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Abstract A fully nonlinear model of suspension
bridges parameterized by one single space coordinate
is proposed to describe overall three-dimensional mo-
tions. The nonlinear equations of motion are obtained
via a direct total Lagrangian formulation and the kine-
matics, for the deck-girder and the suspension cables,
feature the finite displacements of the associated base
lines and the flexural and torsional rotations of the
deck cross-sections assumed rigid in their own planes.
The strain-displacement relationships for the general-
ized strain parameters, the elongations in the cables,
the deck elongation, and the three curvatures, retain
the full geometric nonlinearities. The proposed non-
linear model with its full extensional-flexural-torsional
coupling is employed to study the torsional divergence
caused by the static part of the wind-induced forces.
Two suspension bridges are considered as case stud-
ies: the Runyang bridge (main span 1,490 m) and the
Hu Men bridge (main span 888 m) in China. The
evaluation of the onset of the static instability and
the post-critical behavior takes into account the pre-
stressed condition of the bridge subject to dead loads.
The dynamic bifurcation that occurs at the onset of
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flutter is also studied accounting for the prestressed
equilibrium state about which the equations of motion
are obtained via an updated Lagrangian formulation.
Such a bifurcation is investigated in the context of the
parametric nonlinear model considering the model pa-
rameters of the Runyang Suspension Bridge together
with its aeroelastic derivatives. The calculated critical
wind speeds for the onset of the static and dynamic
bifurcations are compared with the results obtained
via linear analysis and the main differences are high-
lighted. Parametric sensitivity studies are carried out
to assess the influence of the design parameters on the
instabilities associated with the bridge aeroelastic re-
sponse.

Keywords Suspension bridges · Special Cosserat
theory of beams · Nonlinear suspension cables ·
Geometrically exact approach · Aeroelastic
derivatives · Torsional divergence · Flutter

1 Introduction

Structures possessing high bending torsional flexibil-
ity, such as suspension bridges, when subjected to
wind-induced excitations can be affected by elastic in-
stability phenomena such as torsional divergence or
flexural-torsional flutter. In long- and super long-span
suspension bridges, the geometric nonlinearities in-
duced by the suspension cables and the high flexural-
torsional slenderness of the deck play an important
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role in the static and dynamic response of the bridge.
Moreover, the nonlinear effective stiffness of the struc-
ture in its prestressed equilibrium configuration under
dead loads can strongly influence the behavior under
both autonomous forces (e.g., aeroelastic loads) and
nonautonomous dynamic forces (e.g., traffic-induced
excitations). These bridges show a characteristic non-
linear precritical behavior under quasistatic incremen-
tal loads and, depending on the direction of loading
(downward or upward), the ensuing increase or loss of
tension in the suspension cables causes an increase or
a loss of stiffness as a result of the positive or negative
geometric stiffness effects, respectively. Thus, to pre-
dict correctly any static or dynamic critical condition,
it is necessary to describe accurately the overall pre-
critical behavior as well as the mechanical asymmetry
exhibited by these formidable suspended structures.
Moreover, phenomena such as the static and dynamic
aeroelastic instabilities induced by wind-structure in-
teraction can be investigated effectively only in the
context of a parametric modeling and a continuum for-
mulation of the elastostatic and elastodynamic prob-
lems.

Several numerical models of suspension bridges
have been proposed in the technical literature and
different studies have been conducted to investigate
their static/dynamic response and the aeroelastic limit
states. One of the first and most important contribu-
tions can be found in [1] where parametric formula-
tions are adopted to describe the static and dynamic
response of cables and suspended structures. Differ-
ent studies on linearized models of suspension bridges
can be found in [2–5], whereas the first general the-
ory and analysis of nonlinear vibrations of such struc-
tures are proposed in [6, 7] where the authors used
the method of multiple scales to investigate nonlinear
free flexural-torsional vibrations. By the same method,
passive and active schemes were investigated to con-
trol nonlinear oscillations in suspension bridges [8, 9].
Most recent works can be found in [10] and in [11,
12] in which the nonlinear equations of motion are
obtained by employing variational methods based on
truncated geometric nonlinearities.

The model proposed here accounts for the elas-
tic characteristics of the suspension hangers, mod-
eled as a continuum elastic (membrane-type) distribu-
tion along the bridge span while the Cosserat theory
is employed to describe the mechanics of the deck-
girder. No restrictions are placed on the geometry

of deformation besides the rigidity of the cross sec-
tions. The equations of motion are thus derived via
a Lagrangian formulation which allows to include in
a straightforward manner nonconservative loads such
as aeroelastic forces. Studies on the static aeroelas-
tic instability of long-span cable-stayed bridges were
carried out in [13] to evaluate the critical wind ve-
locity for the nonlinear lateral-torsional buckling in-
stability via a Finite Element (FE) approach. Three-
dimensional nonlinear FE analyses on a super-long-
span suspension bridge were also performed in [14]
to demonstrate the significant influence of the ge-
ometric nonlinearities on the aerostatic and aerody-
namic behaviors of such slender structures. In [15, 16],
a series method was proposed for the determinis-
tic aerostatic stability analysis of suspension bridges;
however, some conservative assumptions in the kine-
matic modeling and in the prestress contribution of
the dead and wind-induced loads were made. In [17],
numerical aerostatic stability analyses are performed
on a three-dimensional FE model of a suspension
bridge to study the combined effects of geometric
and material nonlinearities and the nonlinear model-
ing of the wind loads. A simplified method to an-
alyze the lateral response of suspension bridges un-
der wind loads was proposed by [18] deriving the
analytical formulas of the aeroelastic response for a
three degrees of freedom (dof) model under some
kinematic and mechanical assumptions. A continuum
model of suspension bridges that can undergo three-
dimensional motions, was first proposed in [19, 20].
The model was formulated via a total Lagrangian
approach within a geometrically exact framework.
The torsional divergence condition was determined
as the static bifurcation condition whence the tan-
gent stiffness along the nonlinear equilibrium path be-
comes singular while increasing the wind speed. The
dynamic aeroelastic behavior of suspension bridges
has also been widely investigated in the literature by
different numerical strategies. The flutter instability,
whose general theory is given in [21], is classically
studied by two approaches, namely, the frequency- and
time-domain approaches [22]. The importance of the
structural nonlinearities on the aerodynamic response
of suspension bridges is a well-known fact as shown
in [23].

In [24], the concept of aeroelastic derivatives (see
also [25] and [26]) was first proposed to evaluate the
flutter wind speed by solving a complex-valued eigen-
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value problem whose solution represents the bridge
frequency at the flutter condition. A modal analysis
technique was applied in [27–29], and more recently
in [30] and [31] for the evaluation of the critical flutter
speed of a suspension bridge by using a linear three-
dimensional multi-dof framework. A numerical model
that treats the bridge and flowing air as elements of
a single dynamic system was proposed in [32] where
the governing equations are integrated numerically, si-
multaneously, and interactively to predict the onset of
flutter.

The correct evaluation of the bridge tangent stiff-
ness in the prestressed configuration induced by the
in-service loads, accounting also for the torsional and
out-of-plane components, is a necessary step within
the context of an accurate study of the limit states aris-
ing from wind-structure interaction. In bridge design,
aeroelastic phenomena are usually investigated in the
context of cumbersome FE models where sensitivity
parametric analyses are computationally demanding
because the regeneration of the mesh for the whole
geometry of the bridge must be carried out for each
individual analysis. On the other hand, the proposed
geometrically exact continuum model of suspension
bridges represents a suitable parametric framework for
investigating limit states and conducting rapid struc-
tural optimization studies.

A fully nonlinear parametric model for the study
of wind-induced excitation in arch bridges was first
proposed in [33] and [34] where the flutter analysis of
Ponte della Musica, recently constructed in Rome, was
carried out by solving the complex eigenvalue prob-
lem associated with the governing equations of motion
linearized about the in-service prestressed bridge con-
figuration under dead loads and wind-induced forces.
The same approach was followed in [35] on a clas-
sical FE model. An interesting application of classi-
cal eigenvalue analysis for the critical flutter condi-
tion on a real bridge is given in [36] and [37] where
an iterative procedure was employed to estimate the
flutter velocity for different angles of attack of the
wind and several suspension bridge configurations. In
[38], a FE calculation of the aerodynamic flutter phe-
nomenon is presented for a cable-stayed bridge by
solving the eigenvalue problem delivered by the mode-
by-mode method with the limitation that it neglects a
priori any modal coupling. A multimode flutter anal-
ysis was performed in [39] by a FE model. To ac-
count for the spatial distribution of the wind force

field, especially for long-span bridges, some authors
[40, 41] proposed a three-dimensional flutter analy-
sis of a simply supported bridge girder by the so-
called finite strip method, which allows to consider
distributed wind forces on different strips of the bridge
girder.

To perform aeroelastic stability studies, an alterna-
tive strategy is the analysis in the time-domain where
the bridge response is carried out within a given range
of wind speeds that is expected to bracket the flutter
speed [42] and the critical condition is found when
the bridge dynamic response shows a periodic oscil-
lation. With respect to the eigenvalue approach, time-
domain analyses allow to study the post-critical flutter
response with the structural and aerodynamic nonlin-
earities [43, 44]. The drawbacks are the high compu-
tational burden and the high computational complex-
ity necessary to obtain appropriate analytical functions
for typical cross-sections of a deck bridge. The aero-
dynamic forces acting on the bridge deck are usually
modeled relying on the so-called aeroelastic deriva-
tives, which correspond to a set of functions evaluated
through wind-tunnel tests on a sectional scaled model
of the reference bridge [26, 45, 46].

The main contribution of the present work is to
provide a geometrically exact one-dimensional for-
mulation of the static and dynamic aeroelastic prob-
lem for suspension bridges and validate the aeroelas-
tic predictions based on this model. The fairly general
modeling allows to take into account accurately any
nonuniform stiffness and mass properties as well as
all other nonuniform data (e.g., the wind force distri-
bution), as demonstrated in [34, 47]. The static aeroe-
lastic stability of two suspension bridges is then inves-
tigated by performing nonlinear incremental analyses
and evaluating the critical, torsional-divergence. The
flutter analysis is then formulated for one case study,
the Runyang suspension bridge, and a comparison be-
tween two modal techniques is proposed; the study
is in fact conducted by performing a complex-valued
eigenvalue problem and a classical, iterative, eigen-
value problem by considering the prestressed config-
urations induced by the bridge dead loads and the in-
service loads as well as the static components of the
wind loads. A few sensitivity analyses are then carried
out in order to demonstrate the wide applicability of
the model.
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2 The one-dimensional model of suspension
bridges

A three-dimensional geometrically exact approach
[48] is employed to obtain the equations of motion
according to a Total and an updated Lagrangian for-
mulation. The bridge undeformed (stress-free) config-
uration is considered as the reference configuration.
The fixed Cartesian reference frame {e1, e2, e3} has
the origin in the center of mass of the left deck termi-
nal section (see Fig. 1). For the two suspension cables
under their own weight, the catenary equilibrium con-
figurations, taken as reference configuration, are given
by

yc(x) = H c

ρAcg

{
cosh

[
ρAcg

H c

(
l

2
− x

)]

− cosh
ρAcgl

2H c

}
, (1)

where x is the horizontal coordinate along the base
line of the deck in the reference configuration (here,
it is taken to coincide with the centerline), ρAc is the
cable mass per unit length, g is the gravitational con-
stant, l is the span of the bridge, and H c is the hor-
izontal component of the tension Nc in each cable.
To identify the two suspension cables and the asso-
ciated variables, the superscripts “+” and “−” are in-
troduced with the convention that the plus sign refers
to the cable undergoing incremental tension, the mi-
nus indicates the cable undergoing tension loosening,
respectively, when the deck is subject to a counter-

clockwise rotation. The orientation of the deck cross
section in the reference configuration is given by the
unit vectors {b1(x), b2(x)} collinear with the princi-
pal inertia directions. The local frame is completed
by the unit vector b3 = b1 × b2 orthogonal to the
cross section. For the suspension cables in the refer-
ence configuration, the unit vectors a±

3 (x) represent
the local tangent to the cable base lines (i.e., the cables
centerlines). To complete the local frame for the ca-
bles, a pair of orthogonal unit vectors {a±

1 (x), a±
2 (x)}

lying in the plane orthogonal to a±
3 (x) is consid-

ered.

Kinematic and dynamic formulation In the orthonor-
mal basis of the fixed inertial reference frame
{e1, e2, e3}, the reference (stress-free) configuration
of the deck is described by the position vector of
the centerline, x(x) = xe3, where x is the coordi-
nate along the bridge span (see Fig. 1); on the other
hand, the reference configurations of the two cables
are given by the vectors y±(x). The equilibrium con-
figurations of the deck-girder and cables under the
static loads, respectively, denoted by Bo and Co, are
described by

po = x(x) + uo(x), q±
o = y±(x) + v±

o (x). (2)

The orientation of the deck cross sections is given
by unit vectors {bo

1(x), bo
2(x), bo

3(x)}, whereas the ca-
bles tangent unit vectors are a±

o (x), where the sub-
script 3 is omitted for ease of notation. In terms of the

Fig. 1 Three-dimensional view (left) and deck section reference frames (right) of the suspension bridge model
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fixed basis {e1, e2, e3}, they are expressed as

bo
i (x) =

3∑
j=1

Ro
j,i (x)ej ,

a±
o (x, t) = cos θc

ν±
o

[
vo

±
1,xe1

+ (
yc
x + vo

±
2,x

)
e2 + (

1 + vo
±
3,x

)
e3

]
,

(3)

where cos θc is the horizontal projection of the tan-
gent unit vector to the catenary cable configuration
yc(x), θc = arctan(yc

x(x)), the subscript x indicates
differentiation with respect to x and Ro

j,i(x) represents
the (j, i)th component of the orthogonal matrix Ro

obtained through the following sequence of finite ro-
tations: flexural rotation about axis e1, flexural rota-
tion about b

(1)
2 and torsional rotation about axis b

(2)
3

where {b(k)
1 , b

(k)
2 , b

(k)
3 } is the basis resulting from the

kth rotation. The components of Ro are given in the
Appendix.

The motions of base lines of the deck-girder and
the cables, respectively, are described by p̆(x, t) and
q̆±(x, t):

p̆(x, t) = po(x) + u(x, t),

q̆±(x, t) = q±
o (x) + v±(x, t).

(4)

The deck intrinsic frame {b̆1(x, t), b̆2(x, t), b̆3(x, t)}
and the cables tangent unit vectors ă±

3 (x, t) can be ex-
pressed in terms of the fixed basis {e1, e2, e3} as

b̆i (x, t) =
3∑

j=1

R̆j,i (x, t)ej ,

ă±(x, t) = cos θc

ν̆±
[(

vo
±
1,x + v±

1,x

)
e1

+ (
yc
x + vo

±
2,x + v±

2,x

)
e2

+ (
1 + vo

±
3,x + v±

3,x

)
e3

]
,

(5)

where R̆j,i(x, t) is the component of the total rotation
matrix R̆(x, t) obtained as

R̆(x, t) := Ro(x) · R(x, t). (6)

In Eq. (6), R(x, t) represents the sequence of incre-
mental finite rotations φi(x, t) from the static configu-
ration Bo to the dynamic configuration B̆ and its com-
ponents are formally the same as those shown in (28).

The generalized total strain parameters are defined
in the local basis of each structural element. For the
cables, the static stretch and the total dynamic stretch
are given by

ν±
o = ∂scq±

o · a±
o , ν̆± = ∂sc q̆± · ă±, (7)

where ∂s(·) indicates the derivative with respect to
the cable arc length coordinate sc, ∂sc(·) = cos θc ∂x(·)
and ∂x(·) indicates differentiation with respect to the
bridge span coordinate x. The deck generalized strains
comprise the stretch, the two shear strains, the two
bending curvatures, and the twist curvature defined as

∂xpo = ηo
1b

o
1 + ηo

2b
o
2 + νobo

3, ∂xb
o
k = μo × bo

k,

∂xp̆ = η̆1b̆1 + η̆2b̆2 + ν̆b̆3, ∂x b̆k = μ̆ × b̆k.

(8)

For the equilibrium and dynamic configurations Bo

and B̆, νo and ν̆ represent the deck stretches, (ηo
1, η

o
2)

and (η̆1, η̆2) are the shear strains along the bo
1 and bo

2

and b̆1 and b̆2 directions, respectively. The compo-
nents of the curvature vector in the static and dynamic
local basis (μo = μo

1b
o
1 + μo

2b
o
2 + μo

3b
o
3, μ̆ = μ̆1b̆1 +

μ̆2b̆2 + μ̆3b̆3) denote the torsional curvatures (μo
3, μ̆3)

and the bending curvatures (μo
1, μ̆1) and (μo

2, μ̆2), re-
spectively.

To describe the cables equilibrium and dynamic
contact forces, vectors n±

o and n̆± are introduced

n±
o (x) = N±

o (x)a±
o , n̆±(x, t) = N̆±(x, t)ă±. (9)

The generalized stress resultants and stress moment
resultants of the deck-girder are given by (no,mo) in
Bo and by (n̆, m̆) in B̆. The component form of the
deck contact forces and couples is given by

no(x) = Qo
1(x)bo

1 + Qo
2(x)bo

2 + No(x)bo
3,

n̆(x, t) = Q̆1(x, t)b̆1 + Q̆2(x, t)b̆2 + N̆(x, t)b̆3,

mo(x) = Mo
1 (x)bo

1 + Mo
2 (x)bo

2 + T o(x)bo
3,

m̆(x, t) = M̆1(x, t)b̆1 + M̆2(x, t)b̆2 + T̆ (x, t)b̆3,

(10)

where the components have the meaning of tensions
(No, N̆ ), shear forces (Qo

1, Q̆1) and (Qo
2, Q̆2) for the

contact force vectors (no, n̆) while, for the contact
couples (mo, m̆), they represent the torques (T o, T̆ )
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and the bending moments (Mo
1 , M̆1) and (Mo

2 , M̆2).
The equilibrium equations can thus be written as

∂xn
±
o + f ±

o − r±
o = o,

∂xn
o + f o + r+

o + r−
o = o,

∂xm
o + ∂xpo × no + Bc

2 bo
1 × (

r−
o − r+

o

) + co = o,

(11)

where the forces f ±
o (x),f o(x) and couples co(x) in-

clude the cables and deck weights and Bc represents
the distance between the two suspension cables (see
Fig. 1).

The equations of motion are obtained by enforcing
the balance of linear and angular momentum for the
cable-deck system. The equations of motion read

∂x n̆
± + f̆

± − r̆± = ρAc sec θ±
o (x) ∂ttv

±,

∂x n̆ + f̆ + r̆+ + r̆− = ρAd∂ttu,

∂xm̆ + ∂xp̆ × n̆ + Bc

2 b̆1 × (
r̆− − r̆+) + c̆

= ρJ E · ∂tω + ω × (
ρJ E · ω)

,

(12)

where ∂t (·) indicates partial differentiation with re-
spect to time t and sec θ±

o (x) = ν±
o /[cos θc(1 +

∂xvo
±
3 )]; ρAc and ρAd are the cables and deck mass

per unit length, respectively, ρJ E is the tensor of the
inertia mass moments of the deck cross sections re-
ferred to the elastic center CE (here, it coincides with
the center of mass); ω(x, t) is the incremental angu-
lar velocity vector of the cross sections defined in the
local reference frame such that ∂t b̆k = ω(x, t) × b̆k .
In addition, f̆ (x, t) and c̆(x, t) denote the total forces
and couples per unit length, respectively, acting in the
deck current dynamic configuration and include the
damping forces which are assumed proportional to the
velocity ∂tu and the angular velocity ω(x, t). Linearly
elastic constitutive laws are assumed in order to de-
scribe the relations between the generalized stress re-
sultant forces and couples and the generalized strain
parameters.

The hangers strain and the tension r±
o and r̆± can

be defined assuming an equivalent continuous hang-
ers distribution along the bridge span; accordingly
lh(x) := h + yc(x) is a function that defines the hang-
ers undeformed length along the bridge span and h

is the height of the bridge towers measured from the
deck. The cables catenaries can be described in the
fixed frame by y±(x) = ∓(Bc/2)e1 + lh(x)e2 + xe3.

The expressions of the static and dynamic hanger
stretches νo

h
±(x) and ν̆±

h (x, t) are obtained as

νo
h
±
(x) = ‖q±

o − p±
o ‖

lh(x)
, ν̆±

h (x, t) = ‖q̆± − p̆±‖
lh(x)

.

(13)

The vectors p±
o and p̆± indicate the position vectors

of the hanger points of attachment onto the deck in the
static and dynamic configurations, respectively, and
their expressions are given by

p±
o (x) = xo(x) + u±

o (x),

p̆±(x, t) = xo(x) + ŭ±(x, t),

u±
o (x) = uo(x) ∓ Bc

2

(
bo

1(x) − e1
)
,

ŭ±(x, t) = ŭ(x, t) ∓ Bc

2

(
b̆1(x, t) − e1

)
,

(14)

where, the total displacement of the deck and cable
base lines, ŭ(x, t) and v̆±(x, t), respectively, are de-
fined as

ŭ(x, t) := uo(x) + u(x, t),

v̆±(x, t) := v±
o (x) + v±(x, t).

(15)

The elastic constitutive law for the hangers can be
written as

r±
o (x) = EhAh

lh(x)

(
νo

h
±
(x) − 1

)
eo

±
h ,

r̆±(x, t) = EhAh

νo
h
±(x)lh(x)

(
ν̆±

h (x, t) − 1
)
ĕ±

h ,

eo
±
h = q±

o − p±
o

‖q±
o − p±

o ‖ ,

ĕ±
h = q̆± − p̆±

‖q̆± − p̆±‖ .

(16)

Finally, the kinematic and mechanical boundary con-
ditions are referred to a simply-supported scheme for
the deck while the two suspension cables ends are
fixed atop the towers. They can be written in the global
reference frame {e1, e2, e3} as

uo(0) = o, mo(0) · e1 = 0,

ψo
2 (0) = 0, ψo

3 (0) = 0, uo(l) · e1 = 0,

uo(l) · e2 = 0, no(l) · e3 = 0,
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mo(l) · e1 = 0, ψo
2 (l) = 0, ψo

3 (l) = 0,

v±
o (0) = o, v±

o (l) = o,

ŭ(0, t) = o, m̆(0, t) · e1 = 0, (17)

ψ̆2(0, t) = 0, ψ̆3(0, t) = 0,

ŭ(l, t) · e1 = 0, ŭ(l, t) · e2 = 0,

n̆(l, t) · e3 = 0, m̆(l, t) · e1 = 0,

ψ̆2(l, t) = 0, ψ̆3(l, t) = 0,

where ψo
i (x) and ψ̆i(x, t), i = 1,2,3, represent the

static and dynamic rotations of the deck cross-section
and their expressions are given in the Appendix.

Nondimensional form The governing static and dy-
namic equations (11) and (12), and the associated
boundary conditions (17), are cast in nondimensional
form by using the deck span l as characteristic length
and

√
ρAdl4/EdJ1 as characteristic time, where ρAd

is the deck mass per unit length, Ed is the deck
Young modulus and J1 the moment of inertia about
the local axis b1. The deck nondimensional mass per
unit length turns out to be 	d = 1 whereas the ca-
bles mass in nondimensional form can be written as
	c = ρAc/ρAd. Moreover, the nondimensional struc-
tural damping coefficients are expressed as

Dc
j = 2ζωj	

c, Dd
j = 2ζωj , DT

j = 2ζωj J̄
m,

(18)

where ζ is the damping ratio and ωj is the nondimen-
sional natural frequency of the j th natural vibrational
mode of the bridge; J̄ m = (ρJ E

3 + 1
2ρAcBc2)/(ρAdl2)

is the nondimensional mass moment along the di-
rection b̆3 of the deck accounting for the cables
mass contribution. The contribution of the flexural
angular rates on the structural damping is neglected.
The independent nondimensional stiffness parame-
ters are defined as ratios to the flexural deck stiff-
ness EdJ1/l3.

The nondimensionalized equations (11) and (12),
projected into the fixed basis {e1, e2, e3}, yield twelve
nonlinear partial-differential equations in twelve inde-
pendent kinematic unknowns. The obtained equations
govern the elasto-static and elastodynamic problems,
respectively, and the following independent parame-
ters are introduced to cast the model in nondimen-

sional form:

αc = H cl2

EdJ1
, κc = EcAcl2

EdJ1
,

κh = EhAhl2

EdJ1
, κd = Adl2

J1
,

γj = GdA∗
j

dl2

EdJ1
, χ = J2

J1
, τ = GdJ3

EdJ1
,

(19)

where Ac and Ah are the cables and hangers cross-
section area, Ec and Eh their Young modulus, Ad

and A∗d are the deck cross-section area and shear
area in direction bj , j = 1,2, Gd is the shear mod-
ulus; J2 and J3 are the flexural moment of iner-
tia and the torsional moment of inertia. The space
and time nondimensional coordinates are then de-
fined as x = lx̄, yc(x) = lȳc(x̄), y±(x) = lȳ±(x̄), t =
t̄/ω̄, ω̄ = √

EdJ1/(ρAdl4) and the displacement vec-
tors as u = lū, v± = lv̄±. Accordingly, by consider-
ing the definitions in (19), the elastic constitutive laws
can be expressed in the nondimensional form:

N±
o = Nc + κc

(
ν±

o − 1
)
, No = κd

(
νo − 1

)
,

Qo
1 = γ1 ηo

1, Qo
2 = γ2 ηo

2,

Mo
1 = μo

1, Mo
2 = χ μo

2, T o = τ μo
3,

N̆± = Nc + κc
(
ν̆± − 1

)
, N̆ = κd(ν̆ − 1),

Q̆1 = γ1 η̆1, Q̆2 = γ2 η̆2,

M̆1 = μ̆1, M̆2 = χμ̆2, T̆ = τ μ̆3,

r±
o (x) = κh

l̄h(x)

(
νo

h
±(x) − 1

)
eo

±
h ,

r̆±(x, t) = κh

νo
h
±(x)l̄h(x)

(
ν̆±

h (x, t) − 1
)
ĕ±

h ,

(20)

where Nc = αc/ cos θc is the catenary cable tension
and l̄h = lh/l.

3 Computational approach

The coupled nonlinear partial-differential equations of
motion (12), cast in a nondimensional form, are im-
plemented in the computational platform [49] using
the PDE-mode feature. The space-time integration is
numerically performed by using the FE method. The
mesh of one-dimensional domain [0,1] was adapted to
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optimize the accuracy and evaluation time of the solu-
tion. Fourth-order Lagrangian polynomials were used
to approximate each of the 12 kinematic independent
variables of the system.

3.1 Model validation

A preliminary validation of the equations of motion
is performed evaluating the modal properties of two
existing suspension bridges: the Runyang Suspension
Bridge with a span of 1490 m and the Hu Men Suspen-
sion Bridge having a span of about 888 m. These two
bridges have more or less the same shape and cross-
sectional size, but a very different span since the Run-
yang span is about 70 % greater than the Hu Men span.
This implies significantly different nonlinear behav-
iors as highlighted by the investigations carried out in
this work about the static aeroelastic stability. The fol-
lowing analyses are based on the reference mechanical
parameters and the obtained results are compared with
those proposed in [14, 36, 37] for the Runyang bridge
and [15, 18] for the Hu Men bridge, respectively.

The elastogeometric properties of the girder-deck
of the Runyang and Hu Men bridges can be summa-
rized as follows: l = 1490/888 m, B = 35.9/35.6 m,
D = 3/3.012 m, Ad = 1.2481/1.2443 m2, ρAd =
18387/18330 kg/m, ρJ E

3 = 1.852 × 106/1.743 ×
106 kg m2/m, E = 210/210 GPa, G = 80.77/

80.77 GPa, J1 = 1.9842/1.98 m4, J2 = 137.7541/

124.39 m4, J E
3 = 5.034/5.1 m4. Here and henceforth,

the slash separates quantities referred to the Runyang
bridge (left of the slash) from those referred to the Hu
Men bridge (right of the slash). On the other hand,

the suspension cables exhibit the following proper-
ties: Ec = 200/200 GPa, dc = 0.776/0.623 m, Ac =
0.47347/0.305 m2, ρAc = 3817/2397 kg/m. The sag
of the cables under their own weight is 149/84.6 m
and the horizontal force is H c = 7.09626/2.792 ×
107 N. The hangers have the following properties:
Eh = 210/160 GPa, dh = 0.0522/0.0529 m, Ah =
2.14/2.198 × 10−3 m2, and the distance between the
hangers is Bc = 34.3/33 m. The height of the towers
is h = 154/90 m. The damping factor is 0.5 % for both
bridges.

The eigenvalue problem is solved considering the
bridge deformed configuration under dead loads so as
to account for the prestressed state. The study is per-
formed in two steps: in the first step, the equilibrium
equations (11) are solved to obtain the equilibrium
state and the generalized stresses are evaluated across
the structure. In the second step, the lowest natural
frequencies and mode shapes of the bridge are eval-
uated solving the eigenvalue problem associated with
Eqs. (12) including the computed equilibrium config-
uration.

In Table 1 the lowest few frequencies of the bridge
modes are illustrated and compared with the literature
results obtained via a linear FE model of the structure.
Slightly higher values obtained by the proposed model
are due to the adopted continuum formulation in which
the stiffness parameters are average values and the real
discrete hanger distribution is replaced by a contin-
uum equivalent distribution. The kinematic unknowns,
which govern such a rich mechanical problem in the
present continuum formulation, are only 12.

Table 1 Frequencies of the lowest six modes of the Runyang
suspension bridge about the stress-free and prestressed config-
urations. SF stands for stress-free and PS refers to pre-stresses

condition, whereas F -1, F -2, and T identify the flexural modes
in directions e2 and e3 and the torsional mode, respectively

Proposed parametric nonlinear model

f1 [Hz] f2 [Hz] f3 [Hz] f4 [Hz] f5 [Hz] f6 [Hz] f7 [Hz]

F -1 sym F -2 skew F -2 sym F -1 skew F -2 skew T skew T sym

v±
1 |u1 v±

2 , u2 v±
2 , u2 v±

1 |u1 v±
2 , u2 v±

2 , φ3 v±
2 , φ3

SF 0.045|0.064 0.050 0.074 0.09|0.175 0.108 0.211 0.253

v±
1 , u1 v±

2 , u2 v±
2 , u2 v±

1 , u1 v±
2 , u2 v±

2 , φ3 v̆±
2 , φ̆3

PS 0.070 0.096 0.128 0.1707 0.1797 0.229 0.277

Literature results [36]

– – 0.126 – 0.172 – 0.241
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Table 2 Frequencies of the lowest six modes of the Hu Men
suspension bridge about the stress-free and pre-stressed config-
urations. SF stands for stress-free and PS refers to pre-stresses

condition, whereas F -1, F -2 and T identify the flexural modes
in directions e2 and e3 and the torsional mode, respectively

Proposed parametric nonlinear model

f1 [Hz] f2 [Hz] f3 [Hz] f4 [Hz] f5 [Hz] f6 [Hz] f7 [Hz]

F -1 sym F -2 skew F -2 sym F -1 skew F -2 skew T skew T sym

v±
1 |u1 v±

2 , u2 v±
2 , u2 v±

1 |u1 v±
2 , u2 v±

2 , φ3 v±
2 , φ3

SF 0.06|0.170 0.065 0.106 0.119|0.469 0.174 0.402 0.409

F -2 skew F -1 sym F -2 sym F -2 skew F -1 skew T skew T sym

v±
2 , u2 v±

1 , u1 v±
2 , u2 v±

2 , u2 v±
1 , u1 v±

2 , φ3 v±
2 , φ3

PS 0.129 0.161 0.181 0.269 0.319 0.434 0.439

Literature results [35]

– – 0.172 – – 0.426 0.361

The first row gives the frequencies calculated con-
sidering the stress-free configuration of the bridge.
The first mode is a symmetric local mode affecting
the cables alone moving in the out-of-plane direction
in a pendulum-like mode. The second mode is the first
symmetric lateral bending mode for the deck involving
also the cables. The modes that follow in the sequence
are the lowest skew-symmetric and lowest symmet-
ric bending modes in the vertical direction. Thereafter,
the bridge exhibits the lowest skew-symmetric lateral
mode and the second skew-symmetric mode in the ver-
tical direction. The sixth and the seventh modes are
the lowest skew-symmetric and symmetric torsional
modes.

On the other hand, if the prestressed condition is
taken into account, the local cable mode disappears,
but the sequence of global modes is preserved. The
difference is the higher values of the frequencies of all
modes due to the positive geometric stiffness of the ca-
bles. A good correlation is found with the frequencies
reported in the literature [36]. The lowest six modal
configurations of the Runyang suspension bridge are
portrayed in Fig. 2. The aspect ratio of the reference
geometry of the bridge as well as the scaling of the
modal displacement components have been optimized
for visualization purposes of the modal patterns.

For the Hu Men Suspension Bridge, the modal se-
quence for the stress-free bridge is the same as the
Runyang bridge although the frequencies are higher
due to the shorter span of the Hu Men (Table 2). For
the prestressed condition, the only difference is that

the fourth mode is the second skew-symmetric ver-
tical mode while the fifth mode is the lowest skew-
symmetric lateral mode. The frequencies are all higher
for this bridge.

Nonlinear precritical equilibrium paths The theoret-
ical predictions based on the present nonlinear formu-
lation have been first tested in the context of a static
stability analysis since suspension bridges exhibit a
substantial nonlinear precritical behavior due to the
geometric nonlinearities of the cables. The aim of the
analysis is to evaluate the nonlinear equilibrium paths
of the bridge subject to vertical downward loads of in-
creasing magnitude (quantified by the multiplier λ of
the dead loads) and estimate the increase of stiffness
suffered by the cables. On the other hand, path fol-
lowing analyses for increasing upward loads are per-
formed to show the softening effect induced by the
loss of tension in the cables. The geometric nonlin-
earities accounted for in the deck modeling are ex-
pected to give a marginal contribution to the increase
of the overall stiffness of the bridge because of the as-
sumed typical boundary conditions for the deck. The
simply supported scheme does not allow the stretch-
ing effect to appear with the associated funicular-type
load-bearing capacity so that the only nonlinear (geo-
metric) contribution to the deck stiffness comes from
nonlinear curvature effects.

Figures 3a and 3b show the nonlinear equilibrium
paths obtained for the vertical displacement compo-
nent of the deck and the maximum stretch of the cables
compared with the paths obtained by linear theory. The
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Fig. 2 The lowest six mode shapes of the Runyang suspension bridge

increment of stiffness due to the geometric nonlinear-
ity is appreciable; the difference in the structural re-
sponse becomes discernible already at low values of
the dead load multiplier λ. Otherwise, very small in-
crements of upward loads induce a pronounced soft-
ening behavior, which can be appreciated in Figs. 3c
and 3d, due to the loss of tension suffered by the ca-
bles.

The equilibrium paths, shown in Figs. 4a and 4b,
were obtained considering the bridge prestressed un-
der the dead load f o

2 , subsequently subject to an incre-
mental horizontal load f o

1 (Fig. 4a) and twisting cou-
ple co

3 (Fig. 4b) proportional to the load f o
2 . These uni-

form loads are considered collinear with the directions
of the aeroelastic forces so as to show that the geo-
metric nonlinearities accounted for in the cables and
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Fig. 3 Nonlinear equilibrium paths under vertical loads: (a) vertical (absolute) deck displacement and (b) cables stretch at the midspan
for increasing load, (c) vertical deck displacement and (d) cables stretch at the midspan for decreasing load

deck-girder induce coupling between forces and dis-
placements along different directions contrary to the
predictions of linear theory. In fact, such effects van-
ish in the context of a linear model as suggested by the
tangent lines to the curves at the origin of the plots in
Figs. 4. Moreover, Figs. 5a and 5b show that the main
consequence is the nontrivial, nonsymmetric stretch
variations in the cables.

4 Aeroelastic instabilities

The main focus of the present work is the study of
the aeroelastic response of suspension bridges in the
context of the proposed nonlinear parametric model.
Two kinds of stability analyses are carried out: tor-
sional divergence and flutter. The first represents the
bifurcation of the equilibrium state occurring when
the bridge torsional stiffness becomes zero under the
static part of the wind loads. This condition is studied

by calculating the whole nonlinear precritical equilib-
rium path under increasing aerostatic forces until the
critical condition is signaled by the singularity of the
stiffness matrix. Moreover, an eigenvalue analysis lin-
earized about the configuration induced by the static
aeroelastic load is performed, and the critical condi-
tion is identified when the first eigenvalue becomes
purely real. On the other hand, flutter as a dynamic
(Hopf) bifurcation is signaled by the crossing of a pair
of eigenvalues on the imaginary axis, past which the
perturbed equilibrium state gives rise to unbounded
oscillations within a linear model. The flutter condi-
tion can be studied considering time-dependent simu-
lations or the solution of a linear (or nonlinear) eigen-
value problem. The first approach allows to account
for all nonlinearities, geometric and constitutive, and
evaluate the flutter condition by analyzing the time his-
tories of free vibration at different wind speeds, thus
estimating the critical velocity when a limit cycle os-
cillation is reached.
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Fig. 4 Nonlinear equilibrium paths: vertical displacement of the midspan deck section for (a) increasing uniform horizontal load and
(b) uniform torque

Fig. 5 Cables stretch at the midspan: (a) for increasing uniform horizontal load and (b) for increasing uniform torque. The gray lines
refer to the cable “−”, the black lines refer to the cable “+”

The eigenvalue approach, pursued in this work, is
based on the knowledge of the so-called flutter deriva-
tives, experimentally obtained for each bridge section.
The critical condition is obtained at the wind speed
where the first complex-conjugate pair of eigenvalues
crosses the imaginary axis. Figure 6 shows the aero-
dynamic (non-classical) convention assumed in this
work: the lift force is assumed positive if upward, to-
gether with the vertical displacement, the drag force is
oriented as the direction of the air flow and the mo-
ment is assumed positive if the section rotates in the
counter-clockwise direction.

4.1 Torsional divergence

The aerostatic coefficients experimentally determined
in wind tunnel tests for the sectional models of the

two considered bridges are shown in Fig. 7. The data
obtained by digitalization of the original figures are
used to determine by polynomial fitting the follow-
ing expressions: for the Runyang bridge, CR

L (αE) =
−0.0864 + 0.0744αE − 0.00195αE2

, CR
D(αE) =

0.7510 + 0.05867αE − 0.0066αE2
, CR

M(αE) =
0.0153 + 0.01654αE; for the Hu Men bridge, the
coefficients are: CHM

L (αE) = −0.024 + 0.0789αE,

CHM
D (αE) = 0.8276 + 0.0242535αE − 0.00815αE2

,
CHM

M (αE) = 0.0153 + 0.0181αE.
The interaction between the cables and the wind

is accounted for by considering the drag force alone
having the drag coefficient set to CD = 0.7 as sug-
gested in [50]. In the orthonormal frame {ē1, ē2, ē3},
where ē1 identifies the direction of the wind speed
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Fig. 6 Positive
aerodynamic forces

Fig. 7 Lift, drag and moment coefficients obtained in previous experiments and by polynomial fitting for (left) the Runyang bridge
and (right) the Hu Men bridge

Uw = −Uw ē1, ē2 is the direction of the lift force and

ē3 = ē1 × ē2, the nondimensional expressions of the

forces per unit length of the deck generated by the

static component Uw of the wind speed are expressed

as

f o
AE = −Do(x)ē1 + Lo(x)ē2,

co
AE = Mo(x)ē3, Lo(x) = Γ δCL

(
αE)

,

Do(x) = Γ δd̄CD
(
αE)

,

Mo(x) = Γ δ2CM
(
αE)

,

f ±
o,AE = −Do

c (x)ē1 = −0.7Γ
dc

B
ē1,

(21)

where dc is the cable diameter, αE = αw + φo
3 is the

effective angle of attack, B and D are the deck width

and height, respectively, (see Fig. 1) and

Γ = 1

2

ρaU2
w

ρAdω̄2
, δ = B

l
, d̄ = D

B
. (22)

The aerostatic forces (21) enter the equilibrium equa-
tions (11) through f o(x), co(x) and f ±

o (x).
A parametric nonlinear calculation is performed by

increasing the aerostatic forces by a multiplier of the
wind velocity Uw. The precritical equilibrium paths
are evaluated for three initial wind angles of attack
αw. The evolution of all kinematic variables such as
the vertical and horizontal deck displacements uo

2 and
uo

1 and the twisting rotation φo
3 can be observed in

Figs. 8a and 8b referred to the Runyang suspension
bridge. The dashed lines indicate the results of the lin-
earized model while the solid lines describe the non-
linear predictions. For trivial or negative angles of at-
tack, nonlinear analysis does not predict the appear-
ance of torsional divergence since the lift forces are



2500 A. Arena, W. Lacarbonara

Fig. 8 Equilibrium paths of the Runyang bridge for increasing
aeroelastic loads at different wind angles of attack αw: (a) ver-
tical displacement and (b) torsional rotation vs. wind velocity

Uw. The dashed lines refer to a linearized model, the solid lines
refer to the proposed fully nonlinear model

Fig. 9 Linear and nonlinear equilibrium paths of the Hu Men suspension bridge for increasing aeroelastic loads for αw = 0◦: (a) ver-
tical displacement and (b) torsional rotation vs. wind velocity Uw

directed downward and act to increase the torsional
stiffness of the bridge by inducing a tensioning of the
suspension cables. On the contrary, linear analysis pre-
dicts torsional divergence erroneously since it neglects
these nonlinear effects of the aerostatic forces on the
bridge equilibrium. For α = +3◦, nonlinear analysis
predicts a critical speed at about 100 m/s while linear
analysis yields a higher critical speed at about 112 m/s,
as shown in Fig. 8b. The hierarchy of results predicted
by linear vs. nonlinear analysis is not necessarily such
that linear analysis is more conservative than nonlin-
ear analysis as shown in this example. This is due to
the fact that for positive angles the lift causes a loss

of tension in the cables entailing a torsional stiffness
reduction, hence a lower critical speed.

The same analyses are conducted for the Hu Men
suspension bridge for which a torsional divergence
analysis is provided in [15]. Figure 9 shows the equi-
librium paths obtained by the nonlinear model and
compared with the typical path constructed by a lin-
ear model that neglects flexural-torsional coupling.
A lower critical wind velocity is obtained by the pro-
posed nonlinear model. The results are in good agree-
ment with those of [15, 37]. It shows how the coupling
of aerostatic forces leads to a decrease of the critical
wind velocity.



Nonlinear parametric modeling of suspension bridges under aeroelastic forces 2501

Fig. 10 Equilibrium paths of the Hu Men suspension bridge for increasing aeroelastic loads for different αw: (a) vertical displacement
and (b) torsional rotation vs. wind velocity Uw

Fig. 11 The path of the lowest eigenvalue of the Runyang suspension bridge in the vicinity of the divergence bifurcation (left) and
imaginary part vs. wind speed (right): circles stand for αw = +3◦, triangles stand for αw = +2◦, and diamonds stand for αw = +1◦

Figure 10 shows the nonlinear precritical paths for
different initial wind angles of attack αw.

The continuum formulation is also used for sen-
sitivity analyses whose main results are shown in
Figs. 14 and 15. Here, the geometric and constitutive
characteristics of the Runyang and Hu Men Suspen-
sion Bridge, indicated respectively by subscripts “R”
and “HM,” are taken as reference values about which
some suitable variations are considered. The results in-
dicate that due to finite rotations of the deck cross sec-
tions, the nondimensional torsional rigidity τ as well
as the cables axial elastic stiffness κc have an impor-
tant influence on the aeroelastic response. Less sen-
sitivity of the critical speed is exhibited with respect
to variations in the hangers stiffness ratio κh and the
flexural bending ratio χ . In the same figures, the influ-

ence of the initial wind angle of attack of the wind on
torsional divergence is shown.

The path traced by the eigenvalues as the wind
speed is varied in the vicinity of the divergence bi-
furcation confirms the expected scenario according to
which two complex conjugate eigenvalues move on
the imaginary axis toward the origin and coalesce into
it at the bifurcation as shown in Fig. 11 (left) re-
ferred to the Runyang bridge. On the other hand, the
sensitivity of the frequency of the mode that under-
goes divergence (imaginary part of the eigenvalue)
with respect to the wind speed can be appreciated
in Fig. 11 (right) where the three angles of attack
αw = (+3◦,+2◦,+1◦) are considered. Similar behav-
iors are observed in the vicinity of the divergence bi-
furcation of the Hu Men suspension bridge in Figs. 12.
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Fig. 12 The paths of the lowest eigenvalue of the Hu Men suspension bridge in the vicinity of the divergence bifurcation: circles stand
for αw = +2◦, triangles stand for αw = +1◦, and diamonds stand for αw = 0◦

Fig. 13 Mode undergoing
divergence for the Runyang
suspension bridge (left)
when αw = +1◦ and
U cr

w = 111.2 m/s and for the
Hu Men suspension bridge
(right) when αw = 0◦ and
U cr

w = 136.2 m/s

The flexural/torsional modes that undergo divergence
for the Runyang and Hu Men bridges in the critical
state are shown in Fig. 13.

4.2 Flutter

The critical wind speeds at the onset of torsional di-
vergence are usually higher than the flutter speeds.
To compute the onset of flutter, the classical complex
eigenvalue problem is tackled employing the represen-
tation of the aerodynamic forces by the use of flut-
ter derivatives. Two approaches are implemented. The
first approach proposed by [24] consists of defining a
complex nonlinear eigenvalue problem and solving it
by increasing the wind speed Uw about the aerostatic
equilibrium until the condition of be purely imaginary
eigenvalues is found. On the other hand, several lin-
ear eigenvalue problems can be solved for each value

of Uw to obtain the actual eigenvalues in the vicin-
ity of the flutter condition. The first approach can be
easily used for a two-dof sectional model, as in [25],
although it is a nonclassical procedure for multi-dof
systems. The results obtained by the two approaches
are discussed in the following.

The expressions of the aerodynamic forces per unit
reference length, in terms of the experimental aeroe-
lastic derivatives H ∗

i ,A∗
i , i = 1, . . . ,4, are given in

(23). The latter are then introduced in the equations of
motion (12) through f̆ (x, t) and c̆(x, t) as follows:

f̆ AE = f o
AE + L(x, t)ē2,

c̆AE = co
AE + M(x, t)ē3,

L(x, t) = 1

2
ρaBU2

w

(
K

Uw
H ∗

1 ∂tu2 + KB

Uw
H ∗

2 ∂tφ3
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Fig. 14 Sensitivity analyses for αw and the stiffness parameters ratios vs. the critical wind speed. Subscript “R” refers to the Runyang
bridge parameters

Fig. 15 Sensitivity analyses for αw and the stiffness parameters ratios vs. the critical wind speed. Subscript “HM” refers to the Hu
Men bridge parameters

+ K2H ∗
3 φ3 + K2

B
H ∗

4 u2

)
, (23)

M(x, t) = 1

2
ρaB2U2

w

(
K

Uw
A∗

1∂tu2 + KB

Uw
A∗

2∂tφ3

+ K2A∗
3φ3 + K2

B
A∗

4u2

)
.

In consonance with classical notations, ρa denotes the
air density, B is the deck depth, Uw is the dimensional
wind velocity, and K is the reduced frequency defined
as K := ωB/Uw, where ω is the circular oscillation
frequency of the mode involved in flutter. In Figs. 16
and 17, the experimental values of the flutter deriva-
tives calculated for the deck cross section of the Run-
yang suspension bridge, proposed in [14], are given
together with the classical derivatives calculated for a

rectangular (streamlined) section of ratio B/D ≈ 14.3
reported in [22]. Data are calculated for increasing val-
ues of the reduced velocity Ur = 2π/K .

Complex eigenvalue problem The expressions of the
aerodynamic forces are first cast in a suitable nondi-
mensional form. By introducing the parameters Γf =
12ρaBl/ρAd and δ = B/l, the nondimensional form
of Eq. (23) becomes

L(x, t) = Γfδ
[
σH ∗

1 ∂tu2(x, t) + σδH ∗
2 ∂tφ3(x, t)

+ σ 2δH ∗
3 φ3(x, t) + σ 2H ∗

4 u2(x, t)
]
,

M(x, t) = Γfδ
2[σA∗

1∂tu2(x, t) + σδA∗
2∂tφ3(x, t)

+ σ 2δA∗
3φ3(x, t) + σ 2A∗

4u2(x, t)
]
,

(24)
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Fig. 16 Aeroelastic derivatives A∗
i for αw = 0◦: Runyang deck cross-section and rectangular section

where σ is the nondimensional circular frequency
σ = ω/ω̄. By assuming the solution of the dynamic
problem in the form [u(x, t), φj (x, t), v±(x, t)] =
[ū(x), φ̄j (x), v̄±(x)]eiσ t , j = 1,2,3, the flutter con-
dition is found when a pair of eigenvalues σ = σR +
iσI becomes purely real. In terms of the eigenvalue σ ,
the aerodynamic nondimensional loads can be written
as

L̄(x, t) = Γfδσ
2(iH ∗

1 ū2 + iδH ∗
2 φ̄3

+ δH ∗
3 φ̄3 + H ∗

4 ū2
)
eiσ t ,

M̄(x, t) = Γfδ
2σ 2(iA∗

1ū2 + iδA∗
2φ̄3

+ δA∗
3φ̄3 + A∗

4ū2
)
eiσ t .

Accordingly, the nondimensional inertia and damping
forces, by neglecting the contributions of the rotatory
inertia and damping about axes b̆1 and b̆2, can be ex-

pressed as

f̄
±
M + f̄

±
D = [−σ 2	c sec θ±

o (x)v̄±(x)

+ iσDc
j v̄

±(x)
]
eiσ t ,

f̄ M + f̄ D = [−σ 2ū(x) + iσDd
j ū(x)

]
eiσ t ,

c̄M + c̄D = [−σ 2J mφ̄3(x)

+ iσDT
j φ̄3(x)

]
eiσ tb3.

(25)

Classical eigenvalue problem The solution of the dy-
namic problem is here assumed in the form [u(x, t),

φj (x, t), v±(x, t)] = [ū(x), φ̄j (x), v̄±(x)]eσ t , j =
1,2,3. Accordingly, the flutter condition is obtained
when a pair of eigenvalues σ = σR + iσI becomes
purely imaginary. By introducing the parameter Ū :=
Uw/(ω̄l), the aerodynamic nondimensional loads can
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Fig. 17 Aeroelastic derivatives H ∗
i for αw = 0◦: Runyang deck cross-section and rectangular section

be written in terms of the eigenvalue σ as

L̄(x, t) = ΓfŪ
2
(

KH ∗
1

Ū
σ ū2 + δ

KH ∗
2

Ū
σ φ̄3

+ K2H ∗
3 φ̄3 + K2H ∗

4

δ
ū2

)
eσ t ,

M̄(x, t) = ΓfδŪ
2
(

KA∗
1

Ū
σ ū2 + δ

KA∗
2

Ū
σ φ̄3

+ K2A∗
3φ̄3 + K2A∗

4

δ
ū2

)
eσ t .

(26)

On the other hand, the nondimensional inertia and
damping forces can be written as

f̄
±
M + f̄

±
D = [

σ 2	c sec θ±
o (x)v̄±(x)

+ σDc
j v̄

±(x)
]
eσ t ,

f̄ M + f̄ D = [
σ 2ū(x) + σDd

j ū(x)
]
eσ t ,

c̄M + c̄D = [
σ 2J mφ̄3(x) + σDT

j φ̄3(x)
]
eσ tb3.

(27)

Figure 18 shows variation of the logarithmic decre-
ment Δ and frequency f of the torsional and flexu-
ral modes with the wind speed Uw. On other hand,
the Fig. 19 shows the flutter mode shape. The results
obtained by the two eigenvalue problems are com-
pared. The dashed lines indicate the Scanlan proce-
dure, the solid lines represent the iterative procedure.
The black lines refer to the symmetric modes while the
gray lines describe the skew-symmetric modes. The
flutter condition is attained for the symmetric torsional
mode where the logarithmic decrement vanishes (see
Fig. 18a). On the other hand, the skew-symmetric tor-
sional mode and the lowest two bending modes are
always positively damped. The Scanlan procedure and
the iterative procedure differ slightly in terms of pre-
dicted frequency of the torsional mode while they do
differ in terms of logarithmic decrements for all modes
and the frequency of the bending modes. In Fig. 20,
the same flutter analysis for the Runyang bridge is con-
ducted using the smoother flutter derivatives referred
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Fig. 18 Flutter investigation for the Runyang bridge using the
experimental aeroelastic derivatives for αw = 0◦: (a) and (b) tor-
sional modes, (c) and (d) vertical bending modes. The dashed

lines indicate the Scanlan procedure, the solid lines represent
the iterative procedure. The black lines refer to the symmetric
modes; the gray lines refer to the skew-symmetric modes

Fig. 19 Flutter mode shape of the Runyang suspension bridge
for αw = 0◦

to the rectangular cross section. The main difference
is that the mode that undergoes flutter is the lowest
skew-symmetric torsional mode instead of the sym-
metric mode. The comparison between the Scanlan

procedure and the iterative procedure shows the same
kind of trends outlined in the previous case. Figure 21
shows the expected high sensitivity of the flutter speed
with respect to the damping ratio and the multiplier of
the dead loads. For example, increasing the damping
ratio from 0.03 % to 0.5 %, the flutter speed goes from
60 to 70 m/s. Moreover, amplifying the dead loads
by 50 % makes the flutter speed increase from 70 to
78 m/s, a known trend for suspension bridges that has
led to counteract flutter under high winds by aligning
heavy trucks on the lanes of some bridges in a few ex-
ceptional cases.

These studies are possible only in the context of a
fully nonlinear problem formulation.

5 Summary and conclusions

A geometrically exact parametric model of suspension
bridges was formulated and the nonlinear equations of
motion were obtained via a Lagrangian formulation.
The nonlinear system of partial differential equations
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Fig. 20 Flutter investigation for the Runyang bridge using the
aeroelastic derivatives of a rectangular cross section: (a) and (b)
torsional modes, (c) and (d) vertical bending modes. The dashed

lines indicate the Scanlan procedure, the solid lines represent
the iterative procedure. The black lines refer to the symmetric
modes; the gray lines refer to the skew-symmetric modes

Fig. 21 Sensitivity of the flutter speed to: (a) the structural damping ratio ζ , (b) the dead load multiplier λ for αw = 0◦

governing the equilibrium and dynamic aeroelastic re-
sponse of suspension bridges was solved via a FE dis-
cretization considering the structural and aerodynamic
characteristics of two case-study bridges, the Runyang
and the Hu Men suspension bridges.

A preliminary modal analysis was carried out to
compare the natural frequencies evaluated by the pro-
posed model with literature results. A good agreement
was found for both case studies. Parametric analyses
were performed to highlight the influence of the ca-
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bles geometric stiffness in the nonlinear equilibrium
and dynamic response of the bridge. The character-
istic mechanical asymmetry is exhibited as a soften-
ing or a hardening behavior depending on whether the
loads are upward or downward. This is due to a loss of
tension or to an increase of tension in the suspension
cables. This nonlinear mechanical feature due to the
suspension cables turns out to affect profoundly the
aeroelastic limit states.

Static and dynamic bifurcation analyses were car-
ried out to investigate the occurrence of torsional di-
vergence and flutter. The eigenvalue problem, obtained
by linearization about the prestressed configuration in-
duced by dead and aeroelastic loads, was solved. The
determined bifurcation diagrams showed the high sen-
sitivity of the bridge flexural-torsional frequency close
to the critical condition. These studies conducted for
both bridges have proved the sensitivity of the critical
condition with respect to the stiffness bridge properties
(namely, the elastic torsional and bending stiffness, the
elastogeometric stiffness of the suspension cables) and
the initial wind angle of attack.

The flutter phenomenon is studied in the frequency
domain by two eigenvalue approaches, namely, the ap-
proach suggested by Scanlan and the classic (iterative)
modal analysis approach. The latter gives the actual
dependence of the eigenvalues from the aeroelastic
forces near flutter. The differences for the frequencies
and modal damping ratios calculated by this method
and the Scanlan procedure tend to vanish in the vicin-
ity of the critical condition where the coalesce. The on-
set of flutter is very sensitive to the initial wind angle
of attack, the damping ratio, and the bridge prestress
condition caused by dead loads.
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Appendix

The nine components of the rotation matrix Ro are
given by

Ro
11 = cosφo

2 cosφo
3 ,

Ro
12 = − cosφo

2 sinφo
3 ,

Ro
13 = sinφo

2 ,

Ro
21 = sinφo

1 sinφo
2 cosφo

3 + cosφo
1 sinφo

3 ,

Ro
22 = cosφo

1 cosφo
3 − sinφo

1 sinφo
2 sinφo

3 ,

Ro
23 = − sinφo

1 cosφo
2 ,

Ro
31 = sinφo

1 sinφo
3 − cosφo

1 sinφo
2 cosφo

3 ,

Ro
32 = cosφo

1 sinφo
2 sinφo

3 + sinφo
1 cosφo

3 ,

Ro
33 = cosφo

1 cosφo
2 .

(28)

The vectors representing the rotations of the deck
cross-section projected into the global frame
{e1, e2, e3} can be defined as:

�o = [
ψo

1 ψo
2 ψo

3

]�
, �̆ = [

ψ̆1, ψ̆2, ψ̆3
]�

,

ψo
1 = φo

1 + φo
3 sinφo

2 ,

ψo
2 = φo

2 cosφo
1 − φo

3 sinφo
1 cosφo

2 ,

ψo
3 = φo

2 sinφo
1 + φo

3 cosφo
1 cosφo

2 ,

(29)

ψ̆1 = φ1 cosφo
2 cosφo

3 + φ2
(
sinφo

2 sinφ1

− cosφo
2 sinφo

3 cosφ1
)

+ φ3
(
sinφo

2 cosφ1 cosφ2

+ cosφo
2 sinφo

3 sinφ1 cosφ2

+ cosφo
2 cosφo

3 sinφ2
)
,

ψ̆2 = φ1
(
sinφo

1 sinφo
2 cosφo

3 + cosφo
1 sinφo

3

)
+ φ2

[
cosφ1

(
cosφo

1 cosφo
3

− sinφo
1 sinφo

2 sinφo
3

) − sinφo
1 cosφo

2 sinφ1
]

+ φ3
[− sinφo

1 cosφo
2 cosφ1 cosφ2

− sinφ1 cosφ2
(
cosφo

1 cosφo
3

− sinφo
1 sinφo

2 sinφo
3

)
+ sinφ2

(
sinφo

1 sinφo
2 cosφo

3 + cosφo
1 sinφo

3

)]
,

ψ̆3 = φ1
(
sinφo

1 sinφo
3 − cosφo

1 sinφo
2 cosφo

3

)
+ φ2

[
cosφ1

(
sinφo

1 cosφo
3

+ cosφo
1 sinφo

2 sinφo
3

) + cosφo
1 cosφo

2 sinφ1
]

+ φ3
[
cosφo

1 cosφo
2 cosφ1 cosφ2

− sinφ1 cosφ2
(
sinφo

1 cosφo
3

+ cosφo
1 sinφo

2 sinφo
3

) + sinφ2
(
sinφo

1 sinφo
3

− cosφo
1 sinφo

2 cosφo
3

)]
.

(30)
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