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Abstract In this paper, a new highly convergent, ef-
ficient, and fast response control technique entitled as
fuzzy-Padé control method is introduced. It provides
a simple methodology to exploit the heuristic knowl-
edge in controlling a system. Fuzzy–Padé controllers
originate from a unification of heuristic knowledge ex-
pressed as the rule base, and Padé approximants. In
this method, fuzzy singleton rules are used to generate
the rule base. Accordingly, unknown parameters in the
Padé approximant are determined using these rules.
The fuzzy-Padé controllers possess certain advantages
over fuzzy controllers, and they can be applied in sit-
uations where fuzzy controllers previously failed. To
demonstrate the effectiveness and robustness of the
method, the simulation results for three case studies,
the single inverted pendulum, ball and beam, and par-
allel double inverted pendulum systems are presented.
In the case studies, it is shown that the fuzzy-Padé con-
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troller has greater convergence region, is quite faster,
and its energy consumption is much lower than the
fuzzy controller.
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1 Introduction

1.1 Literature review

Fuzzy control is a practical alternative for a variety
of challenging control applications since it provides
a convenient method for constructing nonlinear con-
trollers via the use of heuristic knowledge. A human
operator of a process, or a control engineer, may have
a heuristic knowledge. This knowledge also can come
from after applying a controller on the system [1].
Thus, in comparison to other controllers, several au-
thors confirm that fuzzy controllers result in a far sim-
pler laws, require minimal modeling of the system,
and are robust to the variations in the system dynamics
[2–8].

Fuzzy logic was first proposed by Zadeh [9]. How-
ever, the first fuzzy control application is referred to
Mamdani [10], where he controlled a steam engine.
The main problems with using fuzzy logic, however,
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are twofold. First, except for very few cases, the sta-
bility of fuzzy controllers has not been proven [1]. Sec-
ond, the literature typically only shows the design of
fuzzy controllers for second-order systems. The exten-
sion of these techniques to higher-order systems is not
clear, and in many cases it is cumbersome.

To improve the control performance and to over-
come drawbacks of fuzzy controllers, it is common
to combine them with other control schemes. Incor-
poration of fuzzy controllers with PI, PD, or PID con-
trollers results in control performance improvements
[11–13]. Inserting a supervisory sliding mode con-
troller to fuzzy controllers improves the stability and
robustness of the system [14–16]. Various optimal
fuzzy controllers have been achieved by inserting ge-
netic algorithms [17–19] or neural networks [20–22]
into the main fuzzy control systems. Likewise, some
other robust fuzzy controllers have been designed [23–
25].

In another note, the systematic study of Padé ap-
proximants was the subject of the Doctoral Thesis
of Henri Padé defended in 1892. Padé approximant
has been widely used to solve different mathematical
problems, and it is the best approximation of a func-
tion by a rational function of given order [26–28]. In
many cases the traditional Padé technique can greatly
increase the convergence region and rate of a given se-
ries.

In this paper, we introduce and formalize the fuzzy-
Padé controllers, which benefit the inherent stability of
Padé approximants and also can be easily applied to
high-order systems. As noted, fuzzy-Padé controllers
are based on Padé approximants. This is the first time
that Padé approximants, which are commonly used to
approximate a function, are utilized as controllers. The
fuzzy-Padé controller has a simple and intuitively un-
derstandable structure.

Fuzzy-Padé controllers are designed to put the ex-
pert’s control knowledge into rule bases. Therefore,
Heuristic knowledge is a common starting point for
both fuzzy and fuzzy-Padé controllers. Fuzzy single-
ton rules, which are based on the heuristic knowledge
and are a special class of fuzzy rules, make the rule
base of the fuzzy-Padé controllers. As a result, in the
fuzzy-Padé controllers, inference engine, fuzzification
and defuzzification levels, which are generally time
consuming, are omitted. Instead, the highly conver-
gent Padé approximant is replaced. Despite fuzzy con-
trollers, fuzzy-Padé controllers are suitable to be uti-
lized in high-order systems, as illustrated in the case

studies. With fuzzy-Padé designs, simple controllers
are obtained which are robust to model variations and
besides do not require extensive modeling of the plant.

1.2 Padé approximants

Some techniques exist to increase the convergence of
a given series. Among them, the so-called Padé tech-
nique is widely applied [26]. A Padé approximant of-
ten gives better approximation of the function than
truncating its Taylor series, and it may still work where
the Taylor series does not converge. For these reasons,
Padé approximants are used extensively in mathemat-
ics and computer calculations.

Suppose that a function f (x) is represented in a
power series

∑∞
i=0cix

i , so that

f (x) =
∞∑

i=0

cix
i . (1)

This expansion is the fundamental starting point of
any analysis using the Padé approximants. A Padé ap-
proximant with single variable is a rational fraction

Padé[m,n] = a0 + a1x + · · · + amxm

a0 + a1x + · · · + anxn
, (2)

which has a Maclaurin expansion which agrees
with (1) as far as possible [29]. To make (2) defi-
nite, we take a0 = 1. The coefficients of its numera-
tor and its denominator are obtained directly from the
approximation through-order property of the approxi-
mant [30]. Equating right sides of (1) and (2) results
in

∞∑

i=0

cix
i = a0 + a1x + · · · + amxm

1 + a1x + · · · + anxn
+ O(xm+n+1).

(3)

One can simply derive the unknown coefficients of
the Padé approximant in (3), by cross-multiplying and
then equating the coefficients of x0, x1, . . . , xm+n.

[m,n] padé approximant means the order of the
variable in numerator is m, and the order of it in de-
nominator is n. However, it is common that in most
cases, these two orders are equal, leading to an [m,m]
padé approximant. For a single variable [m,n] Padé
approximant, there exist m + n + 1 unknowns to be
determined.
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Fig. 1 Illustration of
convergence of Padé
approximants. Solid line:
f (z) = √

((1 + z)/(1 + 4z));
dashed line: [1, 1] Padé
approximant of f (z);
dash-dotted line: Maclurin
series of f (z) up to the
second order

Fig. 2 Heuristic
knowledge constructs the
rule-base for fuzzy and
fuzzy-Padé controllers

Baker and Gammel [31] prove that the Padé ap-
proximant approximates a function, and Baker et al.
[32] conclude that the Padé approximants converge
uniformly to the desired function, which is out of sin-
gularity. Figure 1 demonstrates the convergence rate
of the Padé approximant compared to the Taylor se-
ries expansion.

This paper is organized as follows. Section 2 is
devoted to the formalization of the fuzzy-Padé con-
trollers, and discusses its similarities and differences
with fuzzy controllers. In Sects. 3, 4, and 5, three
classic problems, the single inverted pendulum, ball
and beam, and parallel double inverted pendulum sys-
tems are stabilized, by implementing the proposed
controller. In each of the Sects. 3, 4, and 5, a fuzzy
controller is also represented to make a comparison
between the two controllers. Finally, Sect. 6 gives a
conclusion.

2 The fuzzy-Padé controller

In this paper, we aim to use the Padé approximant as
a controller. To construct the controller, we should de-
termine the Padé unknown coefficients based on some
certain rules. To this end, we define fuzzy singleton
rules as the basis of the controller. Combined together,
we call the constructed controller as the fuzzy-Padé
controller. As we will show in three case studies, the

proposed controller is efficient and accurate. More ac-
curate results can be obtained with higher-order Padé
approximants.

Fuzzy-Padé controllers are based on heuristic
knowledge, similar to fuzzy controllers (Fig. 2). It
should be noted that fuzzy singleton membership
functions have only one member with the degree of
membership equal to 1. So, fuzzy singleton rules
which are based on fuzzy singleton membership func-
tions are crisp rules, making some data pairs. We use
these data pairs to shape the Padé unknown parame-
ters. Since the rules in the fuzzy-Padé controller are
crisp, despite the fuzzy controller, fuzzification and
defuzzification levels will not be needed any more.

In Fig. 3, the structures of the fuzzy and the fuzzy-
Padé controllers are shown and compared. As it can
be seen from Fig. 3(a), in fuzzy controllers, fuzzy
rules construct the inference engine, which itself needs
the fuzzification and defuzzification levels to obtain
outputs from the given inputs. On the other hand, in
the fuzzy-Padé controllers (as seen in Fig. 3(b) fuzzy
singleton rules generate the data pairs, which subse-
quently shape the Padé approximants by determining
the Padé constants. One of the main differences be-
tween the two controllers is that the inference engine,
fuzzification and defuzzification levels, which are gen-
erally time consuming, are omitted from fuzzy-Padé
controller. Instead, the highly convergent Padé approx-
imant is replaced. The input rules of the two con-
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Fig. 3 Structures of the
fuzzy and the fuzzy-Padé
controllers

Fig. 4 Demonstration of
fuzzy singleton membership
functions which are used in
the fuzzy-Padé controller

trollers have a same origin, which is heuristic knowl-
edge of an expert.

By making use of the fuzzy rules, defined by Zadeh
[33], we construct the rule base of the controller. Fuzzy
singleton rules, which are derived from fuzzy single-
ton membership functions, shape the governing data
pairs. The unknown coefficients of the fuzzy-Padé
controller are found in such a way to satisfy these data
pairs.

Figure 4 is demonstrating the differences between
fuzzy rules and fuzzy singleton rules. Despite general
fuzzy membership functions which span in a wide re-
gion and have infinite members, fuzzy singleton mem-
bership functions have only a single member with the
highest degree of membership, 1. Based on this differ-
ence, fuzzy singleton membership functions are crisp
rules. For convenience, we also represent the fuzzy
singleton rule in Fig. 4 as (x∗

1 , x∗
2 , u∗).

Mostly, the dynamic systems which are supposed to
be controlled have more than one state variable. So, to
construct the fuzzy-padé controller, we use the gener-
alized padé approximant with multiple variables. If we
consider a system of order q ≥ 1, with the input vari-
able u, we construct the generalized [m,n] Padé ap-
proximant based on (2). Without losing the generality,
in the rest of this section, we assume that m = n = 3.
Therefore, (4) is a general [3, 3] Padé approximant, for

a system of arbitrary order q ,

u(x) =
(

a +
q∑

i=1

bixi +
q∑

i=1

q(j≤i)∑

j=1

cij xixj

+
q∑

i=1

q(j≤i)∑

j=1

q(k≤j)∑

k=1

dijkxixj xk

)

×
(

1 +
q∑

i=1

bixi +
q∑

i=1

q(j≤i)∑

j=1

cij xixj

+
q∑

i=1

q(j≤i)∑

j=1

q(k≤j)∑

k=1

dijkxixj xk

)−1

, (4)

where x = [x1, x2, . . . , xq ]. Letting M and N to be the
number of unknown coefficients in the numerator and
denominator of (4), respectively, it makes a total num-
ber of M + N unknown coefficients in (4). M and N

can be obtained as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

M =
m∑

i=0

(
q + i − 1

q − 1

)

,

N =
n∑

i=1

(
q + i − 1

q − 1

)

,

(5)



An introduction to fuzzy-Padé controllers 145

where
( q+i−1

q−1

)
is denoting the binomial coefficient of

the two numbers q + i − 1 and q − 1.
It is to be noted that we can reduce (4) to a [2, 2]

Padé approximant by setting dijk = dijk = 0; and ac-
cordingly to a [1, 1] Padé approximant by setting
cij = cij = 0 and dijk = dijk = 0.

By replacing a given fuzzy singleton rule, (x∗
1 , x∗

2 ,

. . . , x∗
q , u∗), in (4) and by cross-multiplying it, we

reach to

a +
q∑

i=1

(
bi − u∗bi

)
x∗
i +

q∑

i=1

q(j≤i)∑

j=1

(
cij − u∗cij

)
x∗
i x∗

j

+
q∑

i=1

q(j≤i)∑

j=1

q(k≤j)∑

k=1

(
dijk − u∗dijk

)
x∗
i x∗

j x∗
k − u∗

= 0. (6)

Assume R fuzzy singleton rules in the form

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Rule 1: (x
(1)
1 , x

(1)
2 , . . . , x

(1)
q , u(1)),

Rule 2: (x
(2)
1 , x

(2)
2 , . . . , x

(2)
q , u(2)),

...

Rule R : (x
(R)
1 , x

(R)
2 , . . . , x

(R)
q , u(R)),

(7)

where R ≥ M + N . By replacing each rule of (7) into
(6) we can construct the following linear matrix equa-
tion:

AR×(M+N)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a

{bi}
{cij }
{dijk}
{bi}
{cij }
{dijk}

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(M+N)×1

= BR×1, (8)

where {bi} = {b1, b2, . . . , bq}T , {cij } = {c11, c21, . . . ,

cqq}T (j ≤ i), {dijk} = {d111, d211, . . . , dqqq}T (j ≤ i

and k ≤ j ), and so on.
Each row of the matrices A and B in (8) is

⎧
⎨

⎩

A1×(M+N) = [1 {x∗
i } {x∗

i x∗
j } {x∗

i x∗
j x∗

k }
−u∗{x∗

i } −u∗{x∗
i x∗

j } −u∗{x∗
i x∗

j x∗
k }],

B1×1 = [u∗],
(9)

where {x∗
i } = {x∗

1 , x∗
2 , . . . , x∗

q }, {x∗
i x∗

j } = {(x∗
1 )2, x∗

2x∗
1 ,

. . . , (x∗
q )2} (j ≤ i), {x∗

i x∗
j x∗

k } = {(x∗
1 )3, x∗

2 (x∗
1 )2, . . . ,

(x∗
q )3} (j ≤ i and k ≤ j ).
To ensure that the denominator of the designed

fuzzy-Padé controller, (4), is always nonzero, we de-
fine the constraint

D = min

{

1 +
q∑

i=1

bixi +
q∑

i=1

q(j≤i)∑

j=1

cij xixj

+
q∑

i=1

q(j≤i)∑

j=1

q(k≤j)∑

k=1

dijkxixj xk

}

> 0. (10)

Finally, by using the standard least square tech-
nique we solve Eq. (8) subject to the constraint (10) to
derive the M + N unknown coefficients of the fuzzy-
Padé controller (4). In what follows, we present the
stability theorem of the fuzzy-Padé controller.

Theorem 1 The fuzzy-Padé controller u(x): Lq∞ −→
L1∞ is L∞ stable, and there exist a function α, defined
on [0,∞), and a nonnegative constant β such that

‖u(x)‖L∞ ≤ α
(‖x‖L∞

) + β,

for all x ∈ Lq∞.

Proof Since x ∈ Lq∞, suppose that

‖x‖L∞ = sup
t≥0

‖x‖∞ = r,

where r is a positive constant. Thus, it results in the
following inequalities:

sup
t≥0

∣
∣
∣
∣
∣

q∑

i=1

bixi

∣
∣
∣
∣
∣
≤

(
q

q − 1

)

|b|r,

sup
t≥0

∣
∣
∣
∣
∣
∣

q∑

i=1

q(j≤i)∑

j=1

cij xixj

∣
∣
∣
∣
∣
∣
≤

(
q + 1
q − 1

)

|c|r2,

sup
t≥0

∣
∣
∣
∣
∣
∣

q∑

i=1

q(j≤i)∑

j=1

q(k≤j)∑

k=1

dijkxixj xk

∣
∣
∣
∣
∣
∣
≤

(
q + 2
q − 1

)

|d|r3.

It is to be noted that b = max{bi}, c = max{cij } and
d = max{dijk} for i, j and k ranging from 1 to q . Tak-
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ing the constraint (10) into consideration, by choosing

α(r) =
( q

q−1

)|b|r + ( q+1
q−1

)|c|r2 + ( q+2
q−1

)|d|r3

D
,

and by choosing the bias term β = a

D
we reach to

sup
t≥0

∣
∣u(x)

∣
∣ ≤ α(r) + β. �

Since fuzzy-Padé is highly dependent to the fuzzy
singleton rules, designing a good rule base is key to
obtaining a satisfactory controller for a particular ap-
plication. Also, we should be careful in selecting the
number of rules. This number can be any number more
than the unknown coefficients in the fuzzy-Padé con-
troller, M + N , but we should only include the es-
sential ones. Extra rules or even insufficient rules may
lead to incorrect determination of fuzzy-Padé parame-
ters.

As we will show in the three case studies, fuzzy-
Padé controllers are fast convergent, reduce the oscil-
lations, can be operated in real time, and are suitable
for high-order nonlinear systems.

3 The single inverted pendulum system

Inverted pendulum systems are often among the bench-
marks for verifying the usefulness of a novel con-
trol method. Single inverted pendulum systems, series
double inverted pendulum systems and parallel double
inverted pendulum systems are all in this category. In
this section, we control the single inverted pendulum
system, and in Sect. 5 we control the parallel double
inverted pendulum system.

Implementing different control methods on the sin-
gle inverted pendulum system has always been an at-
tractive problem since 1950s [34–38]. The objective
is to stabilize the pole around its unstable equilibrium
point. When the pendulum is raised from the rest posi-
tion to its upright one, the system is strongly nonlinear
with the pendulum angle. The input to the system is
the force applied to the cart, which is free to move.

In this section, we apply the fuzzy-Padé controller
to the single inverted pendulum system, and then the
results are compared to a fuzzy controller with a simi-
lar rule base.

Fig. 5 Inverted pendulum system; an inverted pendulum is
pinned to a moving cart

3.1 System dynamics and the fuzzy controller

The single inverted pendulum system is composed of
two bodies: a cart and a pendulum (Fig. 5). The pen-
dulum is attached to the cart by a revolute joint and
the goal of the controller is to stabilize the pendulum
in its unstable upright position without taking the cart
position into consideration.

The dynamic model of this second-order system in
the state space form can be written as [39]

[
ẋ1

ẋ2

]

=
⎡

⎣
x2

g sinx1−kmlx2
2 sin(2x1)/2+ku cosx1

4l/3−kml cos2 x1

⎤

⎦ , (11)

where k = 1/(M + m). In the above equation, x1 = θ

and x2 = θ̇ are the rotation angle and angular velocity
of the pendulum, respectively. u is the force applied
to the cart. The parameters M , m, l, and g denote the
cart mass, mass and the length of the pendulum, and
gravity, respectively. The design parameters are set as
M = 1 (kg), m = 0.1 (kg), l = 0.5 (m), and g = 9.8
(m/s2).

The fuzzy controller has four main components:
(1) the fuzzy rule base keeps the knowledge, in the
form of a set of rules, (2) the inference engine eval-
uates which control rules are relevant at the current
point and decides what the input to the plant should
be, (3) the fuzzification level converts the plant out-
put data as fuzzy inputs to the inference engine and,
(4) the defuzzification level converts the fuzzy conclu-
sions reached by the inference engine into the inputs
to the plant. In other words, the fuzzy controller acts
as an artificial decision maker that collects plant output
data, and then decides what the plant input should be to
ensure that the performance goals will be achieved [1].

In this system, 9 fuzzy rules are applied. Three
membership functions for each of the states x1 and x2
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Fig. 6 Membership
functions (μ’s) used in the
fuzzy controller for the
single inverted pendulum
system; (a) fuzzy sets N, Z,
and P for x1; (b) fuzzy sets
N, Z, and P for x2; (c) fuzzy
sets NG, N, Z, P, and PG
for u

Table 1 Fuzzy rules used in the fuzzy controller for the inverted
pendulum system

Input, u x2

N Z P

x1 N PG P Z

Z P Z N

P Z N NG

have been defined (Fig. 6(a) and (b); input to the plant,
u, has five membership functions shown in Fig. 6(c).
Note that in Fig. 6, N , Z, and P represent negative,
zero, and positive fuzzy sets, respectively. NG is nega-
tive great and PG is positive great.

The 9 fuzzy rules based on the membership func-
tions (Fig. 6) are shown in Table 1.

Beside the above rules, we use Mamdani fuzzy rea-
soning method [40] and centroid defuzzifier to con-
struct the fuzzy controller.

3.2 The fuzzy-Padé controller

The fuzzy-Padé controller is utilized to stabilize the
single inverted pendulum system with 2 state variables
and 1 control input. By converting fuzzy membership
functions (Fig. 6), and consequently fuzzy rules (Ta-
ble 1), to fuzzy singleton membership functions and

Table 2 Fuzzy singleton rules used in the fuzzy-Padé controller
for the inverted pendulum system

Input, u x2

−0.1 0 0.1

x1 −0.3 40 15 0

0 15 0 −15

0.3 0 −15 −40

fuzzy singleton rules, we build the rule base for the
fuzzy-Padé controller. This rule base is shown in Ta-
ble 2.

Each rule in Table 2 represents a fuzzy rule in Ta-
ble 1. For instance, based on the membership functions
in Fig. 6, the rule

IF x1 = N and x2 = N, THEN u = PG

is converted to the fuzzy singleton rule

IF x1 = −0.3 and x2 = −0.1, THEN u = 40

or (−0.3,−0.1,40).
The order of the Padé approximant we use here is

[1,1]. Referring to (4), the [1,1] Padé approximant
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Fig. 7 Simulated results
for the single inverted
pendulum system (initial
conditions: x1(0) = 2π/9
(rad) and x2(0) = 0).
Dashed-line: fuzzy
controller; solid line:
fuzzy-Padé controller.
(a) angular rotation, x1,
versus time, t ; (b) angular
velocity, x2, versus t

Table 3 Values of the coefficients of the [1, 1] Padé approxi-
mant for the inverted pendulum system

Coefficient Value Coefficient Value

b1 −61.11 b1 0.00

b2 −183.33 b2 0.00

a 0.00

with two variables is

u(x) = a + ∑2
i=1 bixi

1 + ∑2
i=1 bixi

. (12)

With m = n = 1 and i = 2, referring to (5), results
in M = 3 and N = 2. Thus, there exist M +N = 5 un-
known coefficients in (12). We use the 9 rules, R = 9,
in Table 2 to build (8) and to determine the 5 unknowns
in (12). The derived coefficients are shown in Table 3.
It is notable that D = 1.00 (see (10)).

3.3 Results and comparisons

The simulated results which compare the fuzzy and
fuzzy-Padé controllers are depicted in Figs. 7 and 8. In
the simulation, the initial conditions are x1(0) = 40 ◦
and x2(0) = 0. Figure 7 shows that although both con-
trollers converge to the origin, fuzzy-Padé response is
smoother. As it can be seen in Fig. 8, the fuzzy-Padé
controller has reduced the actuation effort. In this pa-
per, we have used Matlab R2009a [41] for our simula-
tions.

Fig. 8 Input force to the inverted pendulum system, u, ver-
sus time, t . Dashed-line: fuzzy controller; solid line: fuzzy-Padé
controller

A general comparison between these two con-
trollers can be seen in Table 4. CPU-time is the time
spent for the overall simulation. The PC used for the
experiments has an Intel Quad Core Processor i7 Q820
(1.73 GHz 1066 MHz 8MBL3), and 8 GB DDR3
RAM. CPU-time and input momentum in Table 4 be-
long to the simulations in Figs. 7 and 8.

High performance of the fuzzy-Padé controller is
evident in Table 4. Fuzzy-Padé controller has greatly
increased the convergence region; CPU-time in fuzzy-
Padé controller is about 3.8 times less than fuzzy con-
troller. Besides, input momentum has also been re-
duced in the proposed controller. Therefore, we can
conclude that the fuzzy-Padé controller perfectly sta-
bilizes the single inverted pendulum system.

It is notable that, in this system, changing the fuzzy
membership functions from Gaussian to trapezoid will

Table 4 A comparison
between fuzzy and
fuzzy-Padé controllers in
three areas; convergence
region, CPU-time and input
momentum to the system

Controller Convergence region CPU-time Input momentum

Fuzzy controller −44.80 ◦ to 44.80 ◦ 14.14 (s) 41.51 (N.s)

Fuzzy-Padé controller −83.90 ◦ to 83.90 ◦ 3.72 (s) 29.99 (N.s)
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reduce the convergence region of the fuzzy controller
from ±44.80 ◦ to ±37.40 ◦.

4 The ball and beam system

The familiar ball and beam system is a popular text-
book example in control theory. Beside nonlinear
control methods, several researchers have applied
the fuzzy logic to control the ball and beam system
[42–45].

Nguyen and Huynh [46] developed their fuzzy
controller based on shuffled frog leaping algorithm
(SFLA). They have brought the rule base of the fuzzy
controller by expert experience, and then they have op-
timally tuned the parameters of the controller. By im-
posing constraints on the fuzzy rules in a hierarchical
structure, Joo and Lee [47] could control the ball and
beam system with fewer fuzzy rules than the rules in a
centralized fuzzy controller.

Glower and Munighan [3, 48] designed their con-
troller based on connecting fuzzy controllers and vari-
able structures controllers. They have shown that,
through this connection, simpler fuzzy rules can be ob-
tained for higher-order systems with less effort.

In this section, we design a fuzzy-Padé controller
for the ball and beam system. To compare with the
novel fuzzy-Padé controller, a pure fuzzy controller,
similar to Sect. 3, is also developed. Then we discuss
about the performance of the two controllers. It is in-
teresting to see that the fuzzy-Padé controller has su-
perior performance compared to the fuzzy controller.

4.1 System dynamics and the fuzzy controller

The ball and beam system is built with two moving
parts, a ball and a beam. The ball is free to move along
the beam’s direction, and the beam can rotate about
the fixed point (Fig. 9). The input to the system is the
angular acceleration of the beam.

One can control the position of the ball by applying
a force to the beam to rotate it. Both the angel of the
beam and the position of the ball are measured. There-
fore, the model of the system has four states. Those
include the position of the ball, r , its velocity, ṙ , the
angle of the bar, θ , and its angular velocity, θ̇ . The
controller uses these variables to derive an error signal
used for feedback. The angle of the beam is reduced
as the ball nears its desired position, in order to bring

the ball to a stop at its desired position with as little
overshoot as possible. Let x = [r, ṙ, θ, θ̇ ]T be the state
of the system, and u be the input force which is angu-
lar acceleration of the beam. The state space model of
this system is [49]

⎡

⎢
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⎢
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ẋ1

ẋ2

ẋ3

ẋ4

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
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⎢
⎢
⎣

x2

0.714
(
x1x

2
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)

x4

u

⎤

⎥
⎥
⎥
⎥
⎦

. (13)

In this system, 135 rules are applied to construct
the fuzzy controller. Five membership functions are
used for position, x1, and three membership functions
are used for other states (i.e. x2, x3, x4). These mem-
bership functions are achieved after trials and errors
on shape of membership functions and their domains.
Figures 10 and 11 show the membership functions for
the states of the system (x1, x2, x3, x4) and for the
input force u, respectively. Note that in Figs. 10 and
11, N , Z, and P represent negative, zero, and positive
fuzzy sets, respectively. NG is negative great and PG
is positive great.

Table 5 shows the fuzzy rules used in the ball and
beam system. It should be noted that due to the sym-
metry of the system, each rule in Table 5 has a com-
plement, which is not shown in the table. For exam-
ple, the complement of the rule (P,Z,N,Z,P ) is
(N,Z,P,Z,N).

Afterward, by using Mamdani’s fuzzy reasoning
method [40] and centroid defuzzifier, the fuzzy con-
troller is shaped.

4.2 The fuzzy-Padé controller

The fuzzy-Padé controller is utilized to stabilize the
ball and beam system with 4 state variables and 1 con-
trol input. Table 6 demonstrate the rules used in the

Fig. 9 The ball and beam system. Two variables are the beam’s
angle (θ ), and the ball’s distance (r). Input u is the angular ac-
celeration of the beam
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Fig. 10 Membership
functions (μ’s) used in the
fuzzy controller for the ball
and beam system; (a) fuzzy
sets NG, N , Z, P , and PG

for x1; (b) fuzzy sets N , Z,
and P for x2; (c) fuzzy sets
N , Z, and P for x3;
(d) fuzzy sets N , Z, and P

for x4

Fig. 11 Membership functions (μ’s) used in the fuzzy con-
troller for the ball and beam system; Z, N , and P for u

fuzzy-Padé controller. The 41 fuzzy singleton rules in
Table 6 are based on membership functions in Fig. 10,
and the control input u is based on the fuzzy saturating
algorithm given by Glower and Munighan [3].

To increase the accuracy of the Padé approximant,
we have used the [2,2] Padé approximant in this case
study. Referring to (4), a general [2,2] Padé approxi-
mant with four variables is as

u(x) = a + ∑4
i=1 bixi + ∑4

i=1
∑4(j≤i)

j=1 cij xixj

1 + ∑4
i=1 bixi + ∑4

i=1
∑4(j≤i)

j=1 cij xixj

.

(14)

With m = n = 2 and i = 4, referring to (5), results
in M = 15 and N = 14. Thus, there exist M + N =

29 unknown coefficients in (14). We use the 41 rules,
R = 41, in Table 6 to build (8) and to determine the 29
unknowns in (14).

If we consider that in (14) we should have u(0) =
0, it results in a = 0, and since u(−x) = −u(x), it
gives us cij = bi = 0. The other derived coefficients
are shown in Table 7. It is notable that D = 0.11 (see
(10)).

4.3 Results and comparisons

The simulated results which compare the fuzzy and
fuzzy-Padé controllers are depicted in Figs. 12 and 13.
Figure 12 which compares the response of the states
of the systems, shows that despite the fuzzy controller,
fuzzy-Padé controller converges asymptotically to the
origin at a short settling time. As it can be seen in Fig.
13 the fuzzy-Padé controller has greatly reduced the
actuation effort. There is less fluctuations in the re-
sponse, and the response is quite smoother.

The initial conditions considered for the simula-
tions are x1(0) = 0.1 (m), x2(0) = 0, x3(0) = 0, and
x4(0) = 0.

Simulation results show that the ball is stabi-
lized near to the equilibrium in fuzzy-Padé controller
quickly, which is not easy to be achieved in fuzzy con-
troller. As seen from the figures, the fuzzy-Padé tech-
nique has greatly accelerated the convergence of the
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Table 5 Fuzzy rules used
in the fuzzy controller for
the ball and beam system

x1 x2 x3 x4 u x1 x2 x3 x4 u x1 x2 x3 x4 u

Z Z Z P N P Z N Z P PG N P N N

Z Z P N N P Z N P P PG N P Z N

Z Z P Z N P Z Z N P PG N P P N

Z Z P P N P Z Z Z P PG Z N N P

Z P N N P P Z Z P N PG Z N Z P

Z P N Z P P Z P N N PG Z N P P

Z P N P P P Z P Z N PG Z Z N P

Z P Z N P P Z P P N PG Z Z Z P

Z P Z Z P P P N N P PG Z Z P N

Z P Z P N P P N Z P PG Z P N N

Z P P N N P P N P P PG Z P Z N

Z P P Z N P P Z N P PG Z P P N

Z P P P N P P Z Z P PG P N N P

P N N N P P P Z P N PG P N Z P

P N N Z P P P P N N PG P N P P

P N N P P P P P Z N PG P Z N P

P N Z N P P P P P N PG P Z Z P

P N Z Z N PG N N N P PG P Z P N

P N Z P N PG N N Z P PG P P N N

P N P N N PG N N P P PG P P Z N

P N P Z N PG N Z N P PG P P P N

P N P P N PG N Z Z N 0 0 0 0 0

P Z N N P PG N Z P N

Table 6 Fuzzy singleton
rules used in the fuzzy-Padé
controller for the ball and
beam system

x1 x2 x3 x4 u x1 x2 x3 x4 u

0 0 0 π/30 −4 0.1 −0.1 π/40 0 −4

0 0 π/40 −π/30 −4 0.1 −0.1 π/40 π/30 −4

0 0 π/40 0 −4 0.1 0 −π/40 −π/30 4

0 0 π/40 π/30 −4 0.1 0 −π/40 0 4

0 0.1 −π/40 −π/30 4 0.1 0 −π/40 π/30 4

0 0.1 −π/40 0 4 0.1 0 0 −π/30 4

0 0.1 −π/40 π/30 4 0.1 0 0 0 4

0 0.1 0 −π/30 4 0.1 0 0 π/30 −4

0 0.1 0 0 4 0.1 0 π/40 −π/30 −4

0 0.1 0 π/30 −4 0.1 0 π/40 0 −4

0 0.1 π/40 −π/30 −4 0.1 0 π/40 π/30 −4

0 0.1 π/40 0 −4 0.1 0.1 −π/40 −π/30 4

0 0.1 π/40 π/30 −4 0.1 0.1 −π/40 0 4

0.1 −0.1 −π/40 −π/30 4 0.1 0.1 −π/40 π/30 4

0.1 −0.1 −π/40 0 4 0.1 0.1 0 −π/30 4

0.1 −0.1 −π/40 π/30 4 0.1 0.1 0 0 4

0.1 −0.1 0 −π/30 4 0.1 0.1 0 π/30 −4

0.1 −0.1 0 0 −4 0.1 0.1 π/40 −π/30 −4

0.1 −0.1 0 π/30 −4 0.1 0.1 π/40 0 −4

0.1 −0.1 π/40 −π/30 −4 0.1 0.1 π/40 π/30 −4

0 0 0 0 0
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Fig. 12 Simulated results
for the ball and beam
system (initial conditions:
x1(0) = 0.1 (m), x2(0) = 0,
x3(0) = 0, and x4(0) = 0).
Dashed-line: fuzzy
controller; solid line:
fuzzy-Padé controller.
(a) ball’s distance, x1,
versus time, t ; (b) ball’s
velocity, x2, versus t ;
(c) beam’s angle, x3,
versus t ; (d) beam’s angular
velocity, x4, versus t

Table 7 Values of the coefficients of the [2, 2] Padé approxi-
mant for the ball and beam system

Coefficient Value Coefficient Value

b1 9.72 c41 −3.87

b2 24.91 c22 −15.57

b3 −128.84 c32 −39.66

b4 −59.47 c42 −9.91

c11 −17.68 c33 78.84

c21 1.35 c43 94.70

c31 −15.47 c44 0.00

Table 8 A comparison between fuzzy and fuzzy-Padé con-
trollers in two areas; CPU-time and energy consumption of the
system

Controller CPU-time Energy consumption

Fuzzy controller 247.52 (s) 16.80 (mJ/kg)

Fuzzy-Padé controller 0.78 (s) 0.04 (mJ/kg)

solution of the system. CPU-time and the energy con-
sumption have also been compared in Table 8. CPU-
time and energy consumption in Table 8 belong to the
simulations in Figs. 12 and 13.

Superiority of the fuzzy-Padé controller is clear in
Table 8. CPU-time in fuzzy-Padé controller is about
317 times less than fuzzy controller. Besides, the pro-

Fig. 13 Input force to the ball and beam system, u, versus
time, t . Dashed-line: fuzzy controller; solid line: fuzzy-Padé
controller

posed controller has reduced the energy consumption
rate near 420 times. We summarize this section that
the fuzzy-Padé controller can successfully stabilize the
ball and beam system.

5 The parallel double inverted pendulum system

For stabilizing the parallel double inverted pendu-
lum system, several approaches have been studied in
the literature. Based on the singleton-type reasoning
method and genetic algorithm, Fujita and Mizumoto
[50] developed a fuzzy controller only for balancing
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the two pendulums, ignoring the position of the cart.
It needs a long rail for the cart to move in, which is
not feasible. Kawatani and Tamaguchi [51] first lin-
earized the system and then designed their controller.
This controller is valid only for small initial angles of
the pendulums. Sugie and Okada [52] succeeded to
design a stabilizing controller based on the H∞ pro-
cedure. However, the asymptotic convergence was not
reached and a lasting vibration of about 3◦ of the pen-
dulums remained. Yi et al. [53] could entirely stabilize
the double inverted pendulum system using a fuzzy
controller. Their controller is based on the single-input
rule modules dynamically connected fuzzy inference
model.

In this section, we are applying the fuzzy-Padé con-
troller on the parallel double inverted pendulum sys-
tem. The proposed controller has mostly removed the
drawbacks of the above stated controllers. Compared
with the fuzzy controller proposed by Yi et al. [53],
which is among the best fuzzy controllers designed for
this system, our controller is shown to have higher per-
formance.

5.1 System dynamics

It is impossible to control the parallel double inverted
pendulum systems with the same natural frequency of
the pendulums. By changing the lengths of the pen-
dulums, we can overcome this problem. By taking the
cart movements into consideration, and its intensive
effects especially on the shorter pendulum with higher
frequency, it is accepted that the parallel inverted pen-
dulum systems are the most difficult to be stabilized in
the inverted pendulums category [51].

As shown in Fig. 14, the parallel double inverted
pendulum system consists of a cart moving on a rail,
a longer pendulum 1 hinged on the right side of the
cart, and a shorter pendulum 2 hinged on the left side
of the cart. An input force is driving the cart.

The parameters M , m1, and m2 are the masses of
the cart, pendulum 1, and pendulum 2, respectively.
l1 and l2 denote the half lengths of the pendulums
1 and 2, respectively. Here, M = 1.0 (kg), m1 = 0.3
(kg), m2 = 0.1 (kg), l1 = 0.6 (m), l2 = 0.2 (m), and
g = 9.8 (m/s2) which is the gravity.

The position of the cart is denoted by x. θ1 and θ2

are the angles of pendulums 1 and 2 from their up-
right positions, respectively. The clockwise direction
is positive for both angles. The input force applied on

Fig. 14 Parallel double inverted pendulum system; two in-
verted pendulums are pinned to a moving cart

the cart is denoted by u. The nonlinear equations of
motion of the system can be achieved by Lagrange
method as [53]

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

4m1l
2
1 θ̈1/3 + m1l1 cos θ1ẍ = m1l1g sin θ1,

4m2l
2
2 θ̈2/3 + m2l2 cos θ2ẍ = m2l2g sin θ2,

m1l1 cos θ1θ̈1 + m2l2 cos θ2θ̈2 + (M + m1 + m2)ẍ

= u + m1l1θ̇1
2

sin θ1 + m2l2θ̇2
2

sin θ2.

(15)

The state space variables of this sixth-order system
are: x1 = θ1, x2 = θ̇1, x3 = θ2, x4 = θ̇2, x5 = x, and
x6 = ẋ.

5.2 The fuzzy-Padé controller

The fuzzy-Padé controller is utilized to stabilize the
parallel double inverted pendulum system with 6 state
variables and 1 control input. Similar to the ball and
beam system, the order of the Padé approximant we
use here is [2, 2]. Referring to (4), the [2, 2] Padé ap-
proximant with 6 variables is

u(x) = a + ∑6
i=1 bixi + ∑6

i=1
∑6(j≤i)

j=1 cij xixj

1 + ∑6
i=1 bixi + ∑6

i=1
∑6(j≤i)

j=1 cij xixj

. (16)

With m = n = 2 and i = 6, referring to (5), results
in M = 28 and N = 27. Thus, there exist M +N = 55
unknown coefficients in (16). We use 144 rules, R =
144, to build (8) and to determine the 55 unknowns in
(16).

These rules are based on Yi et al. [53] and at
the points x1 = {−10◦,0,10◦}, x2 = {−2,2}, x3 =
{−10◦,0,10◦}, x4 = {−2,2}, x5 = {−1,0,1} and
x6 = {−1,1}.
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Fig. 15 Simulated results
for the double inverted
pendulums on a cart (initial
conditions: x1(0) = 5 ◦,
x2(0) = −0.1 (deg/s),
x3(0) = 10 ◦, x4(0) = −0.1
(deg/s), x5(0) = −2 (m),
and x6(0) = 0 (m/s)).
Dashed-line: fuzzy
controller; solid line:
fuzzy-Padé controller;
(a) angle of pendulum 1, x1,
versus time, t ; (b) angular
velocity of pendulum 1, x2,
versus t ; (c) angle of
pendulum 2, x3, versus t ;
(d) angular velocity of
pendulum 2, x4, versus t ;
(e) position of the cart, x5,
versus t ; (f) velocity of the
cart, x6, versus t

If we consider that in (16) we should have u(0) =
0, it results in a = 0, and since u(−x) = −u(x), it
gives us cij = bi = 0. The other derived coefficients
are shown in Table 9. It is notable that D = 0.62 (see
(10)).

5.3 Results and comparisons

To verify the effectiveness of the proposed fuzzy-Padé
controller, several simulations are done. At first, Figs.
15 and 16 show fuzzy-Padé results compared to the
fuzzy controller proposed by Yi et al. [53].

In Table 10, the two controllers are compared in
terms of CPU-time and energy consumption of the
system. Data in Table 10 belong to the simulations in
Figs. 15 and 16. Table 10 shows that the fuzzy-Pad]é
controller is superior to the fuzzy controller designed
by Yi et al. [53].

Figure 17 shows the convergence regions of the ini-
tial angle of the pendulums for both fuzzy and fuzzy-
Padé controllers. It is shown that the convergence re-

Table 9 Values of the coefficients of the [2, 2] Padé approxi-
mant for the double inverted pendulum system

Coefficient Value Coefficient Value

b1 −122.32 c42 −0.01

b2 −21.27 c52 0.00

b3 102.52 c62 0.00

b4 11.54 c33 −2.68

b5 −1.61 c43 −0.13

b6 −1.27 c53 0.00

c11 −0.67 c63 −0.02

c21 0.01 c44 −0.01

c31 −0.07 c54 0.00

c41 0.01 c64 0.00

c51 0.00 c55 −0.01

c61 0.03 c65 0.00

c22 −0.02 c66 −0.01

c32 −0.12

gion of the fuzzy-Padé controller is much larger than
that of the fuzzy controller, %348.74 larger.
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Table 10 A comparison between fuzzy and fuzzy-Padé con-
trollers in two areas; CPU-time and energy consumption of the
system

Controller CPU-time Energy consumption

Fuzzy controller
(Yi et al. [34])

1.11 (s) 150.58 (mJ)

Fuzzy-Padé controller 0.24 (s) 62.86 (mJ)

Fig. 16 Input force to the double inverted pendulum system, u,
versus time, t . Dashed line: fuzzy controller; solid line: fuzzy–
Padé controller

Figure 18 shows the fuzzy-Padé simulation results
with different initial angles, where the fuzzy controller
solutions diverge in these cases.

In Fig. 18, the left and the right axes separately rep-
resent the angle of the two pendulums and the position
of the cart.

In summary, the simulation results show that the
proposed fuzzy-Padé controller can completely sta-
bilize the parallel double inverted pendulum system
within a wide range of the initial angles of the two
pendulums.

Fig. 17 Comparison of convergence regions for the two con-
trollers. Fuzzy-Padé convergence region is %348.74 larger than
that of the fuzzy controller proposed by Yi et al. [34]

6 Conclusion

The presented fuzzy-Padé controller was shown to be a
novel controller, which dramatically affects the qual-
ity of the closed-loop behavior. Similar to the fuzzy
controllers, fuzzy-Padé controllers use the heuristic
knowledge of an expert. Unlike the fuzzy controllers,
in which the rules are fuzzy sets, the rule base for
fuzzy-Padé controllers which are called fuzzy single-
ton rules are expressed as crisp sets. One can de-
rive the unknown coefficients of the Padé approxi-
mants using these rules to build the fuzzy-Padé con-
troller.

The proposed control method, can be utilized
in many real-world complex applications, especially
where heuristic information is available. Based on
the three case studies, we summarize some properties
of the fuzzy-Padé controllers compared to the fuzzy
controllers, as follows. In fuzzy-Padé controllers:

Fig. 18 Simulated results
for the double inverted
pendulums on a cart;
non-zero initial conditions:
(a) x1(0) = 0, x3(0) = 15 ◦;
(b) x1(0) = 10 ◦,
x3(0) = 30 ◦; solid line:
fuzzy-Padé controller;
fuzzy controller does not
converge in these cases (not
shown in the figure)
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(1) fewer rules are needed to construct the controller;
(2) accurate results can be achieved using even low-
order Padé approximants; (3) it is suitable for high-
order systems; (4) convergence region is greatly en-
larged; (5) by dramatically reducing the CPU-time,
real time control is achieved; (6) energy consump-
tion is reduced; and (7) by reducing the oscillations
around the equilibrium point, the response of the sys-
tem asymptotically converges to zero.

As a future work, it is possible to make the fuzzy-
Padé controller more efficient by optimizing the val-
ues of its parameters. In this way, the controller’s con-
stants, which are derived based on the rule base, will
be the initial estimation. Then, an optimization algo-
rithm will tune the constants so that to minimize a
control goal such as the settling time, energy consump-
tion, convergence region, etc. Finally, as another future
work, it would be interesting to study the robustness of
the proposed controller on the model variations, model
uncertainties and system noises.
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