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Abstract In this paper, a novel image encryption
scheme based on time-delay and hyperchaotic sys-
tem is suggested. The time-delay phenomenon is com-
monly observed in daily life and is incorporated in the
generation of pseudo-random chaotic sequences. To
further increase the degree of randomness, the out-
put of the hyperchaotic system is processed before
appending to the generated sequence. A novel per-
mutation function for shuffling the position index, to-
gether with the double diffusion operations in both
forward and reverse directions, is employed to en-
hance the encryption performance. Experimental re-
sults and security analyses show that the proposed
scheme has a large key space and can resist known-
plaintext and chosen-plaintext attacks. Moreover, the
encryption scheme can be easily modified to adopt
other hyperchaotic systems under the same structure.
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1 Introduction

With a fast development of information technology
and internet infrastructure, it is very convenient to
transmit and share all kinds of digital contents nowa-
days. This saves us much time and cost. However,
the security issue needs much attention to prevent the
unauthorized access of personal information. Many
encryption algorithms have been proposed to protect
the privacy of digital images transmitted over a public
network. Among them, the approach of using chaotic
systems for image encryption [1–4] has attracted much
research interest in recent years.

Making use of the favorable characteristics such as
high sensitivity to initial condition and parameters, er-
godicity and pseudo-randomness, chaotic systems are
employed for data encryption. In 1989, Matthews [5]
suggested a chaos-based encryption algorithm. Tradi-
tional ciphers such as DES, AES and IDEA are block
ciphers which may not have high performance in deal-
ing with the large amount of data in an image. There-
fore, researchers tried to design image cryptosystems
based on chaos [6–10]. Experimental results show that
this kind of image encryption scheme can effectively
shuffle and diffuse the two-dimensional image pixels.

An effective encryption algorithm must possess a
sufficiently large key space to prevent the brute-force
attack. Low-dimensional systems fail to meet this re-
quirement due to the small number of control parame-
ters. On the contrary, hyperchaotic systems are usually
high-dimensional systems which exhibit richer chaotic
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properties. In [11], a total shuffling function was em-
ployed to permute the image pixels while a hyper-
chaotic system was adopted to carry out the diffu-
sion function. Zhu [12] proposed to generate a chaotic
key stream by modifying the hyperchaotic sequences.
Three phase functions possessing the necessary prop-
erties of a secure image encryption algorithm includ-
ing the confusion and diffusion properties were de-
signed by Kanso et al. [13] using 3D chaotic maps.
Besides, there are many other image encryption algo-
rithms [14–22] found in the literature such as the S-
box-based methods [20–22]. However, most of them
did not consider a natural phenomenon, i.e., time de-
lay, which often appears in our daily life. If it is incor-
porated in image cryptosystems, the encryption pro-
cess will become more practical and natural.

In this paper, we design a new chaos-based image
cryptosystem making use of the time-delay concept. It
possesses the classical architecture of the substitution-
diffusion type [16]. We adopt a new position index
permutation method, after preprocessed the pseudo-
random sequence generated by a hyperchaotic system.
This approach results in high randomness, uncorre-
lated adjacent pixels and low complexity [12, 19]. The
bidirectional diffusion [8] is employed so that a single
bit change in the plain-image could cause a large dif-
ference in the whole cipher-image. Image encryption
can be applied in many areas such as military, meteo-
rology and medical science. Some are in the form of
patents [23, 24].

The rest of this paper is organized as follows. The
proposed image encryption scheme is described in
Sect. 2, with the details of time delay, position index
permutation and diffusion. Partial algorithms are given
and analyzed in this section. In Sect. 3, experimental
results are presented to show the effectiveness of our
scheme. The related security analyses including size of
the key space, statistical analysis, and sensitivity anal-
ysis are discussed. Finally, a conclusion is drawn in
Sect. 4.

2 The proposed image encryption scheme

The hyperchaotic system studied in [11] is adopted in
our design. It is governed by the following set of equa-
tions with four control parameters a, b, c, d and four

initial values x0, y0, z0 and w0:
⎧
⎪⎪⎨

⎪⎪⎩

ẋ = a(y − x)

ẏ = −xz + dx + cy − w

ż = xy − bz

ẇ = x + k

(1)

As stated in [11], the system is hyperchaotic (see
Fig. 1) when the parameters are chosen as a = 36,
b = 3, c = 28, d = −16 and k ∈ [−0.7,0.7]. The
system equations are solved using the fourth-order
Runge–Kutta algorithm with step size h = 0.001.

The following preprocessing [12] is performed on
the iteration values xj , yj , zj and wj to make them
more random:

sj = sj ×105 − round
(
sj ×105), j = 1,2,3, . . . (2)

where the function round(s) rounds s to the nearest
integer.

2.1 Time-delay function

The time-delay phenomenon can be observed in most
natural processes. Here, we employ the classical logis-
tic function (3) as the random number generator in our
cryptosystem:

x̃j+1 = μx̃j (1 − x̃j ), j = 1,2,3, . . . (3)

The system is chaotic if μ ∈ (0.3569946,4]. We intro-
duce time delay into the chaotic sequence x obtained
from (1) by setting

xk = x
k+τ

(1)
k

, k = 1,2,3, . . . (4)

Here, τ
(1)
k = 0,1,2, . . . denotes the kth time-delay

value which is given by (3). Then we can update the
x values using the time-delay concept and obtain x.
Similar operations are performed for y, z, w with time
delay τ

(2)
k , τ

(3)
k , τ

(4)
k , to form the new sequences y, z,

w. As the time delay will cause extra time cost, we
should limit it to an appropriate range. In this paper,
we suppose that the time delay falls within t (t ≤ 10
can meet the requirement) interval steps as given by
(5):

τi = floor
(
mod

(
x̃i × 103, t

))
, i = 1,2, . . . (5)

Here, the function floor(γ ) rounds γ to the nearest in-
teger less than or equal to γ while mod(γ, t) returns
the remainder after dividing γ by t .
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Fig. 1 Hyperchaotic
phenomenon on planes
(a) x–y–z, (b) y–z–w,
(c) z–w–x, (d) w–x–y

An ideal pseudo-random sequence must satisfy the
essential properties such as uniform distribution, delta
function of autocorrelation, and zero cross-correlation.
To compare with the method in [12], three autocorrela-
tion plots are shown in Fig. 2. Figure 2(c) shows a bet-
ter autocorrelation performance than Figs. 2(a) and (b)
when time delay is incorporated. Moreover, the cross-
correlation plots depicted in Fig. 3 are better than those
given by Fig. 2 in reference [12].

In our substitution-diffusion type image cryptosys-
tem, the sequences x and y generated by system (1)
are used for permutation while the sequences z and w

are employed for diffusion.

2.2 Permutation of position index

A permutation of plain-image pixels is usually per-
formed to reduce the high correlation among neigh-
boring pixels. A new method for permuting the posi-
tion index is designed. Without loss of generality, we
assume that the original plain-image A has a size of
m × n.

We sort the chaotic sequences x1,m×n, y1,m×n and
Am×n using Program Fragment 1 and obtain the posi-
tion index sequences ind 1 and ind 2.

Program Fragment 1
[u, ind 1] = sort(x)

[u, ind 2] = sort(y)

Along the row direction, we rearrange and permute
the 2-D plain-image matrix A into a 1-D sequence
y1,m×n using (6)

y(i) = A(f 1, f 2), i = 1,2, . . . ,m × n (6)

where f 1 = [ind 1/n], f 2 = �ind 1, n�, [u] rounds u

to the nearest integer towards infinity, and �u,v� re-
turns the remainder of the division. In particular, when
�u,v� is equal to 0, it should be replaced by the integer
v, as stated in Program Fragment 2.

For the permutation in columns, we can use the
same method by replacing ind 1 with ind 2. Then
Program Fragment 3 is obtained by a straightfor-
ward modification on Program Fragment 2. After
the row and column permutations have been per-
formed, a new sequence is obtained, which is then
rearranged to a 2-D matrix, i.e., the permuted im-
age.

Program Fragment 2 (for row index permutation)
for i = 1 : m × n
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Fig. 2 Autocorrelation comparison (a) before preprocessing, (b) after preprocessing, (c) after preprocessing with delay

Fig. 3 Cross-correlation
plots (a) x–y, (b) y–z,
(c) z–w, (d) w–x

f 1 = ceil(ind 1(i)/n);
f 2 = mod(ind 1(i), n);
if f 2 == 0

f 2 = n;
end
y(i) = A(f 1, f 2);

end

Program Fragment 3 (for column index permuta-
tion)
for j = 1 : m × n

f 1 = ceil(ind 2(j)/m);
f 2 = mod(ind 2(j),m);
if f 2 == 0

f 2 = m;
end
y(j) = A(f 1, f 2);

end

From the original Lena image shown in Fig. 4(a),
we obtain the permuted image depicted in Fig. 4(b).
A comparison with the Arnold cat map and the tradi-
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Fig. 4 (a) The original Lena image; Permuted image using: (b)
our method, (c) Arnold cat map, (d) classical row and column
permutation

tional method of row and column permutation shows
that our method leads to a stronger permutation effect.
However, it is well-known that permutation-only op-
erations cannot resist the chosen-plaintext and known-
plaintext attacks. Hence, it is necessary to have the dif-
fusion operation as described in the next subsection.

2.3 Diffusion

Different from most of the existing cryptosystems, the
double-direction diffusion [8] is applied on the per-
muted image. Firstly, forward diffusion from the first
pixel to the last pixel is carried out by (8). However,
zi and wi should be within [0,255] before they can be
used in (7).
{

z = mod(floor(z × 1014),256)

w = mod(floor(w × 1014),256)
(7)

ci = ci−1 + pi + α1zi−1 + β1zi,

i = 1,2,3, . . . ,m × n (8)

where c0 is a selected constant, ci and ci−1 denote the
current and the former encrypted pixels, respectively.
In order to make the cryptosystem depend on the plain-
image, we let c0 be the average of the first and the last
pixels of the permuted image. pi is the permuted pixel,

zi denotes the ith element of the chaotic sequence,
with z0 equal to the first pixel of the permuted im-
age. α1, β1 are two additional control parameters and
+ refers to the modular addition function.

For a good encryption scheme, a tiny change in the
plain-image should influence every pixel in the cipher-
image. The diffusion governed by (8) does not stop at
the end, but to continue in the opposite direction, as
given by

ei = ei+1 + ci + α2wi−1 + β2wi,

i = m × n − 1,m × n − 2, . . . ,2,1. (9)

Here, ei, ci are the ith current and former stage of
the encrypted pixel, wi denotes the ith element of the
chaotic sequence. α2 and β2 are two additional control
parameters. To keep the natural order, we need to rear-
range wi into its inverted sequence before performing
the reverse diffusion (9).

When the above-mentioned bidirectional diffusion
is finished, we obtain e. The final encrypted image is
formed when e is rearranged into a matrix from top to
bottom and from left to right.

The decryption procedures are similar to the en-
cryption ones, but in a reversed order. The reverse
forms of (9) and (8) are given by (10) and (11), re-
spectively. The inversions of Program Fragments 2 and
3 are obtained by exchanging A and y. With the cor-
rect key, it is able to recover the plain-image from the
cipher-image.

ci = ei − ei+1 − α2wi−1 − β2wi,

i = m × n − 1,m × n − 2, . . . ,2,1. (10)

pi = ci − ci−1 − α1zi−1 − β1zi,

i = 1,2,3, . . . ,m × n. (11)

3 Experimental results and security analyses

All the operations are implemented using Matlab 7.0
on a personal computer equipped with an Intel(R)
Core(TM) i3-2350M, 2.30 GHz CPU, running Win-
dows 7. A 500 × 512 8-bit Barb image shown in
Fig. 5(a) is chosen as the test image. Figure 5(b) de-
picts the corresponding cipher-image after the first
round of the proposed encryption method. The initial
conditions are a = 36, b = 3, c = 28, d = −16, k =
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0.42, x0 = 1.36, y0 = −3.87, z0 = 10.4,w0 = −8.5
in system (1). Moreover, μ = 4, x̃

(1)
0 = 0.543, x̃

(2)
0 =

0.232, x̃
(3)
0 = 0.104, x̃

(4)
0 = 0.705 in system (3) gener-

ate four different time-delay sequences.

3.1 Key space analysis

To make the brute-force attack infeasible, the key
space of an image encryption algorithm, including all
the initial conditions and control parameters, should
be sufficiently large. The key space of our algorithm is
constructed by x0, y0, z0,w0 in system (1), x̃

(1)
0 , x̃

(2)
0 ,

x̃
(3)
0 , x̃

(4)
0 in system (3). The control parameters such

as μ, α1, α2, β1 and β2 are not counted. Thus, the size
of key space can reach 10112 if the computation pre-
cision is 10−14. It is large enough to resist brute-force
attack.

3.2 Sensitivity analysis

A good encryption scheme should be sensitive to ev-
ery secret key. From the perspective of cryptography, a
totally different cipher-image should be obtained even
for a tiny change in the key. Furthermore, the cryp-
tosystem should also be sensitive to the plain-image.
A bit difference in any pixel should lead to a com-
pletely different encryption result. Figures 5(c) and (d)
show the decrypted images using a wrong key with
only a 10−14 difference in x0 and x̃

(1)
0 , respectively.

Figure 5(e) presents a completely different encrypted
image if 10−14 is added to y0 while Fig. 5(f) depicts
the corresponding decrypted image using the original
y0.

3.3 Statistical analysis

In this subsection, we perform statistical analysis us-
ing another image Cameraman of size 256 × 256, as
shown in Fig. 6(a).

3.3.1 Histogram

The statistical properties of an image can be charac-
terized by the histogram showing the distribution of
the pixel values [19]. Figure 6(b) is the histogram of
the plain-image shown in Fig. 6(a). Figure 6(c) shows
the histogram of the encrypted image. It is different
from Fig. 6(d) which corresponds to a small change
in the key y0. Figure 6(e) depicts the histogram of the

Table 1 Correlation coefficients

Direction Plain-image Cipher-image

Diagonal 0.9704 −0.0986

Horizontal 0.9759 −0.0630

Vertical 0.9820 0.0509

decrypted image using a wrong key. From these his-
tograms, we can conclude that the proposed chaotic
encryption algorithm can effectively flatten the his-
togram [9].

3.3.2 Correlation

The correlation of two adjacent pixels in a natural im-
age is high. Therefore, it should be reduced by a per-
mutation of the image pixels. If the encryption algo-
rithm is effective, the encrypted image should have a
low correlation among neighboring pixels. To evalu-
ate the degree of correlation, 2500 pairs of adjacent
pixels in horizontal, vertical and diagonal directions
are randomly selected. The correlation coefficients are
computed using (12) and the corresponding results are
listed in Table 1. Figures 7(a) and (b) show the corre-
lation distribution of two diagonal adjacent pixels in
the plain-image and the cipher-image, respectively.

rxy = cov(x, y)√
D(x)D(y)

(12)

where cov(x, y) = 1
N

∑N
i=1(xi − E(x))(yi − E(y)),

D(x) = 1
N

∑N
i=1(xi − E(x))2, E(x) = 1

N

∑N
i=1 xi .

where xi and yi represent the gray values of two adja-
cent pixels.

3.4 Differential analysis

The strength of an image encryption algorithm against
differential attack is usually measured by two indica-
tors. The number of pixels change rate (NPCR) de-
notes the number of different pixels in the cipher-
image when a pixel of the plain-image is altered. The
unified average changing intensity (UACI) refers to
the average intensity of the differences between the
plain-image and the cipher-image These two perfor-
mance indicators are calculated by (13) and (14), re-
spectively. After one encryption round of the pro-
posed algorithm is applied to the Lena image, we have
NPCR = 99.619 % and UACI = 33.482 % which are
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Fig. 5 Encryption test:
(a) Barb image of size
500 × 512, (b) encrypted
image, (c) decrypted image
with x0 = 1.36 + 10−14,
(d) decrypted image with
x̃

(1)
0 = 0.543 + 10−14,

(e) encrypted image with
y0 = −3.87 + 10−14,
(f) decrypted image from
(e) with y0 = −3.87

Fig. 6 Histogram: (a) Cameraman of size 256 × 256, (b) histogram of (a), (c) histogram of the encrypted image, (d) histogram of the
encrypted image using a different key y0, (e) histogram of the decrypted image using a wrong key y0
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Fig. 7 Correlation of two
diagonal adjacent pixels:
(a) plain-image,
(b) cipher-image

Table 2 UACI and NPCR results (in %) using different plain-
images

Image Lena Barb Cameraman Boat

UACI 33.482 36.944 33.454 35.427

NPCR 99.619 99.739 99.617 99.681

close to the ideal values. The results for other plain-
images can be found in Table 2 while the values at
different number of encryption rounds using the Boat
image of size 512 × 512 are listed in Table 3. In ad-
dition, the proposed scheme can well resist known-
plaintext and chosen-plaintext attacks because the pa-
rameter key is related to the plain-image in the diffu-
sion operation:

NPCR =
∑

ij D(i, j)

M × N
× 100 % (13)

UACI = 1

M × N

[∑

i,j

|C1(i, j) − C2(i, j)|
255

]

× 100 %

(14)

where D(i, j) = 0 if C1(i, j) = C2(i, j); otherwise,
D(i, j) = 1.

3.5 Speed analysis

In practical image transmission, the operation time
must also be considered. We have measured the time
cost in running the proposed encryption algorithm. It
takes less than 0.14 s to encrypt an image of size
256 × 256 and 0.47 s for 512 × 512. Therefore, our
algorithm is fast enough for practical applications.

Table 3 UACI, NPCR results (in %) and the running times at
different number of rounds

Rounds 1 2 3 4 10

UACI 35.427 33.487 33.440 33.502 33.446

NPCR 99.681 99.625 99.617 99.620 99.618

Running time 0.47 s 0.57 s 0.67 s 0.77 s 1.36 s

4 Conclusion

A novel image encryption scheme based on time-delay
and hyperchaotic system has been proposed. Time de-
lay is introduced in the four chaotic sequences gener-
ated by a hyperchaotic system. Moreover, a position
index permutation method is suggested which leads
to a better permutation effect than existing methods.
Together with the diffusion operation, our cryptosys-
tem provides an effective and efficient way for pro-
tecting the privacy of digital images. These properties
are justified by the experimental results on statistical,
differential and running time analyses. Our encryption
scheme also possesses the flexibility of using other hy-
perchaotic systems as the choice of the chaotic system
is independent of the architecture of the cryptosystem.
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