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Abstract This paper is concerned with the robust
quantized feedback stabilization problem for a class
of uncertain nonlinear large-scale systems with dead-
zone nonlinearity in actuator devices. It is assumed
that state signals of each subsystem are quantized and
the quantized state signals are transmitted over a dig-
ital channel to the controller side. Combined with a
proposed discrete on-line adjustment policy of quanti-
zation parameters, a decentralized sliding mode quan-
tized feedback control scheme is developed to tackle
parameter uncertainties and dead-zone input nonlin-
earity simultaneously, and ensure that the system tra-
jectory of each subsystem converges to the corre-
sponding desired sliding manifold. Finally, an exam-
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ple is given to verify the validity of the theoretical re-
sult.
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1 Introduction

Decentralized control design for large-scale systems
has been paid much more attention in the control com-
munity for a long time and many valuable results have
been published, such as, see [1–10] and the references
therein. On the other hand, the effect of dead-zone in-
put nonlinearity should be taken into consideration in
the design of control systems. As shown in many re-
search papers, dead-zone phenomenon is a very impor-
tant nonsmooth nonlinear characteristic, which is fre-
quently encountered in various practical engineering
systems, such as mechanical connections, hydraulic
servo valves, piezoelectric translators, and electric ser-
vomotors. The existence of dead-zone nonlinearity
usually causes severe deterioration of system perfor-
mances and even induces instability of the system.
Some interesting results for large-scale interconnected
systems with respect to dead-zone input nonlinearity
can be seen in [11, 12]. As well known, sliding mode
control is an effective method to cope with uncertain
systems since it has several advantages, such as, dis-
turbance rejection and insensitivity to plant parame-
ter variation and so on [13, 14]. Related researches
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on decentralized sliding mode control for uncertain
large-scale interconnected systems in the presence of
dead-zone input nonlinearity have been proposed; see
[15, 16] for details. It is worthy noting that the uncer-
tainty in each subsystem was assumed to satisfy the
so-called matching condition, and signal quantization
is neglected.

In modern engineering, due to the widespread ap-
plication of analog-to-digital and digital-to-analog
converters in sensors and actuators, quantization has
become one of important aspects that should be taken
into consideration in the control design. Many re-
sults have been published, see, e.g., [17–20], and [21].
However, no results have been reported on the robust
stabilization of uncertain large-scale interconnected
nonlinear systems with dead-zone input nonlinearity
by utilizing the decentralized quantized state feedback
sliding mode control schemes. For the design of the
quantized feedback sliding mode control, how to form
a quantized feedback control law to ensure the reacha-
bility of the sliding surface is the main question. When
a quantized feedback sliding mode control policy is
designed with a static uniform quantizer, the system
trajectory cannot ensure to reach the desired sliding
surface, thus the sliding motion cannot be well im-
plemented. In fact, the system trajectory can only be
driven to some neighbor of the sliding surface and as
a result, further convergence of the system cannot be
obtained [22].

Motivated by the above discussion, for a class
of uncertain large-scale interconnected systems with
dead-zone input nonlinearity, the decentralized quan-
tized feedback sliding mode control design is ad-
dressed. The main contribution of this paper is that
based on the proposed static adjustment policy of
quantization parameters for dynamic quantizers, the
reaching condition of the sliding mode for each sub-
system is established via a decentralized sliding mode
quantized feedback control law. It is shown that the
proposed control strategy can effectively eliminate
the effects of matched/mismatched uncertainties and
dead-zone input nonlinearity simultaneously, and as a
result, the state trajectory of each subsystem can be
driven onto the corresponding sliding surface, then a
stable sliding motion is maintained thereafter.

The rest of this paper is organized as follows. The
problem statement and preliminaries are presented in
Sect. 2. A robust decentralized sliding mode quantized
feedback control design method is given in Sect. 3. In

Sect. 4, an example is provided to illustrate the effec-
tiveness of the proposed method and the conclusions
are drawn in Sect. 5.

Throughout this paper, the following notations are
used. Notation |a| denotes the absolute value of a
scalar a and we will denote by ‖x‖ the standard Eu-
clidean norm of a vector x ∈ R

n and by ‖A‖ the in-
duced norm of a matrix A ∈ R

n×n. Let �x� denote the
function which rounds the element of x to the nearest
integer toward minus infinity.

2 Problem statement and preliminaries

Consider a class of uncertain nonlinear large-scale in-
terconnected systems with dead-zone nonlinear input
described as follows:

ẋi = (
Ai + ΔAi(t)

)
xi + BiΦi(ui) + Bifi(t, x,p),

i = 1,2, . . . ,N, (1)

where xi ∈ R
ni , ui ∈ R are the state and the control

input of the ith subsystem, respectively. ΔAi(t) ∈
R

ni×ni is the unknown mismatched bounded ma-
trix denoting the parameter uncertainty, which satis-
fies ‖ΔAi(t)‖ ≤ Āi , where Āi is a known constant.
fi(t, x,p) ∈ R describes the nonlinear interconnection
term affecting the ith subsystem, and Φi(ui) : R → R

denotes the input nonlinearity in the ith subsystem.
Let us denote xT = [xT

1 , xT
2 , . . . , xT

N ]. Throughout this
paper, some necessary assumptions are made as fol-
lows.

Assumption 1 For each uncertain subsystem in (1),
the pair (Ai,Bi) is controllable.

Assumption 2 There exist known positive scalars k0
i ,

k1
ij and k2

ij for the nonlinear interconnected uncertain
term fi(t, x,p) such that

∣
∣fi(t, x,p)

∣
∣ ≤ k0

i +
N∑

j=1

k1
ij‖xj‖ +

N∑

j=1

k2
ij‖xi‖‖xj‖.

(2)

Remark 1 Compared with [15], more complicated in-
terconnected structure is considered under Assump-
tion 2 since the presence of the term

∑N
j=1 k2

ij‖xi‖×
‖xj‖. Thus, more general interconnected cases can be
dealt with the proposed method in this paper.
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The dead-zone nonlinear input is described as fol-
lows:

Φi(ui) =
⎧
⎨

⎩

φi+(ui − ui0+), ui > ui0+,

0, −ui0− ≤ u ≤ ui+,

φi−(ui + ui0−), ui < −ui0−,

(3)

where φi+ > 0 and φi− are nonlinear functions of ui ,
and ui0+ > 0, ui0− > 0 are two known constants.

Assumption 3 [16] The dead-zone nonlinear input
function Φi(ui) satisfies the following property:

(ui − ui+)Φi(ui) ≥ mi+(ui − ui+)2, ui > ui+,

(ui + ui−)Φi(ui) ≥ mi−(ui + ui−)2, ui < ui−,

where mi+ ≤ φi+ and mi− ≤ φi− are two known pos-
itive constants for i = 1,2, . . . ,N .

To simplify the complexity of derivation, it is as-
sumed that ui0+ = ui0− = ui0 and mi+ = mi− = mi .

2.1 Sliding surface design

In general, sliding mode control design includes two
procedures, the first is the development of a sliding
surface and the second is the establishment of a sliding
mode control law for driving the system to the sliding
surface and maintaining a stable sliding motion there-
after. How to design the sliding surface is an interest-
ing question in its own but is not pursued here, it is
just assumed that the sliding surface is well designed
by existing methods, e.g., see [23].

In this paper, suppose that the following linear slid-
ing surface

si(t) = Cixi = 0

is well designed for the ith subsystem such that a sta-
ble sliding motion is maintained on it, where Ci ∈
R1×ni . Without loss of generality, it is assumed that
Ci is designed such that CiBi ≥ 1.

2.2 Quantization

In this paper, it is assumed that state signals are quan-
tized before they are sent to the controller side over
a digital communication channel. A quantizer can be
treated to be a device that converts a real-valued sig-
nal into piecewise constant ones in the control systems

[24]. It can be usually considered to be a mathematical
operator defined by the function round(·) that rounds
toward the nearest integer, i.e.,

qμ(z)
def= μ · round

(
z

μ

)
, μ > 0, (4)

where the quantization parameter μ is called the quan-
tization sensitivity of the quantizer. Let us define the
quantization error eμ = qμ(z) − z, since each compo-
nent of the quantization error eμ is bounded by the half
of the quantization parameter μ, we have

‖eμ‖ = ∥∥qμ(z) − z
∥∥ ≤ Δμ, (5)

where Δ =
√

p

2 and p is the dimension of the vector z.
A quantizing level μ = 0 is added to handle the

case that the system trajectory maintains on the slid-
ing surface. The additional definition of the quantizer
in this level is presented as follows:

qμ(z)
def= 0, μ = 0. (6)

The quantization parameter μ = 0 expresses the case
that the system trajectory are on the sliding surface. In
other words, when the system trajectory are kept on
the sliding surface, one has μ = 0 and qμ(z) = 0. In
addition, though the relation in (3) does not maintain
in such case because of μ = 0, it has no effect on the
reachability of the sliding surface with the proposed
quantized feedback controller in this paper.

The main objective of this paper is to present a
decentralized sliding mode quantized control law for
system (1) such that the system trajectory of each
subsystem can be driven to the corresponding sub-
system sliding manifold in spite of the effects of
matched/mismatched uncertainties and dead-zone in-
put nonlinearity.

3 Main results

To obtain the main result, two lemmas will be used,
where the Lemma 2 has been given in [25]; we present
it here for completeness. Its proof is given in the
Appendix.

Lemma 1 [26] If the following condition holds:

N∑

i=1

sT
i (t)si(t)

|si(t)| < 0, (7)
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then the motion of the sliding manifold si(t) =
Cixi(t) = 0 is asymptotically stable.

Lemma 2 Fix an arbitrary constant βi > 1, and sup-
pose that the parameter μi ≥ 0 satisfies

μi ≤ |Cixi |
(βi + 1)‖Ci‖Δi

, (8)

then the following inequality

|Cieμi
| ≤ ‖Ci‖Δiμi ≤ 1

βi

∣∣Ciqμi
(xi)

∣∣ (9)

holds.

Remark 2 From Lemma 2, one can see that the rela-
tion in (9) is established by the condition in (8). In
other words, as long as the quantization parameter μi

is adjusted to satisfy (8), the relation in (9) will be en-
sured. It will be observed that the inequality (9) plays
a very important role in the proof of Theorem 1.

In the following, we first present the reaching con-
troller design under the relation in (9), then by virtue
of (8), an adjustment policy of the parameter μi will
be provided for ensuring the establishment of (9) after
the proof of Theorem 1.

Theorem 1 Consider the uncertain large-scale sys-
tem (1) subject to Assumptions 1–3, then the global
reaching condition (7) is guaranteed when the decen-
tralized sliding mode quantized feedback controller is
designed as

ui = −[hi + ui0] sign
(
Ciqμi

(xi)
)
, (10)

where

hi

(
qμi

(xi),Δi,μi, t
)

= ηi

βi + 1

(βi − 1)CiBimi

ρi

(
qμi

(xi),Δi,μi

)
, ηi > 1,

ρi

(
qμi

(xi),Δi,μi

)

= βi + 1

βi − 1
|CiBi |k0

i +
{

βi + 1

βi − 1

(‖CiAi‖ + ‖Ci‖Āi

)

+
N∑

j=1

βj + 1

βj − 1
k1
ji |CjBj |

}
(‖qμi

(xi)‖ + Δiμi

)

+ 1

2

((
qμi

(xi)
)2 + 2

∥∥qμi
(xi)

∥∥Δiμi + Δ2
i μ

2
i

)

×
N∑

j=1

(
βi + 1

βi − 1
k2
ij |CiBi | + βj + 1

βj − 1
k2
ji |CjBj |

)
.

Proof Select Vi = |si(t)| and let V (t) = ∑N
i=1 |si(t)|

be the Lyapunov function candidate, then differentiat-
ing the function V (t) with respect to time t along the
solutions of system (1) yields

V̇ (t) =
N∑

i=1

V̇i =
N∑

i=1

si ṡi

|si |

=
N∑

i=1

si

|si |
{
Ci(Ai + ΔAi)xi + CiBiΦi

+ CiBifi

}
.

By virtue of qμi
(xi) − xi = eμi

, one can see that

V̇ (t) =
N∑

i=1

Ciqμi
(xi)

|si |
{
Ci(Ai + ΔAi)xi

+ CiBiΦi + CiBifi

}

−
N∑

i=1

Cieμi

|si |
{
Ci(Ai + ΔAi)xi

+ CiBiΦi + CiBifi

}
.

It follows from (9) that

V̇ (t) ≤
N∑

i=1

Ciqμi
(xi)

|si |
{
Ci(Ai + ΔAi)xi

+ CiBiΦi + CiBifi

}

+
N∑

i=1

|Ciqμi
(xi)|

βi |si |
∣∣Ci(Ai + ΔAi)xi

+ CiBiΦi + CiBifi

∣∣

≤
N∑

i=1

Ciqμi
(xi)

|si | CiBiΦi

+
N∑

i=1

1

βi

|Ciqμi
(xi)|

|si | |CiBiΦi |
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+
N∑

i=1

(βi + 1)|Ciqμi
(xi)|

βi |si |
∣∣Ci(Ai + ΔAi)xi

+ CiBifi

∣∣. (11)

First, we prove that

Ciqμi
(xi)

βi |si | CiBiΦi + 1

βi

|Ciqμi
(xi)|

|si | |CiBiΦi | = 0.

(12)

It is obviously that (12) is right when Ciqμi
(xi) = 0.

When Ciqμi
(xi) < 0, according to (10) and (3), we

have Φi(ui) = φi+hi . Combining with CiBi ≥ 1, one
can see that

Ciqμi
(xi)

βi |si | CiBiΦi + 1

βi

|Ciqμi
(xi)|

|si | |CiBiΦi |

= Ciqμi
(xi)

βi |si | CiBiφi+hi − Ciqμi
(xi)

βi |si | CiBiφi+hi

= 0.

Similarly, when Ciqμi
(xi) > 0, we have

Ciqμi
(xi)

βi |si | CiBiΦi + 1

βi

|Ciqμi
(xi)|

|si | |CiBiΦi |

= −Ciqμi
(xi)

βi |si | CiBiφi−hi + Ciqμi
(xi)

βi |si | CiBiφi−hi

= 0.

Thus (12) is right. It then follows from (11), (12), and
(2) that

V̇ ≤
N∑

i=1

βi − 1

βi

Ciqμi
(xi)

|si | CiBiΦi

+
N∑

i=1

βi + 1

βi

|Ciqμi
(xi)|

|si |

{

‖CiAi‖‖xi‖

+ ‖Ci‖‖ΔAi‖‖xi‖ + |CiBi |
[

k0
i +

N∑

j=1

k1
ij‖xj‖

+
N∑

j=1

k2
ij‖xi‖‖xj‖

]}

≤
N∑

i=1

βi − 1

βi

Ciqμi
(xi)

|si | CiBiΦi

+
N∑

i=1

βi + 1

βi

|Ciqμi
(xi)|

|si |

{

‖CiAi‖‖xi‖

+ ‖Ci‖‖ΔAi‖‖xi‖ + |CiBi |k0
i

+
N∑

j=1

k1
ij |CiBi |‖xj‖

+
N∑

j=1

k2
ij |CiBi |‖xi‖‖xj‖

}

. (13)

Using the basic inequality ab ≤ 1
2a2 + 1

2b2 for ∀a ∈ R,
b ∈ R, and ‖xi‖ ≤ ‖qμi

(xi)‖ + Δiμi , one can obtain
that

V̇ ≤
N∑

i=1

βi − 1

βi

Ciqμi
(xi)

|si | CiBiΦi

+
N∑

i=1

βi + 1

βi

|Ciqμi
(xi)|

|si |

{

‖CiAi‖‖xi‖

+ ‖Ci‖‖ΔAi‖‖xi‖

+ |CiBi |k0
i +

N∑

j=1

k1
ij |CiBi |‖xj‖

+ 1

2

N∑

j=1

k2
ij |CiBi |‖xi‖2

+ 1

2

N∑

j=1

k2
ij |CiBi |‖xj‖2

}

≤
N∑

i=1

βi − 1

βi

Ciqμi
(xi)

|si | CiBiΦi

+
N∑

i=1

βi + 1

βi

|Ciqμi
(xi)|

|si |

{
(‖CiAi‖

+ ‖Ci‖‖ΔAi‖
)[∥∥qμi

(xi)
∥
∥ + Δiμi

] + |CiBi |k0
i

+
N∑

j=1

k1
ij |CiBi |

[∥∥qμj
(xj )

∥∥ + Δjμj

]

+ 1

2

N∑

j=1

k2
ij |CiBi |

[(
qμi

(xi)
)2

+ 2
∥∥qμi

(xi)
∥∥Δiμi + Δ2

i μ
2
i

]
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+ 1

2

N∑

j=1

k2
ij |CiBi |

[(
qμj

(xj )
)2

+ 2
∥∥qμj

(xj )
∥∥Δjμj + Δ2

jμ
2
j

]
}

. (14)

Furthermore, by the utilization of qμi
(xi) − xi = eμi

and (9), one can see that

|si | = |Cixi | =
∣∣Ciqμi

(xi) − Cieμi

∣∣

≥ ∣∣Ciqμi
(xi)

∣∣ − |Cieμi
| ≥ ∣∣Ciqμi

(xi)
∣∣

− 1

βi

∣∣Ciqμi
(xi)

∣∣ = βi − 1

βi

∣∣Ciqμi
(xi)

∣∣,

so

V̇ ≤
N∑

i=1

βi − 1

βi

Ciqμi
(xi)

|si | CiBiΦi

+
N∑

i=1

βi + 1

βi

βi

βi − 1

{
(‖CiAi‖

+ ‖Ci‖‖ΔAi‖
)[∥∥qμi

(xi)
∥∥ + Δiμi

] + |CiBi |k0
i

+
N∑

j=1

k1
ij |CiBi |

[∥∥qμj
(xj )

∥∥ + Δjμj

]

+ 1

2

N∑

j=1

k2
ij |CiBi |

[(
qμi

(xi)
)2

+ 2
∥∥qμi

(xi)
∥∥Δiμi + Δ2

i μ
2
i

]

+ 1

2

N∑

j=1

k2
ij |CiBi |

[(
qμj

(xj )
)2

+ 2
∥∥qμj

(xj )
∥∥Δjμj + Δ2

jμ
2
j

]
}

=
N∑

i=1

βi − 1

βi

Ciqμi
(xi)

|si | CiBiΦi

+
N∑

i=1

βi + 1

βi − 1

{
(‖CiAi‖

+ ‖Ci‖‖ΔAi‖
)[∥∥qμi

(xi)
∥∥ + Δiμi

]

+ |CiBi |k0
i +

N∑

j=1

k1
ij |CiBi |

[∥∥qμj
(xj )

∥∥ + Δjμj

]

+ 1

2

N∑

j=1

k2
ij |CiBi |

[(
qμi

(xi)
)2

+ 2
∥∥qμi

(xi)
∥∥Δiμi + Δ2

i μ
2
i

]

+ 1

2

N∑

j=1

k2
ij |CiBi |

[(
qμj

(xj )
)2

+ 2
∥∥qμj

(xj )
∥∥Δjμj + Δ2

jμ
2
j

]
}

. (15)

Noticing that

N∑

i=1

N∑

j=1

aibij ci =
N∑

i=1

N∑

j=1

ajbjicj ,

one can see that

N∑

i=1

βi + 1

βi − 1

{
N∑

j=1

k1
ij |CiBi |

[∥∥qμj
(xj )

∥∥ + Δjμj

]

+ 1

2

N∑

j=1

k2
ij |CiBi |

[(
qμj

(xj )
)2

+ 2
∥∥qμj

(xj )
∥∥Δjμj + Δ2

jμ
2
j

]
}

=
N∑

i=1

N∑

j=1

k1
ji

βj + 1

βj − 1
|CjBj |

[∥∥qμi
(xi)

∥∥ + Δiμi

]

+ 1

2

N∑

i=1

N∑

j=1

βj + 1

βj − 1
k2
ji |CjBj |

[(
qμi

(xi)
)2

+ 2
∥∥qμi

(xi)
∥∥Δiμi + Δ2

i μ
2
i

]
. (16)

Substituting (16) into (15), we have

V̇ ≤
N∑

i=1

βi − 1

βi

Ciqμi
(xi)

|si | CiBiΦi

+
N∑

i=1

βi + 1

βi − 1

{
(‖CiAi‖

+ ‖Ci‖‖ΔAi‖
)[∥∥qμi

(xi)
∥∥ + Δiμi

]

+ |CiBi |k0
i + 1

2

N∑

j=1

k2
ij |CiBi |



Decentralized sliding mode quantized feedback control for a class of uncertain large-scale systems 423

× [(
qμi

(xi)
)2 + 2

∥∥qμi
(xi)

∥∥Δiμi + Δ2
i μ

2
i

]
}

+
N∑

i=1

N∑

j=1

k1
ji

βj + 1

βj − 1
|CjBj |

[∥∥qμi
(xi)

∥∥ + Δiμi

]

+ 1

2

N∑

i=1

N∑

j=1

βj + 1

βj − 1
k2
ji |CjBj |

× [(
qμi

(xi)
)2 + 2

∥∥qμi
(xi)

∥∥Δiμi + Δ2
i μ

2
i

]

=
N∑

i=1

βi − 1

βi

Ciqμi
(xi)

|si | CiBiΦi

+
N∑

i=1

{
βi + 1

βi − 1
|CiBi |k0

i + [∥∥qμi
(xi)

∥∥ + Δiμi

]

×
{

βi + 1

βi − 1

(‖CiAi‖ + ‖Ci‖‖ΔAi‖
)

+
N∑

j=1

βj + 1

βj − 1
k1
ji |CjBj |

}

+ 1

2

((
qμi

(xi)
)2 + 2

∥
∥qμi

(xi)
∥
∥Δiμi + Δ2

i μ
2
i

)

×
N∑

j=1

(
βi + 1

βi − 1
k2
ij |CiBi | + βj + 1

βj − 1
k2
ji |CjBj |

)}

.

(17)

Since

ρi

(
qμi

(xi),Δi,μi

)

= βi + 1

βi − 1
|CiBi |k0

i +
{

βi + 1

βi − 1

(‖CiAi‖ + ‖Ci‖Āi

)

+
N∑

j=1

βj + 1

βj − 1
k1
ji |CjBj |

}
(∥∥qμi

(xi)
∥∥ + Δiμi

)

+ 1

2

((
qμi

(xi)
)2 + 2

∥∥qμi
(xi)

∥∥Δiμi + Δ2
i μ

2
i

)

×
N∑

j=1

(
βi + 1

βi − 1
k2
ij |CiBi | + βj + 1

βj − 1
k2
ji |CjBj |

)
,

we have

V̇ ≤
N∑

i=1

βi − 1

βi

Ciqμi
(xi)

|si | CiBiΦi

+
N∑

i=1

ρi

(
qμi

(xi),Δi,μi

)
. (18)

In the following, we will show that

Ciqμi
(xi)CiBiΦi(ui) ≤ −mihi

∣∣Ciqμi
(xi)

∣∣. (19)

It is obvious that (19) holds when Ciqμi
(xi) = 0.

From (10), it can be observed that ui > ui0 when
Ciqμi

(xi) < 0, and then

(ui − ui0)Φi(ui) = (hi + ui0 − ui0)Φi(ui)

= hiΦi(ui). (20)

On the other hand, according to Assumption 3, one can
see that

(ui − ui0)Φi(ui) ≥ mi(ui − ui0)
2 = mih

2
i . (21)

From (20), (21), and CiBi ≥ 1, we have

Ciqμi
(xi)CiBiΦi(ui) ≤ −mihiCiBi

∣∣Ciqμi
(xi)

∣∣.

Similarly, one can achieve that

Ciqμi
(xi)CiBiΦi(ui) ≤ −mihiCiBi

∣∣Ciqμi
(xi)

∣∣

when Ciqμi
(xi) > 0. Thus, (19) is guaranteed.

In terms of (18), (19) and hi = ηi
βi+1

(βi−1)CiBimi
ρi , it

can be observed that

V̇ (t) ≤
N∑

i=1

βi + 1

βi

ηi

|si |
∣∣Ciqμi

(xi)
∣∣

+
N∑

i=1

ρi

(
qμi

(xi),Δi, ui

)
.

Since

|si | = |Cixi | =
∣∣Ciqμi

(xi) − Cieμi

∣∣

≤ ∣∣Ciqμi
(xi)

∣∣ + |Cieμi
| ≤ βi + 1

βi

∣∣Ciqμi
(xi)

∣∣,

one can see that

V̇ (t) ≤ −
N∑

i=1

ηiρi +
N∑

i=1

ρi = −
N∑

i=1

(ηi − 1)ρi < 0

by virtue of ηi > 1. According to Lemma 1, the reach-
ing condition is established. Thus, the proof is com-
pleted. �
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During the proof of Theorem 1, the relation in (9)
is utilized, then an adjustment strategy for the quanti-
zation parameter μi is required to ensure its establish-
ment. In this paper, a simple and effective design of
the adjustment law is developed based on Lemma 2.

The adjustment law of the quantization parameter μi

If |Cixi | ≥ 1, then we can take μi = �|Cixi |�
(βi+1)|Ci |Δi

;
If 0 < |Cixi | < 1, fix a positive constant θi , (0 <

θi < 1) a prior, thus there exists a positive integer
li such that θ

li
i ≤ |Cixi | < θ

li−1
i , then we take μi =

θ
li
i

(βi+1)|Ci |Δi
;

If |Cixi | = 0, it means the state trajectory of the ith
subsystem stays on the sliding surface si(t) = 0, one
can choose μi = 0 in this case.

From the design above, it is easy to see that it is a
static adjustment law.

Remark 3 According to the adjustment law of the
quantization parameters, it requires to obtain the in-
formation of parameters �|Cixi |�, βi , Ci , Δi , θi , and
li at the controller side. Parameters Ci , θi , and βi are

all given in advance by the designer, and Δi =
√

ni

2 de-
pends only on the dimension of the ith subsystem, then
they all can be known on both sides of the digital chan-
nel. The rest parameters, li and �|Cixi |� are integers,
then they can be easily transmitted from the coder side
to the decoder side over the digital channel. Hence, the
quantization parameter μi can be achieved perfectly
on the decoder side. As a result, the quantization state
signal qμi

(xi) can be obtained at the controller side
since it is the integer multiple of the parameter μi by
the definition of quantizers.

Remark 4 In this paper, the term “decentralized”
means that the controller design of the ith subsys-
tem only evolves the signals of the ith subsystem,
that is, the quantized state signals used in the ith sub-
system are qμi

(xi) while without utilizing qμj
(xj ),

j = 1,2, . . . ,N , j �= i. It is consistent with the notion
of decentralized control, please see [2] for details.

4 Simulation results

Consider a large-scale interconnected system com-
posed of two subsystems with the system parameters:

A1 =
[

0 1
−2 3

]
,

ΔA1 =
[

0.3 sin(t) 0
0 0.3 sin(t)

]
, B1 =

[
0
1

]
,

A2 =
[

0 1
−3 2

]
, ΔA2 =

[
0 0
0 0.3 cos(2t)

]
,

B2 =
[

0
1

]
,

f1 = 0.1 sin(t) + 0.2x12x22 + 0.1x21 + 0.2x22,

f2 = 0.1 cos(t) + 0.2x12x22 + 0.2x11 + 0.2x12,

Φ1(u1) =
⎧
⎨

⎩

1.2e−0.1 sin(t)(u1 − u10), u1 > u10,

0, |u1| ≤ u10,

1.2e−0.1 sin(t)(u1 + u10), u1 < −u10,

and

Φ2(u2) =
⎧
⎨

⎩

1.3e−0.5 cos(t)(u2 − u20), u2 > u20,

0, |u2| ≤ u20,

1.3e−0.5 cos(t)(u2 + u20), u1 < −u20.

It is easy to check that ‖ΔA1(t)‖ ≤ 0.5 and ‖ΔA2(t)‖
≤ 0.5, the interconnected terms f1(t, x,p) and f2(t,

x,p) satisfy Assumption 2 with k10 = 0.1, k20 = 0.1,
k2

12 = 0.2, k2
21 = 0.2, k1

21 = 0.3, and k1
12 = 0.3, and

he dead-zone input nonlinearity satisfies Assumption 3
with m1 = 1 and m2 = 1.

In the simulation, the linear switching surfaces of
the two subsystems are selected to be s1(t) = 1.5x11 +
x12 = 0 and s2(t) = 3x21 +x22 = 0. For simulation, let
us choose the initial values of the two subsystems are
x1(0) = [1 2]T and x2(0) = [1 1]T , respectively. The
related parameters required for the simulation are se-
lected as u10 = 1, u20 = 1, η1 = 1.5, η2 = 1.5, β1 = 5,
β2 = 5, θ1 = 0.5, and θ2 = 0.5. The simulation results
with the proposed method are shown in Figs. 1–6.

For comparison, the corresponding results with
static uniform quantizers are presented in Figs. 7, 8,
9 and 10, with μ1 = 0.4 and μ2 = 0.4. It can be ob-
served that with the proposed adjustment policy for
the quantizer parameters, the state trajectories of each
subsystem can be driven to the desired sliding surface
and then better convergence performance of the state
trajectories is achieved.

5 Conclusions

In this paper, the robust quantized feedback stabiliza-
tion problem for a class of uncertain large-scale sys-
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Fig. 1 Evolution of state variables x1

Fig. 2 Evolution of state variables x2

Fig. 3 Evolution of the sliding surface s1(t)

Fig. 4 Evolution of the sliding surface s2(t)

Fig. 5 Evolution of the quantization parameter μ1

Fig. 6 Evolution of the quantization parameter μ2
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Fig. 7 Evolution of state variables x1

Fig. 8 Evolution of state variables x2

tems has been addressed. With the proposed static ad-
justment law of the quantizer parameters, a decentral-
ized sliding mode quantized feedback control strategy
is developed to tackle dead-zone input nonlinearity, in-
terconnected nonlinearities, and matched/mismatched
uncertainties simultaneously. It ensures that the state
trajectories of each subsystem can converge to the cor-
responding subsystem sliding manifold. Finally, simu-
lation results demonstrate the effectiveness of the pro-
posed method.
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Appendix: Proof of the technical lemma

Proof of Lemma 2 First, it is obvious that the inequal-
ity

|Cieμi
| ≤ |Ci |Δiμi (22)

is satisfied by virtue of (5). Next, we will illustrate that
the inequality |Ci |Δiμi ≤ 1

βi
|Ciqμi

(xi)| holds when

the parameter μi satisfies 0 < μi ≤ |Cixi |
(βi+1)|Ci |Δi

.
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Multiplying (βi + 1)|Ci |Δi from both sides of (8),
we have

|Cixi | ≥ (βi + 1)|Ci |Δiμi. (23)

Subtracting |Ci |Δiμi from both sides of the above in-
equality (23), one can obtain

|Cixi | − |Ci |Δiμi ≥ βi |Ci |Δiμi.

Furthermore, combined with inequality (22), it is easy
to check that

|Cixi | − |Cieμi
| ≥ βi |Ci |Δiμi.

Owing to the triangle basic inequality |a − b| ≥ |a| −
|b|,∀a ∈ R, b ∈ R, it follows that

|Cixi + Cieμi
| ≥ |Cixi | − |Cieμi

| ≥ βi |Ci |Δiμi.

Utilizing the relationship qμi
(xi) = xi + eμi

, one can
see that
∣∣Ciqμi

(xi)
∣∣ ≥ βi |Ci |Δiμi. (24)

Therefore, by virtue of (22) and (24), it can be seen
that (9) is obtained. Thus, the proof is completed. �
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