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Abstract Complex networks have been judiciously
developed during the last decades. Much attention has
been given to investigate the synchronization of com-
plex networks in recent years. In this paper, by con-
structing a drive network and a suitable impulsively
controlled slave network, several synchronization cri-
teria for the uncertain complex networks have been ob-
tained based on the adaptive-impulsive method. The
tracking parameters are realized simultaneously as the
synchronization occurs. Particularly, our hypotheses
and the proposed adaptive-impulsive control laws for
network synchronization are simple and can be read-
ily applied in practical applications. Finally, numerical
simulations are provided to illustrate the effectiveness
of the proposed synchronization criteria.
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1 Introduction

Since the pioneering work of Strogatz and Barabasi,
complex networks have been prosperous greatly in
various fields of sciences and engineering over the past
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decades [1, 2]. As we all know, complex networks ex-
ist in many natural and man-made systems, such as
neural networks, cellular and metabolic networks, bio-
logical networks, computer networks, the World Wide
Web, coauthorship and citation networks, social net-
works, etc.

In fact, synchronization is a kind of typical col-
lective behavior exhibited in many natural systems. It
has been demonstrated that many real-world problems
have close relationships with network synchroniza-
tion. Recently, this kind of synchronization of com-
plex dynamical networks has been extensively studied
in various fields of science and engineering [3–9]. Wu
et al. explored the synchronization of random directed
networks [8]. Lü and Chen studied the synchroniza-
tion of time-varying complex dynamical networks [9].
Zhou and Chen studied the synchronization criteria of
coupled neural network systems with time delays [10].
Lately, some researchers investigated the synchroniza-
tion of complex networks with pinning controllers
[11–13]. Zhang and Lu proposed some adaptive feed-
back criteria for the synchronization of complex net-
works with delayed nodes [14]. Tang and Chen stud-
ied the adaptive synchronization between two com-
plex networks with nonidentical topology [15]. Then
the adaptive synchronization of uncertain complex dy-
namical networks was further studied by Lü et al. [16]
and Zhang et al. [17]. Recently, based on the adap-
tive method, Zhou et al. studied the synchronization
of networks with uncertain topology [18], Wu and Liu
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et al. investigated the structure identification of uncer-
tain complex networks with time delays [19, 20].

In fact, many practical systems such as signal pro-
cessing systems, computer networks, automatic con-
trol systems and telecommunications, impulsive ef-
fects are common phenomena due to instantaneous
perturbations at certain moments. Therefore, the study
of the complex dynamical networks with impulsive ef-
fects is important for understanding the dynamical be-
haviors of the most real-world complex networks. The
impulsive synchronization of complex dynamical net-
works of identical nodes and nonidentical nodes was
discussed in [21, 22]. Sun et al. and Zhou et al. studied
the impulsive synchronization of delayed complex net-
works [23, 24]. Very recently, Wang and Wu analyzed
the synchronization criteria for impulsive complex dy-
namical networks with time-varying delay [25], and
Yang et al. studied the synchronization of impulsively
coupled complex switched networks with parametric
uncertainties and time-varying delays [26].

The adaptive-impulsive synchronization has only
been lightly covered in References [27, 28]. To the best
of our knowledge, most of existing works are deal-
ing with the network problems with known dynami-
cal properties and topology in a prior. However, few
work has done for the synchronization and parameter
tracking of uncertain networks. As an interesting and
challenging topic, there are many questions in need to
be paid more attention. It is a challenge to give further
sights to such kinds of complex network.

Motivated by the above reasons, in this paper, we
consider a general complex dynamical network with
some uncertain parameters. Based on the adaptive
feedback and impulsive control method, several novel
criteria for the networks consisting of the nonidenti-
cal nodes and identical nodes have been obtained by
constructing a suitable drive network and an impul-
sively controlled slave network. They guarantee that
the unknown parameters are identified when the syn-
chronization occurs between complex dynamical net-
works.

This paper is organized as follows. Section 2 intro-
duces a general complex dynamical network several
useful hypotheses. A set of novel adaptive-impulsive
laws and synchronization criteria are given in Sect. 3.
Section 4 uses a simple example to show the effective-
ness of the proposed synchronization criteria. Some
concluding remarks are given in Sect. 5.

2 Problem formulation and preliminaries

Consider a class of n-dimensional dynamical system,
which is described by the following form of the differ-
ential equation:

ẋi (t) = Fi

(
t, xi(t),Θi

)
, (1)

in which xi(t) = (xi1(t), xi2(t), . . . , xin(t))
T ∈ Rn,

Θi ∈ Rp is the parameter vector. Further, it can be
rewritten as

ẋi (t) = fi

(
t, xi(t)

) + gi

(
t, xi(t)

) · Θi, (2)

where fi(t, xi(t)) : R+ × Rn → Rn is the continuous
nonlinear function vector without unknown parame-
ters and gi(t, xi(t)) : R+ × Rn → Rn×p is a continu-
ous function matrix, Θi ∈ Rp is the unknown parame-
ter vector.

Throughout this paper, we always assume that the
vector-valued function Fi(t, xi(t),Θi) satisfies the
uniform Lipschitz condition with respect to Θi , that
is,

Assumption 1 For any xi(t) = (xi1(t), xi2(t), . . . ,

xin(t))
T and yi(t) = (yi1(t), yi2(t), . . . , yin(t))

T ,
there exists a positive constant Li > 0, such that
∥∥Fi

(
t, yi(t),Θi

) − Fi

(
t, xi(t),Θi

)∥∥

≤ Li

(‖yi(t) − xi(t)‖
)
.

In fact, this assumption is very loose under the con-
dition that the solution of Eq. (1) is bounded.

Now, we consider a general complex network con-
sisting of N dynamical nodes. Each isolate node of the
network is an n-dimensional dynamical system satis-
fies the above-mentioned assumption. Then the drive
network is described by

ẋi (t) = Fi

(
t, xi(t),Θi

) +
N∑

j=1

cijAxj (t),

i = 1,2, . . . ,N, (3)

where xi(t) = (xi1(t), xi2(t), . . . , xin(t))
T ∈ Rn are

the state variables of node i, and C = (cij )N×N is
the weighted configuration matrix. If there is a di-
rected coupling from node i to j (j �= i), then cij �= 0
and cij is the weight; otherwise, cij = 0. The matrix
A = (aij )n×n ∈ Rn×n is the inner connecting matrix
of each node.



Parameter identification and synchronization of uncertain general complex networks 355

Remark 1 In the network (3), the outer-coupling ma-
trix C is not necessarily to be symmetric and the ele-
ments cij are not assumed to be only 0 or 1. Moreover,
there is not any constraint on the inner-coupling ma-
trix A.

Remark 2 The network model (3) is more popular and
generous because it is composed with N different node
dynamics. If there are some kinds of the same nodes,
it degenerates into the cluster network. If all the nodes
have the same dynamics, it simplified to the general
network in Refs. [3–8].

3 Parameter identification and synchronization by
adaptive and impulsive controllers

In order to focus on the insights of the unknown dy-
namical parameters of the general complex networks,
another impulsively controlled slave network is de-
signed as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẏi (t) = Fi(t, yi(t), Θ̂i) + ∑N
j=1 cijAyj (t) + Ui,

t �= tk

�yi(t
+) = Bikei(t), t = tk, k = 1,2, . . .

yi(t
+
0 ) = yi0,

(4)

where yi(t) = (yi1(t), yi2(t), . . . , yin(t))
T ∈ Rn are

the response state variables of node i, and Θ̂i is
the estimation of the unknown Θi . Bik is the feed-
back matrix of node i received at impulsive moment
tk , Ui is the adaptive controller received by the ith
node. Moreover, �yi(t

+
k ) = yi(t

+
k )−yi(t

−
k ), yi(t

+
k ) =

limt→t+k
yi(t) and any solution of (4) is left continu-

ous at each tk , i.e. yi(t
−
k ) = yi(tk). The moments of

impulse satisfy t1 < t2 < · · · < tk < tk+1 < · · · and
limk→∞ tk = ∞, τk = tk − tk−1 < ∞.

In the following, the main goal is to design appro-
priate adaptive controllers Ui and the corresponding
updating laws which make the impulsively controlled
network (4) and (3) be asymptotically synchronous.

Define error vectors as

ei(t) = yi(t) − xi(t),

(5)
Θ̃i = Θ̂i − Θi,

where i = 1,2, . . . ,N . According to equation (2) and
the controlled network (4) and (3), the error systems
are described by

ėi (t) = Fi

(
t, yi(t), Θ̂i

) − Fi

(
t, xi(t),Θi

)

+
N∑

j=1

cijAyj (t) −
N∑

j=1

cijAxj (t) + Ui

= Fi

(
t, yi(t), Θ̂i

) − Fi

(
t, yi(t),Θi

)

+ Fi

(
t, yi(t),Θi

) − Fi

(
t, xi(t),Θi

)

+
N∑

j=1

cijAej (t) + Ui

= gi

(
t, yi(t)

) · Θ̂i − gi

(
t, yi(t)

) · Θi

+ Fi

(
t, yi(t),Θi

) − Fi

(
t, xi(t),Θi

)

+
N∑

j=1

cijAej (t) + Ui (6)

and

ei

(
t+k

) = yi

(
t+k

) − xi

(
t+k

)

= yi(tk) + Bik(tk)ei(tk) − xi(tk)

= (I + Bik)ei(tk), (7)

where I is the identical matrix with the same dimen-
sion as Bik .

Theorem 1 Suppose that Assumption 1 holds. Let λ

be the largest eigenvalue of (C ⊗ A) + (C ⊗ A)T , if

βik = λmax
[
(I + Bik)

T (I + Bik)
]
< 1 (8)

and there exists a constant ξ > 1 such that

2ατk + ln(ξ) < 0 (9)

under the following restriction conditions:

Ui = −di(t)ei(t),

˙̂
Θi = −gT

i

(
t, yi(t)

)
ei(t), (10)

ḋi = kie
T
i (t)ei(t),

where ki are positive constants. Then, the impulsively
controlled network (4) and (3) is asymptotically syn-
chronous. Moreover,

Θ̂i → Θi, i = 1,2, . . . ,N. (11)
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Proof Construct the Lyapunov function as follows:

V (t) = 1

2

N∑

i=1

eT
i (t)ei(t) + 1

2

N∑

i=1

(Θ̂i − Θi)
T (Θ̂i − Θi)

+ 1

2

N∑

i=1

(di − d∗
i )2

ki

, (12)

where d∗
i (1 ≤ i ≤ N) are some positive constants.

Then

V̇ (t) =
N∑

i=1

eT
i (t)ėi (t) +

N∑

i=1

˙̂
ΘT

i (Θ̂i − Θi)

+
N∑

i=1

1

ki

(
di − d∗

i

)
ḋi ,

along with Eq. (6) and Assumption 1, we have

V̇ (t) ≤
N∑

i=1

eT
i (t)

[
gi

(
t, yi(t)

) · (Θ̂i − Θi)
]

+
N∑

i=1

Lie
T
i (t)ei(t)

+
N∑

i=1

N∑

j=1

eT
i (t)cijAej (t) +

N∑

i=1

eT
i (t)Ui

+
N∑

i=1

˙̂
ΘT

i (Θ̂i − Θi) +
N∑

i=1

1

ki

(
di − d∗

i

)
ḋi .

Denote E(t) = (eT
1 (t), eT

2 (t), . . . , eT
N(t))T , and L =

maxi{Li}, substitute Eq. (10) into the above equality,
we further have

V̇ (t) ≤ L

N∑

i=1

eT
i (t)ei(t) + ET (t)(C ⊗ A)E(t)

−
N∑

i=1

d∗
i eT

i (t)ei(t)

≤ L

N∑

i=1

eT
i (t)ei(t)

+ ET (t)
(C ⊗ A) + (C ⊗ A)T

2
E(t)

− d∗
N∑

i=1

eT
i (t)ei(t),

where d∗ = mini{d∗
i } > 0.

So

V̇ (t) ≤ L

N∑

i=1

eT
i (t)ei(t) + 1

2
λET (t)E(t)

− d∗
N∑

i=1

eT
i (t)ei(t)

=
(

L + 1

2
λ − d∗

) N∑

i=1

eT
i (t)ei(t) ≤ 2αV (t)

where α = L + 1
2λ − d∗.

This implies that

V (t) ≤ V
(
t+k−1

)
e2α(t−tk−1), t ∈ (tk−1, tk] (13)

For t = tk , from Eq. (7), we have

V
(
t+k

) = 1

2

N∑

i=1

eT
i (tk)(I + Bik)

T (I + Bik)ei(tk)

+ 1

2

N∑

i=1

(Θ̂i − Θi)
T (Θ̂i − Θi)

+ 1

2

N∑

i=1

(di − d∗
i )2

ki

≤ V (tk) (14)

because of βik = λmax[(I + Bik)
T (I + Bik)] < 1.

Thus, let k = 1 in the inequality (13), for any t ∈
(t0, t1], we have

V (t) ≤ V
(
t+0

)
e2α(t−t0),

which leads to

V (t1) ≤ V
(
t+0

)
e2α(t1−t0).

Then from (14), there is

V
(
t+1

) ≤ V (t1) ≤ V
(
t+0

)
e2α(t1−t0).

Therefore, for t ∈ (t1, t2],

V (t) ≤ V
(
t+1

)
e2α(t−t1) ≤ V

(
t+0

)
e2α(t−t0).

Repeating the same process, for t ∈ (tk, tk+1],

V (t) ≤ V
(
t+0

)
e2α(t−t0). (15)
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In virtue of the inequality (9) given in Theorem 1, we
know that

e2ατk <
1

ξ
, k = 1,2, . . .

Notice that t − t0 = (t − tk) + (tk − tk−1) + (tk−1 −
tk−2) · · ·+ (t2 − t1)+ (t1 − t0) = (t − tk)+ τk + τk−1 +
· · · + τ2 + τ1. Thus, the inequality (15) can be further
rewritten as

V (t) ≤ V
(
t+0

)(
e2ατ1

) · · · (e2ατk
)
e2α(t−tk)

< V
(
t+0

) 1

ξk
e2ατk+1 , (16)

therefore V (t) → 0 as k → ∞ because of ξ > 1,
which implies that all the errors ei(t) → 0 and Θ̂i →
Θi, di → d∗

i (i = 1,2, . . . ,N). So the synchronization
between the impulsively controlled complex network
(4) and network (3) is realized and the unknown sys-
tem parameters are identified simultaneously. �

Corollary 1 If a complex network consists of N iden-
tical nodes, which can be described by

ẋi (t) = f
(
t, xi(t)

) + g
(
t, xi(t)

) · Θ +
N∑

j=1

cijAxj (t),

(17)

then unknown system parameters Θ can be identified
by using the estimated values Θ̂ with the following im-
pulsively controlled response network:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẏi (t) = f (t, yi(t)) + g(t, yi(t)) · Θ̂
+ ∑N

j=1 cijAyj (t) + Ui, t �= tk

�yi(t
+) = Bikei(t), t = tk, k = 1,2, . . .

yi(t
+
0 ) = yi0,

Ui = −di(t)ei(t),

(18)

if

2ατk + ln(ξ) < 0 (19)

and

˙̂
Θ = −

N∑

i=1

gT (t, yi(t))ei(t),

(20)
ḋi = kie

T
i (t)ei(t),

where λ is the largest eigenvalue of (C ⊗ A) +
(C ⊗ A)T , constant ξ > 1 and α is the same defined
in Theorem 1.

4 A simulation example

In the foregoing section, Theorems 1 and Corollary 1
essentially provide the criteria for synchronization and
unknown system parameters identification between
impulsively controlled uncertain complex networks.
Here, we use a simple example to illustrate how these
results can be applied in complex networks with iden-
tical nodes.

Consider a simple network with five identical
nodes. The chaotic Lorenz system is taken as the
node’s dynamical function in this example, which is
given by

F
(
t, xi(t),Θ

) =
⎛

⎝
a(xi2 − xi1)

cxi1 − xi1xi3 − xi2

xi1xi2 − bxi3

⎞

⎠ ,

i = 1,2,3 . . . ,5, (21)

where the parameters a = 10, b = 8/3, c = 28,Θ =
(a, b, c)T .

Then

f
(
t, xi(t)

) =
⎛

⎝
0

−xi1xi3 − xi2

xi1xi2

⎞

⎠ ,

and

g
(
t, xi(t)

) =
⎛

⎝
xi2 − xi1 0 0

0 0 xi1

0 −xi3 0

⎞

⎠ .

Here, we assume that the inner matrix A = I3 and
these nodes are connected with weighted zero-row-
sum. For example, the weighed outer-coupling config-
uration matrix is given by

C =

⎛

⎜⎜⎜⎜
⎝

−4 1 1 2 0
1 −7 4 0 2
1 4 −6 2 −1
2 0 2 −7 3
0 2 −1 3 −4

⎞

⎟⎟⎟⎟
⎠

,

and Fig. 1 shows the topology connection between
these five nodes.
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Fig. 1 Topological
structure of an uncertain
complex network in the
example

Fig. 2 Synchronization errors ei(t) (1 ≤ i ≤ 5)

We assume that all the parameters a, b, c are un-
known in prior. Let Bik = diag{−0.5,−0.5,−0.5},
τk = 0.2, ki = 10 ∗ i(i = 1,2, . . . ,5). Figure 2 shows
the synchronization errors of ei1(t), ei2(t)ei3(t) under
the updating laws (10). Clearly, all synchronization er-
rors are rapidly converging to zero. From Figs. 3 and 4,
one can see that the system parameters tracking is real-
ized and all the adaptive feedback gain di(t) converge
to zero at the same time.

5 Conclusion

The adaptive-impulsive synchronization and parame-
ter identification of unknown general complex dynam-
ical networks has been studied in this paper. Specif-
ically, some uncertain factors are taken into account
in this network, such as some unknown system pa-
rameters. By constructing another suitable impulsively
controlled slave network, several novel adaptive laws
and synchronization criteria are derived. These crite-
ria are very useful for understanding the mechanism
of synchronization in complex networks. Moreover,
the hypotheses and the resulting adaptive controllers
for achieving network synchronization are expressed

Fig. 3 Identification of system parameters

Fig. 4 The adaptive feedback di(t)

in simple forms that can be readily applied in practical
situations. Finally, numerical simulations have been
presented to demonstrate the effectiveness of the pro-
posed synchronization criteria.
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