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Abstract This paper explores the synchronization
scenario of coupled chaotic and hyperchaotic time de-
lay systems that are coupled through linear, dissipa-
tive and unidirectional coupling. For the present study,
we choose a prototype first-order nonlinear time delay
system, which is recently reported in Banerjee et al.
(Nonlinlinear. Dyn., doi:10.1007/s11071-012-0490-3,
2012); the system shows well-characterized chaotic
and hyperchaotic oscillations even for a small time
delay, and also, experimental implementation of the
system is easy. We show that, keeping all the system
design parameters the same for the two systems, if
the time delays associated with the two systems are
equal, then complete synchronization occurs beyond
a threshold coupling strength. On the contrary, above
a certain coupling strength, generalized synchroniza-
tion between two identical coupled systems occurs for
the unequal time delays. We derive an estimate of the
coupling strength and sufficient stability conditions for
all the synchronization processes using Krasovskii–
Lyapunov theory. We simulate the coupled system nu-
merically to support the analytical results. Also, we
implement the coupled system in an electronic cir-
cuit to verify all the synchronization phenomena. It
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is shown that the experimental results agree well with
our analytical and numerical results.

Keywords Delay dynamical system · Chaos
synchronization · Hyperchaos · Time delay electronic
circuit

1 Introduction

For the last two decades synchronization of chaos has
been an active area of research in various fields, in-
cluding physics, biology, mathematics, engineering,
etc. In a seminal paper Pecora and Carrol [2] have
first shown that two chaotic trajectories having dif-
ferent initial conditions can be synchronized. Since
then researchers around the world have been actively
engaged to explore different possible synchronization
scenario of the chaotic systems; the following variety
of synchronization schemes have been observed and
identified: Complete synchronization [2], Generalized
synchronization [3–5], Phase synchronization [6], Lag
synchronization [7, 8], Anticipatory synchronization
[9], Impulsive synchronization [10, 11], etc. Two ex-
cellent review papers [12, 13] describe the state of the
present status of synchronization of chaos.

In the initial years, emphasis has been on the syn-
chronization of low dimensional chaotic systems, i.e.,
chaotic systems having a single positive Lyapunov ex-
ponent (LE). Later on, synchronization of higher di-
mensional chaos (i.e. hyperchaos) [14], and chaotic
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oscillators in a network [15] have also been exten-
sively studied. In the former category, the most im-
portant system is nonlinear delay dynamical system
(DDS), which is modeled by delay differential equa-
tions (DDE). DDS is an infinite dimensional system
having a large number of positive Lyapunov expo-
nents. DDEs have been successfully used to model
various natural phenomena; examples include: blood
production in patients with leukemia (Mackey–Glass
model) [16], dynamics of optical systems (e.g. Ikeda
system) [17, 18], population dynamics [19], physio-
logical models [20], the El Niño/southern oscillation
(ENSO) [21], neural networks [22], control systems
[23–25], etc. Further, coupled time-delayed systems
exhibit interesting phenomena like amplitude death
[26], multistability, etc. that cannot be anticipated by a
low dimensional system. Thus studies on the coupled
delay dynamical systems and identify the conditions
of their synchronization regime have been a potential
research problem. Pyragas [27] first shown that time-
delayed chaotic systems can be properly coupled to
make them synchronous. Later, depending on the cou-
pling delay and feedback delay many synchronization
phenomena have been reported [28–31].

Apart from the academic interest, synchronization
of chaotic and hyperchaotic delay dynamical systems
offers a great opportunity to the researchers to har-
ness the richness of hyperchaos, having multiple pos-
itive Lyapunov exponents (LEs) [32]. It has already
been established that communication with a low di-
mensional chaos (having a single positive LE) is not
fully secure because an eavesdropper can reconstruct
the chaotic attractor and retrieve the hidden message
[33]. Therefore, synchronization of hyperchaotic sys-
tems has been proposed as an alternative method for
improving the security in the communication schemes
[14]. As a simple time-delay system with suitable non-
linearity can produce a hyperchaotic signal with mul-
tiple positive LEs, they have been identified as good
candidates for secure communication system [34].

In order to realize a chaos-based communication
system the first step is to design simple and well char-
acterized time-delay systems that can produce chaos
and hyperchaos. Nonlinear time-delayed systems that
can be implemented with off-the-shelf electronic cir-
cuits are of particular interest due to their applica-
tion potentiality; that is why, many electronic circuits
and systems have been reported in the literature. Most
of the circuits reported in literature used piece-wise-
linear (PWL) nonlinearity for the ease of circuit design

and analysis [35–40]. But an exact analysis and circuit
implementation of those PWL circuits are not possi-
ble. In Ref. [1], we proposed a time-delayed chaotic
and hyperchaotic system having a closed form mathe-
matical function of the nonlinearity. With detailed bi-
furcation analysis and numerical simulations we estab-
lished that the system is a potential chaos and hyper-
chaos generator even with a small or moderate time
delay. Also the system was experimentally designed
with off-the-shelf electronic circuits, and chaotic and
hyperchaotic attractors were observed experimentally.

In this paper we study the synchronization of two
unidirectionally coupled chaotic (hyperchaotic) non-
linear time-delay systems that are recently proposed
in [1]. The time-delayed systems are coupled through
a linear dissipative coupling. It is shown that if we
consider two identical systems with the same system
delays, then complete synchronization occurs beyond
a threshold coupling strength. On the other hand, if
we consider two identical systems with unequal time
delays, generalized synchronization occurs. Stability
conditions of all the synchronization processes are an-
alytically obtained using Krasovskii–Lyapunov the-
ory. Numerical simulations are carried out to observe
different synchronization scenario. It is shown that nu-
merical results corroborate the analytical findings. Fi-
nally, we set up an electronic circuit experiment to
experimentally verify all the synchronization scenario
described in this paper. We show that experimental re-
sults agree well with the analytical and numerical re-
sults.

The paper is organized in the following manner: the
next section describes the time-delayed system [1] and
a summary of its dynamical behavior. Section 2 de-
scribes the coupled system along with the proper cou-
pling schemes. Stability analysis using Krasovskii–
Lyapunov theory is given in Sect. 4. Numerical sim-
ulations of different synchronization schemes are re-
ported in Sect. 5. Section 6 reports the circuit imple-
mentation of the coupled system. Experimental results
are described in Sect. 7. Finally, Sect. 8 concludes the
outcome of the whole study.

2 System description and dynamics of the
uncoupled system

In this section we describe the time-delayed system
proposed in Ref. [1], and also briefly discuss its im-
portant dynamical features. Reference [1] proposed
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the following first-order, nonlinear, retarded type de-
lay differential equation with a single constant delay:

ẋ = −ax(t) − bf (xτ ), (1)

where a and b are system parameters, a > 0 and b > 0.
Also, xτ ≡ x(t − τ), where τ ∈ R

+ is a constant time
delay. Nonlinearity f (xτ ) is defined by the following
closed form mathematical function:

f (xτ ) = −0.5n
(|xτ | + xτ

) + m tanh(lxτ ), (2)

where n, m, and l are all positive system parameters.
Figure 1 shows the nature of the nonlinearity of f (xτ )

for different values of n, m and l. There exist a large
number of choices of n, m and l that can produce this
particular nature of the nonlinearity. The nonlinearity
shows a single hump in the first quadrant, but unlike
the nonlinearity of Mackey–Glass (MG) system [16],
it does not asymptotically vanish.

The detailed stability and bifurcation analysis was
reported in [1]; there we have proved the existence of
chaos and hyperchaos through the presence of strange
attractor along with positive Lyapunov exponent and
higher values (> 3) of Kaplan–York dimension [41].
The following parameter values have been used in
[1]: a = 1, n = 1.15, m = 0.97, l = 2.19. It has been
shown that, keeping b fixed, if one varies τ , the sys-
tem shows a period doubling route to chaos and hy-
perchaos [1]. For example, for b = 1.7, at τ = 0.805,
the fixed point loses its stability through Hopf bifurca-
tion and a stable limit cycle appears; chaos and hyper-
chaos are observed at τ ≈ 3.1 and τ ≈ 3.60, respec-
tively. Further, keeping τ fixed, if we vary b then also
chaos and hyperchaos occur; e.g., at τ = 4, chaos oc-
curs for b ≥ 1.52 and hyperchaos occurs for b ≥ 1.75.
Figure 2 shows the chaotic and hyperchaotic attractors
for different time delays (with b = 1.7). Figure 3 ex-
plores the dynamics of the system in the whole b–τ pa-
rameter space. It is noteworthy that for a proper choice
of b, the system shows chaos and hyperchaos even for
a small time delay; e.g. for b = 2.25 one has chaos
for τ ≈ 1.85. This makes the circuit implementation
of the system is easier and also makes it superior for
the possible applications in communication system.

3 Coupled time-delayed system

Let us consider two chaotic systems given by (1) cou-
pled through a linear, dissipative, unidirectional cou-

Fig. 1 Nonlinearity with the function f (xτ ) = −n0.5(|xτ |
+ xτ ) + m tanh(lxτ ) with n1: n = 1.15, m = 0.97, l = 2.19; n2:
n = 0.8, m = 1, l = 4, n3: n = 1.5, m = 1, l = 6

Fig. 2 Phase plane plot in x–x(t − τ) space for different τ :
(upper panel) τ = 3.17 (chaos), (lower panel) τ = 4.78 (hy-
per chaos) (other parameters are: b = 1.7, a = 1, n = 1.15,
m = 0.97, l = 2.19)
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Fig. 3 Two parameter bifurcation diagram of x in the b − τ

space. Color-box represents the period of oscillations; EP stands
for equilibrium point. It is noteworthy that for a proper choice
of b one has chaos and hyperchaos even for τ < 2 (other param-
eters are: a = 1, n = 1.15, m = 0.97, l = 2.19) (Color figure
online)

pling. The mathematical model of the coupled system
is given by

ẋ = −ax(t) − b1f (xτ1), (3a)

ẏ = −ay(t) − b2f (yτ2) + K(x − y). (3b)

where a > 0 is a constant, b1 and b2 are called the
feedback rates for the two systems. τ1 and τ2 are the
system delays. K is the coupling rate that determines
the strength of the coupling. x is designated as the
driver and y is the response system.

4 Stability analysis of the coupled system

In this section we will derive the asymptotic stabil-
ity condition of synchronization and also find an esti-
mate of the coupling rate beyond which synchroniza-
tion occurs. If all other system parameters are same
for the two systems, two types of synchronization sce-
nario are possible, namely, the complete synchroniza-
tion (for τ1 = τ2) and the generalized synchronization
(for, τ1 �= τ2) [29]. In the following subsections we
investigate the stability for each synchronization pro-
cess.

4.1 Complete synchronization

For the complete synchronization we must have
τ1 = τ2, such that the synchronization manifold be-
comes x = y. We introduce the error function defined

as � = (x − y). The time evolution of the error yields
the error dynamics of systems (3a) and (3b) as

d�

dt
= −(a + K)� + (−b1 + b2)f (xτ1)

− b2f
′(xτ1)�τ1 . (4)

This is an inhomogeneous equation and hence difficult
to analyze. To make it homogeneous we impose the
constraint

b1 = b2. (5)

Obviously, we have to obey this constraint for com-
plete synchronization in order to avoid any parameter
mismatch. The error dynamics thus becomes

d�

dt
= −(a + K)� − b2f

′(xτ1)�τ1 . (6)

The synchronization threshold of the coupled system
is analyzed with the help of Krasovskii–Lyapunov the-
ory [42]. According to this theory, driver and response
(3a), (3b) systems are said to be synchronized if the
origin of (6) is stable. To estimate the sufficient condi-
tion of stability we introduce a positive definite func-
tional V (t):

V (t) = 1

2
�2 + μ

∫ 0

−τ1

�2(t + ϕ)dϕ. (7)

Here μ > 0 is an arbitrary positive parameter. The ori-
gin of (6) is said to be stable if the time derivative of
V (t) is negative one. We have

dV

dt
= −(a + K)�2 − b2f

′(x − τ1)��τ1

+ μ�2 − μ�2
τ1

. (8)

The condition of negativity of the quantity dV/dt , for
all values of � and �τ1 , reads

a + K >
b2

2f
′2(xτ1)

4μ
+ μ = Φ(μ). (9)

Here Φ(μ) is a function of μ. At the minimum value
of this function we get μ = |b2f

′(xτ1)|/2, and Φmin =
|b2f

′(xτ1)|. With these, (9) becomes

a + K > |b2f
′(xτ1)|. (10)

This is the sufficient condition for asymptotic stability
of complete synchronization manifold x = y of (3a),
(3b). Here we have to calculate f ′(xτ1) from (2).
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4.2 Generalized synchronization

The generalized synchronization arises for the param-
eter mismatch case; when the system delays are not
equal to each other, i.e., τ1 �= τ2, then generalized syn-
chronization will occur even if the other parameters
are same in the two systems. In the case of general-
ized synchronization, the state of the response (y(t))
is related to the driver (x(t)) by some functional re-
lationship, i.e., y(t) = g(x(t)). To detect generalized
synchronization, we use the auxiliary system method
of generalized synchronization [4]. According to this
method, a new auxiliary dynamical system z(t) is de-
fined, which is driven by the driver (x) with a coupling
rate (K) equal to that of the response system (y(t)).
The complete synchronization between y(t) and z(t)

is the confirmation of generalized synchronization be-
tween x(t) and y(t). This method actually enables us
to find the stability condition locally for the gener-
alized synchronization. Thus, we investigate for the
complete synchronization between the following sys-
tems:

ẏ = −ay(t) − b2f (yτ2) + K(x − y), (11a)

ż = −az(t) − b2f (zτ2) + K(x − z). (11b)

The stability condition of complete synchronization
between these two systems are obtained by a similar
process as discussed in the previous subsection 4.1,
which is

a + K >
∣∣b2f

′(yτ2)
∣∣. (12)

This, in turn, gives the condition for generalized syn-
chronization between x(t) and y(t). Note that, this is
the sufficient condition, which is stable locally for the
generalized synchronization.

5 Numerical simulation

The system equation (3a), (3b) has been simulated nu-
merically using the Runge–Kutta algorithm with step
size h = 0.01. The following initial functions have
been used for all the numerical simulations: for the
driver φD(t) = 1, for the response φR(t) = 0.9, and
for the auxiliary system φA(t) = 0.85. Also, the fol-
lowing system design parameters are chosen through-
out the paper: a = 1, n = 1.15, m = 0.97, l = 2.19
[1]. While presenting the real time and phase plane

diagrams, a large number of iterations have been ex-
cluded to allow the system to settle to the steady
state.

5.1 Complete synchronization: τ1 = τ2

At first we take equal time delays for both the sys-
tems i.e., τ1 = τ2 = 4. For the systems to be in
the chaotic region we take b1 = b2 = 1.65. For our
present choice of parameters, we find from (2) that
the maximum value of f ′(xτ1) is equal to 2.114.
Thus from our analytical stability condition (10), the
sufficient condition of complete synchronization is
K ≥ 2.488 (remembering a = 1). To ensure com-
plete synchronization, we choose the value of cou-
pling rate higher than that; here we take K = 3. Fig-
ure 4 shows the real time traces of the driver (x(t))
and response (y(t)), from which we conclude that the
driver and response match exactly and thus indicate
complete synchronization. This statement is well sup-
ported by the phase plane plot in the x(t)–y(t) plane
that shows a straight line making 45◦ angle with the
x-axis.

Similarly, for the hyperchaotic case we take b1 =
b2 = 2.1; thus (10) suggests that the sufficient con-
dition of complete synchronization is K ≥ 3.44; for
the numerical simulations we chose K = 3.5. Fig-
ure 5 shows the real time traces of the driver (x(t))
and response (y(t)) and its phase plane representa-
tion, which shows an exact similarity between the
driver and response indicating complete synchroniza-
tion.

5.2 Generalized synchronization: τ1 �= τ2

Next, we consider unequal time delays in two sys-
tems, i.e., τ1 �= τ2; we take τ1 = 4 and τ2 = 3.44. As
before, for the chaotic oscillation we take b1 = b2 =
1.65. Again, from (2) we have the maximum value of
f ′(yτ2) is equal to 2.114; thus to ensure generalized
synchronization we take K = 3. The real time traces
of the driver (x(t)) and response (y(t)) systems are
shown in the Fig. 6 (upper panel), which shows that,
unlike complete synchronization, the driver and re-
sponse are not exactly similar but connected by a func-
tional relation, indicating generalized synchronization.
Phase plane plot (middle panel) in the representative
x(t)–y(t) plane shows that the system dynamics do
not converge to the straight line but wander around
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Fig. 4 Upper panel: Complete synchronization of chaos:
Driver (x(t)) and Response (y(t)) signal (K = 3, τ1 = τ2 = 4,
b1 = b2 = 1.65). Lower panel: The corresponding phase plane
plot in x(t)–y(t) plane

the straight line that makes a 45◦ angle to the x-axis.
The real time plot (and also phase plane plot in the in-
set) of the response y(t) and the auxiliary variable z(t)

is shown in the lower panel of Fig. 6 that indicates a
complete synchronization between them; this, in turn,
ensures the occurrence of generalized synchronization
between x(t) and y(t).

For the hyperchaotic oscillation, we take b1 = b2 =
2.1 and K = 3.5. Figure 7 shows the real time plots
(upper panel) and the phase plane plot (middle panel)
of x(t) and y(t), and also plot of y(t) and z(t) (lower
panel). Since y(t) = z(t), thus we can say that x(t)

and y(t) are in generalized synchronized state in the
hyperchaotic region also.

Fig. 5 Upper panel: Complete synchronization of hyperchaos:
Driver (x(t)) and Response (y(t)) signal (K = 3.5, τ1 = τ2 = 4,
b1 = b2 = 2.1). Lower panel: The corresponding phase plane
plot in x(t)–y(t) plane

6 Electronic circuit realization

To experimentally verify the analytical and numeri-
cal findings, we implement the coupled system given
by (3a), (3b) in an analog electronic circuit. Figure 8
shows the representative diagram of the experimental
circuit. There are two distinct parts, namely, the driver
and the response, which are unidirectionally coupled
by a resistor Rc that controls the coupling rate. The
nonlinear device (ND) part of each refers to the cir-
cuit of Fig. 9; delay block is realized by using active
all-pass filters (APF). Let, V1(t) be the voltage drop
across the capacitor C0 of the low-pass filter section
R0 −C0 of the driver and that of the response be V2(t);
thus the following equations represent the time evolu-
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Fig. 6 Upper panel: Generalized synchronization of chaos:
Driver (x(t)) and Response (y(t)) signal (K = 3, τ1 = 4,
τ2 = 3.44, b1 = b2 = 1.65). Middle panel: The corresponding
phase plane plot in x(t)–y(t) plane. Lower panel: Complete
synchronization between the response (y(t)) and the auxiliary
variable (z(t)); inset shows the corresponding phase plane plot
in the y(t)–z(t) plane

Fig. 7 Upper panel: Generalized synchronization of hyper-
chaos: Driver (x(t)) and Response (y(t)) signal (K = 3.5,
τ1 = 4, τ2 = 3.44, b1 = b2 = 2.1). Middle panel: The corre-
sponding phase plane plot in x(t)–y(t) plane. Lower panel:
Complete synchronization between the response (y(t)) and the
auxiliary variable (z(t)); inset shows the corresponding phase
plane plot in the y(t)–z(t) plane
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Fig. 8 Experimental circuit
diagram of the coupled
system. R0 = 1 k�,
C0 = 100 nF. Buffers are
designed with the unity gain
non-inverting operational
amplifiers. Rc determines
the coupling rate

Fig. 9 Nonlinear Device
(ND) along with the
amplifying stage (b).
A1–A3 are opamps (TL
074), D1 is the diode:
1N4148, R1 = 17.49 k�,
R2 = 12.08 k�,
R3 = 9.78 k�,
R4 = 6.96 k�, R5 = 10 k�,
R6 = 1 k�. Inset shows the
experimental oscilloscope
trace of the nonlinearity
produced by the ND

tion of the circuit:

R0C0
dV1(t)

dt
= −V1(t) − b1f

(
V1(t − TD1)

)
, (13)

R0C0
dV2(t)

dt
= −V2(t) − b2f

(
V2(t − TD2)

)

+ K
(
V1(t) − V2(t)

)
. (14)

Here, b1, b2 = R7
R6

is the gain of the amplifier A3
(Fig. 9), and K = 1/Rc is the coupling rate. f (V (t −
TDi

)) ≡ f (Vτi
), i = 1,2, is the nonlinear function rep-

resenting the output of the Nonlinear Device (ND) of
Fig. 9, in terms of the input voltage Vτi

. TDi
is the time

delay produced by the delay block.
In [1], we have reported that the nonlinearity of Fig.

9 has the following form:

f (V (t − TDi
))

= −R5

R3
0.5

[∣∣V (t − TDi
)
∣∣ + V (t − TDi

)
]

+ R5

R4
βVsat tanh

(
w

R2

R1

V (t − TDi
)

Vsat

)
. (15)

The variable delay element is realized by a first-
order all-pass filter (APF) (Fig. 10) [43]. The APF has
the following transfer function:

T (s) = −a1
s − ω0

s + ω0
(16)

with flat gain a1 = 1 (determined by R8 and R9), and
ω0 = 1/CR is the frequency at which the phase shift is
π/2. Since it has an almost linear phase response, thus
each APF block contributes a delay of TD ≈ RC. So
j blocks produce a delay of TD = jRC (j = 1,2, . . .).
By simply changing the resistance R, one can vary the
amount of delay; thus one can control the resolution of
the delay line.

Let us define the following dimensionless variables

and parameters: t = t
R0C0

, τi = TDi

R0C0
, x = V1(t)

Vsat
, x(t −

τ1) = V1(t−TD1 )

Vsat
, y = V2(t)

Vsat
, y(t − τ2) = V2(t−TD2 )

Vsat
,

R5
R3

= n1, β
R5
R4

= m1, w R2
R1

= l1, bi = R7
R6

, and K = 1
Rc

,
where i = 1,2. Now, (13), (14), and (15) can be re-
duced to the following dimensionless, coupled, first-
order, nonlinear delay differential equations:

dx

dt
= −x(t) − b1f

(
x(t − τ1)

)
, (17)
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dy

dt
= −y(t) − b2f

(
y(t − τ2)

) + K(x − y). (18)

where

f (u(t − τi)) ≡ f (uτi
)

= −n10.5
(|uτi

| + uτi

)

+ m1 tanh(l1uτi
), (19)

where u ≡ x, y.
It is worth noting that (17) and (18) (along with

(19)) are equivalent to (3a) and (3b) (along with
(2)) with a = 1, and appropriate choices of n1, m1

and l1.

7 Experimental results

The coupled system is designed on hardware level on
a bread board using IC TL074 opamps (JFET quad
opamps) with a ±15 volt power supply. Capacitors
and resistors have 5 % tolerance. The resistance val-
ues used in the circuits for both the driver and response
are: R1 = 17.49 k�, R2 = 12.08 k�, R3 = 9.78 k�,
R4 = 6.96 k�, R5 = 10 k�, R6 = 1 k�. For the low-
pass section we used R0 = 1 k� and C0 = 100 nF.
The nonlinearity produced by the nonlinear device part
of all the systems are kept similar in nature and is
shown in Fig. 9 (inset). The delay is implemented by
the use of identical active all-pass filter stages shown
in Fig. 10, with specifications R8 = R9 = 2.2 k�,
C = 10 nF and a variable resistance R. Here our main
concern is to study the synchronization phenomena by
varying the system delays of the constituent systems
keeping the other system design-parameters same for
the two systems.

7.1 Uncoupled condition

In the uncoupled condition, the isolated systems show
chaos and hyperchaos when we vary the parameter
controlling the gain of the circuit, viz., the resistance
R7. The individual systems show chaos for R7 ≥ 2.52
k� and hyperchaos for R7 ≥ 2.66 k�. Figure 11
shows the oscilloscope traces of chaos and hyperchaos
of the driver and response for R7 = 2.60 k� and R7 =
2.71 k�, respectively. The first two traces on the left
column show the chaotic attractors of uncoupled driver
and response, respectively. The third trace in the left

Fig. 10 Active first-order all-pass filter. R8 = R9 = 2.2 k�,
C = 10 nF

Fig. 11 The individual attractors of the uncoupled driver
(in V1(t) − V1(t − TD) space) and the response (in
V2(t) − V2(t − TD) space) in chaotic (left column) and hy-
perchaotic regime (right column). Lower panel shows the cor-
responding experimental phase plane plots in the V1(t)–V2(t)

space. Oscilloscope scale divisions: x-axis: 0.2 v/div, y-axis:
0.2 v/div

column represents the experimental phase plane plot
in the V1(t)–V2(t) space, which indicates that there
is no correlation between the constituent systems in-
dicating an unsynchronized response of the driver and
response. This observations are repeated for the hyper-
chaotic oscillation also and depicted in the right col-
umn of the same figure.
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7.2 Coupled system in the chaotic regime

For chaotic oscillation we choose R7 = 2.60 k�. In
the chaotic mode, on varying the system delays, we
observe the following synchronization scenario.

(i) We keep the system delays equal, τ1 = τ2 = 4.
To implement this delay we use four similar stages of
APF with R = 10 k�. We observe that the complete
synchronization (CS) is obtained when the coupling
resistor is made Rc ≤ 59 �. Figure 12(a1) shows the
experimental time series of the driver and the response
recorded by a digital storage oscilloscope (Tektronix,
TDS2002B, 60 MHz, 1 GS/s); Fig. 12(a2) shows the
corresponding phase plane plot in the V1(t) − V2(t)

space (Rc ≈ 50 �). From the time series it is clear that
both the driver and the response systems have the same
waveform, and the phase space diagram is a straight
line inclined at 45◦ with each axes, which strongly
support the occurrence of complete synchronization.

(ii) Next, we consider the case for τ1 �= τ2. In our
experiment we use τ1 = 4 and τ2 = 3.44. We observe
the generalized synchronization (GS) when the cou-
pling resistor becomes Rc ≤ 260 �. Figure 12(b1)
shows the experimental time series of the GS (Rc ≈
250 �), and Fig. 12(b2) the corresponding synchro-
nization manifold in the V1(t)–V2(t) space. The time
series plot and the phase plane plot clearly show that
the response tries to imitate the driver, which is the
characteristic of generalized synchronization.

For the experimental confirmation of generalized
synchronization, we design an auxiliary system which
is identical to the response system; the response and
the auxiliary systems are coupled with the driver by
a unidirectional, linear, dissipative coupling. In sup-
port of the above mentioned observations, it is ob-
served that when ever the driver and the response are in
generalized synchronized mode, the response and the
auxiliary systems show a complete synchronization
between them. Figure 12(c1) shows the experimental
time series of the response and the auxiliary system,
and Fig. 12(c2) represents the corresponding phase
plane plot; both the observations ensure the complete
synchronization of the response and the auxiliary sys-
tem that, in turn, ensures the generalized synchroniza-
tion between the driver and the response.

7.3 Coupled system in the hyperchaotic regime

We choose R7 = 2.71 k� for the hyperchaotic oscilla-
tion. In the hyperchaotic regime also we observe two

Fig. 12 Experimental time series plot of the driver V1(t) (yel-
low) and the response V2(t) (cyan) in the Chaotic Regime: (a1)
complete synchronization (τ1 = τ2 = 4), (b1) generalized syn-
chronization (τ1 = 4, τ2 = 3.44) (c1) Complete synchronization
between the response and the auxiliary system. The correspond-
ing phase plane plots are shown in (a2) CS, (b2) GS, and (c2)
CS of response and auxiliary system. For (a1), (b1), and (c1):
x-axis: 50 µs/div, y-axis: 0.37 v/div. For (a2), (b2), and (c2):
x-axis: 0.2 v/div, y-axis: 0.2 v/div (Color figure online)

types of synchronization, namely, complete and gen-
eralized synchronization.

(i) To observe CS, we equate the system delays,
fixing τ1 = τ2 = 4. We observe CS for Rc ≤ 56 �.
Figure 13(a1) shows the experimental time series of
the driver and the response (Rc ≈ 50 �), Fig. 13(a2)
shows the synchronization manifold, supporting the
properties of complete synchronization.

(ii) The GS is achieved for the unequal system de-
lays τ1 = 4 and τ2 = 3.44, and Rc ≤ 242 �. Fig-
ure 13(b1), (b2) shows the time series of the driver and
the response (Rc ≈ 230 �), and synchronization mani-
fold, respectively, which indicate generalized synchro-
nization. Figure 13(c1), (c2) represents the experimen-
tal time series and the phase plane plot of the response
and the auxiliary system indicating complete synchro-
nization between them, which, in turn, ensures the
generalized synchronization between the hyperchaotic
driver and response.

8 Conclusion

In this paper we have reported different synchroniza-
tion scenario of a coupled first-order, time-delayed
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Fig. 13 Experimental time series plot of the driver V1(t) (yel-
low) and the response V2(t) (cyan) in the Hyperchaotic Regime:
(a1) complete synchronization (τ1 = τ2 = 4), (b1) generalized
synchronization (τ1 = 4, τ2 = 3.44), (c1) Complete synchro-
nization between the response and the auxiliary system. The
corresponding phase plane plots are shown in (a2) CS, (b2) GS,
and (c2) CS of response and auxiliary system. Scale divisions
are same as Fig. 12 (Color figure online)

chaotic (hyperchaotic) system. The system we have
chosen is a first-order, nonlinear time-delayed system
recently proposed by Banerjee et al. [1], which posses
a closed form mathematical function for the nonlinear-
ity and shows hyperchaos even at a moderate or small
time delay. We have considered a unidirectional, lin-
ear, dissipative coupling scheme between the driver
and the response. It has been shown that keeping all
other parameters same if we make the system delays
of both the systems similar, then beyond a certain cou-
pling strength complete synchronization occurs; on the
other hand, unequal system delays results in general-
ized synchronization. The stability condition of both
the synchronization scenario have been derived ana-
lytically using Krasovskii–Lyapunov theory. Numeri-
cal simulations have been carried out to corroborate
the analytical results. Further, we implement an exper-
imental set up in electronic circuit level to demonstrate
the synchronization scenario. We design an auxiliary
system to experimentally confirm the occurrence of
generalized synchronization. Experimental real time
observations are in full agreement with the analytical
and numerical results.

As the system under study is simple and well char-
acterized, and also is capable of producing hyper-
chaotic oscillations for a small time delay, thus, apart

from the academic merits, all the observations re-
ported in this paper regarding the synchronization sce-
nario may be helpful towards the implementation of a
chaos and hyperchaos-based communication scheme.
Also, synchronizations of the present system with
other coupling schemes can be explored and deserve
further study.
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