ,2 Re{z(t)q(θ)}+
w(μ, z, z̄)). Let

g(μ, z, z̄) = g
μ
20

z2

2
+ g

μ
11zz̄ + g

μ
02

z̄2

2
+ g

μ
21

z2z̄

2
+ · · · ,

and

w(t, θ) = wμ
20

z2

2
+ wμ

11zz̄ + wμ
02

z̄2

2
+ · · · .

Using a computation process similar to that in [3], we
obtain the coefficients used in determining the impor-
tant quantities:

g0
20 = g0

11 = g0
02 = 0,

and

g0
21 = Dτ0

(
2iε0ω0 − δe−iω0τ0

)
.

Then from

C1(0) = i

2τ0ω0

[
g0

20G
0
11 −2

∣∣g0
11

∣∣2 − 1

3

∣∣g0
11

∣∣2
]

+ g0
21

2
,

we have

Re
{
C1(0)

}

= τ0

2Δ

[−δ cosω0τ0(ε0 − γ0τ0 cosω0τ0)

− (2ω0 − γ0τ0 sinω0τ0)(2ε0ω0 + δ sinω0τ0)
]

= τ0

2Δ

{
2ε0ω

2
0(ε0τ0 − 2)

+ δ

γ0

[
τ0γ

2
0 − ε0

(
1 + ω2

0

)]}
.

By the general theory of Hopf bifurcation, we have the
following results:

Theorem 4 For any fixed (ε0, τ0, γ0) ∈ H\{(εn, τn,

γn)}∞n=1 with the corresponding eigenvalues ±iω0 sat-
isfying (7), we have

(i) If (τ, γ ) = (τ0, γ0), the Hopf bifurcation at the
origin when ε = ε0 is supercritical (respectively,
subcritical) when

δ

γ0

[
τ0γ

2
0 − ε0

(
1 + ω2

0

)]

× (2 − ε0τ0) − 2ε0ω
2
0(2 − ε0τ0)

2 < 0

(respectively, >0) and the bifurcating periodic
solutions have the same stability as the trivial
solution had before the bifurcation (respectively,
are unstable) when 2ε0ω

2
0(ε0τ0 −2)+ δ

γ0
[τ0γ

2
0 −

ε0(1 + ω2
0)] < 0 (respectively, >0).

(ii) If (ε, γ ) = (ε0, γ0), the Hopf bifurcation at the
origin when τ = τ0 is supercritical (respectively,
subcritical) when
{

2ε0ω
2
0(ε0τ0 − 2) + δ

γ0

[
τ0γ

2
0 − ε0

(
1 + ω2

0

)]}

× (2ω2
0 + ε2

0 − 2
)
< 0

(respectively, >0) and the bifurcating periodic
solutions have the same stability as the trivial
solution had before the bifurcation (respectively,
are unstable) when 2ε0ω

2
0(ε0τ0 −2)+ δ

γ0
[τ0γ

2
0 −

ε0(1 + ω2
0)] < 0 (respectively, >0).

(iii) If (ε, τ ) = (ε0, τ0), the Hopf bifurcation at the
origin when γ = γ0 is supercritical (respectively,
subcritical) when

2ε0γ0ω
2
0(ε0τ0 − 2)

[
τ0γ

2
0 − ε0

(
1 + ω2

0

)]

+ δ
[
τ0γ

2
0 − ε0

(
1 + ω2

0

)]2
< 0
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(respectively, >0) and the bifurcating periodic
solutions have the same stability as the trivial
solution had before the bifurcation (respectively,
are unstable) when 2ε0ω

2
0(ε0τ0 −2)+ δ

γ0
[τ0γ

2
0 −

ε0(1 + ω2
0)] < 0 (respectively, >0).

In particular, if δ = 0, then Eq. (5) becomes Eq. (2)
with εk replaced by γ . Thus, we can obtain the fol-
lowing results.

Corollary 1 Assume that δ = 0, and for any fixed
(ε0, τ0, γ0) ∈ H\{(εn, τn, γn)}∞n=1 with the correspond-
ing eigenvalues ±iω0 satisfying (7), we have

(i) The Hopf bifurcation at ε = ε0 is supercritical if
ε0τ0 �= 2 and the bifurcation periodic solutions
have the same stability as the trivial solution had
before the bifurcation (respectively, are unstable)
if ε0τ0 < 2 (respectively, >2).

(ii) The Hopf bifurcation at τ = τ0 is supercritical
(subcritical) when

(ε0τ0 − 2)
(
2ω2

0 + ε2
0 − 2

)
< 0

(respectively, >0) and the bifurcation periodic
solutions have the same stability as the trivial
solution had before the bifurcation (respectively,
are unstable) if ε0τ0 < 2 (respectively, >2).

(iii) The Hopf bifurcation at γ = γ0 is supercritical
(subcritical) when

γ0(ε0τ0 − 2)
[
τ0γ

2
0 − ε0

(
1 + ω2

0

)]
< 0

(respectively, >0) and the bifurcation periodic
solutions have the same stability as the trivial
solution had before the bifurcation (respectively,
are unstable) if ε0τ0 < 2 (respectively, >2).

Remark In [3], Wei & Jiang have found that there ex-
ists a sequence of critical points {τ±

j }∞j=0 when the pa-
rameters ε and γ are restricted under certain condi-
tions, and obtain the bifurcation direction and stabil-
ity of the Hopf bifurcation. Their results are similar to
Corollary 1(ii). Hence, Theorem 4 not only unifies but
also improves the existing results.

4 Hopf bifurcation with non-semisimple 1:1
resonance

From the discussion given in Sect. 2, we know that
the linearization of Eq. (5) has a pair of double purely

imaginary eigenvalues ±iω∗ at (ε∗, τ ∗, γ ∗) satisfy-
ing (13). Then we can obtain a four-dimensional re-
duced equation on the center manifold.

Using the same notation as in Sect. 3, denote by
P and P ∗ as the generalized eigenspace of A(0) and
A∗ associated with the imaginary characteristic roots
iτ ∗ω∗ and −iτ ∗ω∗, respectively. It is easy to see that
dimP = dimP ∗ = 4. Then we suppose that the bases
of P and P ∗, respectively, are

�(θ) = (q1(θ),q1(θ),q2(θ),q2(θ)
)

and

�(s) = (q∗
1(s),q∗

1(s),q∗
2(s),q∗

2(s)
)

with
〈
�(s),�(θ)

〉= I4.

By direct computation, we have

q1(θ) = (1, iω∗)T eiτ∗ω∗θ ,

q2(θ) =
(

1 + θ,
1

τ ∗ + iω∗(1 + θ)

)T

eiτ∗ω∗θ ,

and

q∗
1(s) =

(
− D̃

τ ∗ − (ε∗ + iω∗)(1 + sD̃),1 + sD̃

)

× eiτ∗ω∗s ,

q∗
2(s) = D̃

(
ε∗ + iω∗,−1

)
eiτ∗ω∗s ,

where

D̃ = τ ∗
(

1

2
γ ∗τ ∗2eiω∗τ∗ − 1

)−1

.

We first compute the coordinates to describe the
center manifold at (ε∗, τ ∗, γ ∗). Let ut be the solution
of Eq. (18), define

z1(t) = 〈q∗
1,ut

〉
, z2(t) = 〈q∗

2,ut

〉
,

and

w(z1, z̄1, z2, z̄2) = ut − 2 Re{z1q1} − 2 Re{z2q2}.
Then, on the center manifold, we can obtain the re-
duced equation

ż1(t) = iτ ∗ω∗z1 + z2 + g1(z, z̄),

ż2(t) = iτ ∗ω∗z2 + g2(z, z̄),
(22)

where z = (z1, z2)
T and

gi(z, z̄) = q∗
i (0)F

(
0,w(z, z̄) + 2 Re{z1q1 + z2q2}

)
,

i = 1,2,
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and

w(z, z̄) =
∑

j+s+k+r≥2

1

j !s!k!r!wjskrz
j

1 z̄1
szk

2z̄2
r

satisfies

d

dt
w = Aw + (X0 − ��(0)

)
F
(
0,w(z, z̄)

+ 2 Re{z1q1 + z2q2}
)
. (23)

Let

gi(z, z̄) =
∑

j+s+k+r≥2

1

j !s!k!r!g
i
jskrz

j

1 z̄1
szk

2z̄2
r ,

i = 1,2.

We know that (22) has the formal normal form

ż1 = iτ ∗ω∗z1 + z2 + z1ϕ1(u1, u2),

ż2 = iτ ∗ω∗z2 + z2ϕ1(u1, u2) + z1ϕ2(u1, u2),
(24)

where u1 = |z1|2, u2 = z1z̄2 − z̄1z2, and ϕj (j =
1,2) are polynomials in their arguments such that
ϕj (0,0) = 0. Let

ϕ1(u1, u2) = a1u1 + a2u2 + O
(‖z‖4),

ϕ2(u1, u2) = b1u1 + b2u2 + O
(‖z‖4),

(25)

then (24) can be rewritten in the following form:

ż1 = iτ ∗ω∗z1 + z2 + a1z
2
1z̄1 + a2z

2
1z̄2 − a2z1z̄1z2

+ O
(‖z‖4

)
,

ż2 = iτ ∗ω∗z2 + b1z
2
1z̄1 + b2z

2
1z̄2 + (a1 − b2)z1z̄1z2

+ a2z1z2z̄2 − a2z̄1z
2
2 + O

(‖z‖4
)
.

(26)

As in [8], we could rewrite (22) in the following
form:

ẏ = Ay + f(y), (27)

where y = (z1, z̄1, z2, z̄2)
T , f : C

4 → C
4 satisfies

f(y) = (g1, ḡ1, g2, ḡ2)T and

A =

⎛

⎜
⎜
⎝

iτ ∗ω∗ 0 1 0
0 −iτ ∗ω∗ 0 1
0 0 iτ ∗ω∗ 0
0 0 0 −iτ ∗ω∗

⎞

⎟
⎟
⎠ .

Define Hk
4 to be the linear space of homogeneous vec-

tors polynomials of degree k in 4 variable with range
C

4, and let (e1, e2, e3, e4) be the basis of C
4 and y be

the coordinates with respect to this basis. Thus, an el-
ement fk(y) of Hk

4 can be represented in the form of
vector-valued monomials as

fk(y) =
m∑

s

fks (y)es =
∑

s,m

f k
s,mymes , |m| = k

=
∑

s

∑

|m|=k

f k
s;m1,m2,m3,m4

(
y

m1
1 y

m2
2 y

m3
3 y

m4
4

)
es .

Our purpose is to reduce Eq. (27) to the normal form

ẋ = Ax + h(x), (28)

where x = (x1, x2, x3, x4) ∈ C
4 satisfies x1 = x̄2,

x3 = x̄4, and h : C
4 → C

4 satisfies that h2 = 0,
h3

1(x1, x2, x3, x4) = a1x
2
1x2 + a2x

2
1x4 − a2x1x2x3,

h3
2 = h̄3

1 and h3
3 = b1x

2
1x2 + b2x

2
1x4 + (a1 − b2)×

x1x2x3 + a2x1x3x4 − a2x2x
2
3 , h3

4 = h̄3
3. Note that the

original system contains no quadratic nonlinearities,
then f2(y) = 0. Perform a transformation of variables

y = x + W(x), (29)

where W(x) ∈ H 3
4 . Differentiating (29) and substitut-

ing it into (27) yield

ẋ = [I4 + DxW(x)
]−1[A

(
x + W(x)

)+ f
(
x + W(x)

)]
.

(30)

In fact, [I4 +DxW(x)]−1 can be represented in a series
expansion as follows:
[
I4 + DxW(x)

]−1 = I4 − DxW(x) + O
(|x|4), (31)

then we have

ẋ = Ax + {f3(x) + AW(x) − DxW(x)Ax
}+ O

(|x|4).
(32)

Comparing the above equation with (28) yields

f3(x) + AW(x) − DxW(x)Ax = h(x). (33)

Then applying the conclusions of the normal form for
non-semisimple case in [8], we have

a1 = 1

8

(
3g1

2100 + 2g2
1110 + g2

2001

)
,

a2 = 1

6

(
g1

2001 − g2
0120 − g1

1110 + g2
1011

)
,

b1 = 1

2
g2

2100,

b2 = 1

8

(
g1

2100 − 2g2
1110 + 3g2

2001

)
.

Notice that gj (z, z̄) = q∗
j (0)F(0,w(z, z̄)+2 Re{z1q1 +

z2q2}), for j = 1,2,

gi(z, z̄) =
∑

j+s+k+r≥2

1

j !s!k!r!g
i
jskrz

j

1 z̄1
szk

2z̄2
r ,

for i = 1,2,
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then we have

g1
2100 = −2iτ ∗ε∗ω∗ + δτ ∗e−iω∗τ∗

,

g1
2001 = −2ε∗(1 + iτ ∗ω∗),

g1
1110 = −2ε∗(1 + iτ ∗ω∗),

g2
2100 = 2iD̃ε∗τ ∗ω∗ − D̃δτ ∗e−iω∗τ∗

,

g2
1110 = 2D̃ε∗(1 + iτ ∗ω∗),

g2
2001 = 2D̃ε∗(1 + iτ ∗ω∗),

g2
0120 = 2D̃ε∗(2 + iτ ∗ω∗),

g2
1011 = 2D̃ε∗(2 + iτ ∗ω∗).

Thus, the four coefficients are

a1 = 3

8

[−2iε∗τ ∗ω∗ + δτ ∗e−iω∗τ∗

+ 2D̃ε∗(1 + iτ ∗ω∗)],
a2 = 0,

b1 = iD̃ε∗τ ∗ω∗ − 1

2
D̃δτ ∗e−iω∗τ∗

,

b2 = 1

8

[−2iε∗τ ∗ω∗ + δτ ∗e−iω∗τ∗

+ 2D̃ε∗(1 + iτ ∗ω∗)].

We define the rescaled variables by

z1 = ẑ1, z2 = τ ∗ω∗ẑ2, t = t̂

τ ∗ω∗ . (34)

Note that a2 = 0, substituting (34) into (26) and drop-
ping the hats, then we have

ż1 = iz1 + z2 + a1

τ ∗ω∗ z2
1z̄1 + o

(‖z‖4),

ż2 = iz2 + b1

τ ∗2ω∗2
z2

1z̄1 + b2

τ ∗ω∗ z2
1z̄2

+ a1 − b2

τ ∗ω∗ z1z̄1z2 + o
(‖z‖4).

(35)

In order to study perturbations of the system (35),
we consider the universal unfolding of the linear vec-
tor field Bz used in van Gils et al. [5].

B(λ) =
(

i + α 1
μ i + α

)
,

λ = (α,μ1,μ2), α ∈ R, μ = μ1 + iμ2 ∈ C.

The above unfolding of B(λ) may also be found from
the viewpoint of versal deformations of matrices, as in
Arnold [9], allowing for rescaling of time.

Now, making the observation that z1 = 0 implies
z2 = 0, we choose new coordinates (r, θ) satisfying
r > 0 and

z1 = reiθ , z2 = reiθw, w = u + iv.

It is obvious that φj (j = 1,2) are even functions in r ,
then the normal form is odd in r . Therefore, we could
make a further reduction, defining

ρ = r2, ρ > 0,

thus we could obtain a set of three real equations, in-
dependent of the phase variable θ

ρ̇ = 2ρ(α + u + c1ρ) + h.o.t.,

u̇ = μ1 − u2 + v2 + ρ(e1 + 2f2v) + h.o.t.,

v̇ = μ2 − 2uv + ρ(f1 − 2e2v) + h.o.t.,

(36)

and

θ̇ = 1 + v + d1ρ + h.o.t.,

where

c1 = Re

(
a1

τ ∗ω∗

)
,

e1 = Re
b1

τ ∗2ω∗2
, e2 = Re

(
b2

τ ∗ω∗

)
;

d1 = Im

(
a1

τ ∗ω∗

)
,

f1 = Im
b1

τ ∗2ω∗2
, f2 = Im

(
b2

τ ∗ω∗

)
.

In order to blow up the dominant terms in the above
equations, we define the rescaled variables by

ρ = ε2ρ̂, u = εû, v = εv̂, εt = t̂ ,

α = εβ, μ1 = ε2ν1, μ2 = ε2ν2.
(37)

Substituting (37) into (36) and dropping the hats, we
have

ρ̇ = 2ρ(β + u) + ε2c1ρ
2 + O

(
ε2
)
,

u̇ = ν1 − u2 + v2 + e1ρ + 2εf2v + O
(
ε2
)
,

v̇ = ν2 − 2uv + f1ρ − 2εe2v + O
(
ε2
)
,

(38)

We assume that e1 �= 0 �= f1 in the following anal-
ysis, then we can rescale e1 to ±1. By using a similar
argument to that in van Gils et al. [5], we have the fol-
lowing results.
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Fig. 1 Multiplicities of periodic solutions for β �= 0. (a) e1 = 1; (b) e1 = −1

Theorem 5

(1) The system (36) undergoes a codimension-1 pitch-
fork bifurcation on the primary bifurcation variety

B : 1 − ν1
β2 − ν2

2
4β4 = 0, shown in Fig. 1.

(2) A codimension-1 limit point or “saddle-node bi-
furcation” occurs on the limit point variety L
which is the surface generated by the ray N :
f1(e1ν2 − f1ν1) + β2(1 + f 2

1 ) = 0 in the sys-
tem (36), shown in Figs. 1 and 2, and when the
phase equation is restored, we derive a saddle-
node bifurcation of periodic orbits. This in turn
persists as a two-dimensional variety for the orig-
inal system (5).

(3) The symmetric cusp variety E at which the two
surfaces B and L meet in the planes β2 = 1 is the
Z2 symmetric version of the standard cusp (with
vanishing cubic bifurcation coefficient), shown in
Fig. 1. And that the variety E persists for the full
system follows from the preservation of S1 symme-
try on the periodic orbits [10].

(4) System (36) undergoes a double Hopf bifurcation
which has linear codimension-2 and occurs on the
one-dimensional double Hopf bifurcation variety
B∗ : ν2 = 0, ν1 < 0 in the β = 0 plane, shown in
Fig. 2. In addition, it gives rise to mixed-mode sec-
ondary Hopf bifurcations (of 2-tori) and there is a
possibility of a 3-torus arising from the interaction
of these two Hopf bifurcations [11].

(5) For ν1 < 0 and bounded away from 0, the Hopf
variety H : ν2 = −6

√−ν1|β| + O(β2) is close
to the lower branch of a parabola in the (ν1, ν2)

plane, which lies between B and L, asymptoti-

cally β → 0. For ν1 > 0 and bounded away from
0, only in the case e1 = −1, H : ν2 = −f1ν1 +
f 2

1 −3

f 2
1

β2 +O(β3) lies just below the limit point va-

riety L, as β → 0 in (ν1, ν2) coordinates. These
Hopf bifurcations extend to system (36) provided
the standard nondegeneracy conditions hold.

(6) Assume that β �= 0 and define a path in R
3

which we call the Bogdanov–Takens variety T :
ν1 = −(1 + 3

f 2
1
β2), ν2 = −2(

f 2
1 +2
e1f1

)β2 at which

the Hopf variety H and the limit point variety
L intersect, then the Bogdanov–Takens bifurca-
tion occurs in the case e1 = 1. Meanwhile, the
Bogdanov–Takens variety always lies to the left of
the cusp variety E in the (ν1, ν2) plane, and per-
sists in the full three-dimensional system (36).

(7) Assume that β = 0, the zero and pure imaginary
eigenvalues occur simultaneously along the ray
N = 0, β = 0, ν1 > 0 of codimension-2, which we
call the {1, i,−i} variety L∗, shown in Fig. 2.

Theorem 6 For every value of the parameters α, μ1,
μ2 in a neighborhood of 0, Eq. (35) has 0, 1, or 2 pe-
riodic orbits which lie inside a wedge of second-order
contact about the z1 plane in the (z1, z2) coordinates.
For each fixed small β �= 0, the corresponding (ν1, ν2)

plane has three open connected components, labeled
by the number of periodic orbits in each component,
as shown in Fig. 1. If β = 0, then there are two open
connected components, containing 0 or 2 periodic so-
lutions, as shown in Fig. 2.
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Fig. 2 Multiplicities of
periodic solutions for
β = 0. (a) e1 = 1;
(b) e1 = −1

5 Numerical simulations

In this section, we shall present some numerical re-
sults of the system (5) with δ = 0 to verify the analyti-
cal predictions obtained in the pervious section. Let us
consider the following system:

ẋ(t) = y(t),

ẏ(t) = −x(t) + 0.01
(
1 − x2(t)

)
y(t)

+ γ
(
x(t − 2)

)
.

(39)

We solve (8) with ε = 0.01 and τ = 2 for ω

and obtain (ωj , γj ), which are given in Table 1.

It is shown that
τγ 2

1
1+ω2

1
< ε and

τγ 2
j

1+ω2
j

> ε for all

j �= 1, i.e., Reλ′
γ (ε, τ, γj ) < 0 for all j ≤ 1 and

Reλ′
γ (ε, τ, γi) > 0 for all i > 1. Meanwhile, we get

ω̄ = √
2 − ε2 ≈ 1.4142 and τ0 = 1

ω̄
(π − arcsin εω̄) ≈

2.2115 > τ (see Lemma 4(iv)). By Theorem 3, the
equilibrium (0,0) is asymptotically stable for γ ∈
(0.011,1), and unstable for all γ ∈ (−∞,0.011) ∪
(1,+∞), which is shown in Figs. 3–6.

It follows from Corollary 1 that when δ = 0 and
τε < 2, the Hopf bifurcation occurs as γ crosses
γ1 (respectively, γj (j ≥ 2)) to the left (respectively,
right), and the bifurcating periodic solutions are or-
bitally asymptotically stable (respectively, unstable).
When γ = 2 > γ2 ≈ 1.4505, the equilibrium (0,0) is
unstable, and the bifurcating periodic solutions are un-
stable, which is shown in Figs. 4 and 6. If γ = −0.5 <

γ1 ≈ 0.011, then the equilibrium (0,0) is unstable,
and the corresponding bifurcating periodic solutions
are asymptotically stable, which is shown in Figs. 3
and 5.

Unfortunately, the existence of periodic solutions
via 1:1 resonant Hopf bifurcation can not been veri-

Table 1 List of parameters under ε = 0.01 and τ = 2

j γj ωj

τγ 2
j

1+ω2
j

−2 −39.997 6.2824 79.0619

−1 −8.7574 3.1398 14.1259

1 0.011 1.0023 1.2072e−004

2 1.4505 1.5654 1.2195

3 21.6317 4.7113 40.3542

fied because it is difficult to seek suitable initial values
such that the solution of associated initial value prob-
lem may converge to them even though the periodic
solutions are stable.

6 Conclusions

In this paper, we present a detailed study of Hopf bifur-
cation in the van der Pol equation with delayed feed-
back. By analyzing the associated characteristic equa-
tion, we have shown that the Hopf bifurcation occurs
at a set of parameter values H and obtained formu-
lae determining the stability of the zero solution. Us-
ing the normal form theory and the center manifold
theorem, the stability and the direction of the Hopf bi-
furcation with simple imaginary eigenvalues are deter-
mined. Specifically, we investigate a generalized Hopf
bifurcation corresponding to non-semisimple double
imaginary eigenvalues (case of 1:1 resonance), which
has linear codimension-3, and a center subspace of
dimension-4. Using a normal form approach, we find
that there exist 0, 1, or 2 small-amplitude periodic
solutions. Moreover, we locate one-dimensional vari-
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Fig. 3 Numerical simulations of system (39) with γ = −0.5 < γ1 ≈ 0.011. (a) The equilibrium (0,0) is unstable; (b) an asymptotically
stable periodic solution is bifurcated from (0,0)

Fig. 4 Numerical simulations of system (39) with (a) γ = −9 < γ−1 ≈ −8.7574 and (b) γ = −40 < γ−2 ≈ −39.997, where the
equilibrium (0,0) is unstable

Fig. 5 Numerical simulations of system (39) with (a) γ = 0.8 ∈ (0.011,1) and γ = 1.2 > 1. In (a) the equilibrium (0,0) is asymptot-
ically stable, but in (b) the equilibrium (0,0) is unstable
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Fig. 6 Numerical simulations of system (39) with γ = 2 > γ2 ≈ 1.4505, where the equilibrium (0,0) is unstable, and the periodic
solution bifurcated from (0,0) is unstable

eties in the parameter space R
3 on which the system

has three different types of codimension-1 singulari-
ties and four different types of codimension-2 singu-
larities.

Obviously, there is a question that is worthy of
further investigation. In this paper, we only consider
a single van der Pol oscillator with delayed feed-
back. It is interesting to generalize our results in this
paper to delay-coupled van der Pol oscillators and
other modified van der Pol oscillators. For example,
Liao et al. [12] investigated the linear stability and
standard Hopf bifurcation for a van der Pol equa-
tion with a distributed time delay. Song [13] inves-
tigated the spatiotemporal patterns of Hopf bifurcat-
ing periodic oscillations in a pair of van der Pol os-
cillators with delayed velocity coupling. Algaba et
al. [14, 15] considered high codimensional bifurca-
tions in a modified van der Pol-Duffing electronic
circuit. Wirkus and Rand [16] studied the dynamics
of a pair of van der Pol oscillators where the cou-
pling is chosen to be through the damping terms but
not of diffusive type. However, to consider resonant
Hopf bifurcation in these models, further discussion is
needed.
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