Nonlinear Dyn (2013) 73:1211-1222
DOI 10.1007/s11071-012-0620-y

ORIGINAL PAPER

Combination—combination synchronization among four
identical or different chaotic systems

Junwei Sun - Yi Shen - Guodong Zhang -
Chengjie Xu - Guangzhao Cui

Received: 17 June 2012 / Accepted: 17 September 2012 / Published online: 6 October 2012

© Springer Science+Business Media Dordrecht 2012

Abstract Based on one drive system and one re-
sponse system synchronization model, a new type
of combination—combination synchronization is pro-
posed for four identical or different chaotic systems.
According to the Lyapunov stability theorem and
adaptive control, numerical simulations for four iden-
tical or different chaotic systems with different initial
conditions are discussed to show the effectiveness of
the proposed method. Synchronization about combi-
nation of two drive systems and combination of two
response systems is the main contribution of this pa-
per, which can be extended to three or more chaotic
systems. A universal combination of drive systems and
response systems model and a universal adaptive con-
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troller may be designed to our intelligent application
by our synchronization design.
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1 Introduction

The typical feature of chaotic systems is that a very
small change in the initial conditions leads to very
large differences in the system states. Since Pecora
and Carroll completed the pioneering work about
synchronization between two chaotic systems [1, 2],
Chaos synchronization has been driven a lot of at-
tention and studied extensively in a variety of re-
search fields during the last two decades. A vari-
ety of approaches have been developed for the syn-
chronization of chaotic systems, such as complete
synchronization [3], phase synchronization [4, 5],
anti-synchronization [6], partial synchronization [7],
generalized synchronization [8], lag synchronization
[9, 10], Q-S synchronization [11] and projective syn-
chronization [12-14], etc.

However, most of researchers mainly focused on
the previous drive-response synchronization schemes
within one driven system and one response system
model, did not consider three or more chaotic systems.
Recently, an active backstepping design has proposed
to achieve combination synchronization between two
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drive systems and one response system [15, 16]. To the
best of authors’ knowledge, however, research on the
synchronization problem among three or more chaotic
systems is still open and remains challenging.

Motivated by the above discussions, synchroniza-
tion between combination of two drive systems and
combination of two response systems in drive-re-
sponse synchronization model is investigated in this
paper, which can be seen combination—combination
synchronization. Four identical Lii systems and four
different chaotic systems (Lorenz system, Rossler sys-
tem, Chen’s system and Lii system) are realized by
adaptive control, respectively. Numerical simulations
are discussed to show the effectiveness and feasibility
of the proposed method.

The organization of this work is organized as fol-
lows. Section 2 shows a scheme of combination—
combination synchronization. In Sect. 3, the synchro-
nization among four identical Lii systems is realized
by our control design. In Sect. 4, we investigate the
synchronization among four different chaotic systems.
Finally, concluding remarks are given in Sect. 5.

2 The scheme of combination—combination
synchronization

In the section, we firstly design the scheme of com-
bination—combination synchronization in our drive—
response synchronization scheme with two drive sys-
tems and two response systems. The two drive systems
are, respectively, given as follows:

X1 = filxp), ey
X2 = fa(x2), ()

and the two response systems are, respectively, de-
scribed as follows:

yi=g1(y) +u, (3)
2 =g2(y2) +u*, “4)
where x1 = (x11,X12,...,X10), X2 = (x21,x22,

ey X20), Y1 = (11, Y12, -+, Y1) and y2 = (y21, ¥22,
.., Yon) are the state vectors of systems (1), (2), (3)
and (4), respectively; f1, f2, g1, g2: R" — R" are
four continuous vector functions, u, u*: R" x R" x
R" x R" — R" are two controllers of the response
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systems (3) and (4) which will be designed, respec-
tively.

Definition 1 If there exist four constant matrices A,
B,C, D€ R" and C #0 or D # 0 such that

lim ||Ax; + Bxy — Cy; — Dy,|| =0, Q)
—00

the drive systems (1) and (2) are realized combination-
combination synchronization with the response sys-
tems (3) and (4), where || - || represents the matrix
norm.

Remark 1 The constant matrices A, B, C, D are
called the scaling matrices. In addition, A, B, C, D
can be extended to functional matrices of state vari-
ables x1, x2, y1 and y».

Remark 2 If C =0 or D = 0, then combination—
combination synchronization problem will be reduced
to the combination synchronization problem.

Remark 3 If A=0,C=1,D=0or A=C =0,
D=IorB=0,C=1,D=00orB=C=0,D=1,
then the combination synchronization problem will be
reduced to the projective synchronization, where I is
an X n identity matrix.

Remark 4 If A=0,C=—-1, D=0or A=C =
0, D=—-] or B=0,C=-I, D=0 or B =
C =0, D = —1, then the combination synchroniza-
tion problem will be reduced to the projective anti-
synchronization.

Remark 5 If the scaling matrix A =B =C =0 or
A = B = D =0, then the combination synchroniza-
tion will be turned into a chaos control problem.

Remark 6 Definition 1 shows that the combination of
drive systems and response systems can be extended to
three or more chaotic systems. In addition, drive sys-
tems and response systems of the combination can be
identical or different.

3 Synchronization among four identical chaotic
systems

In this section, we can realize combination-combina-
tion synchronization among four identical Lii systems.
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The two Lii systems are, respectively, given as the
drive systems as follows:

X1 =ai(x12 — x11),
X12 =C1X11 — X11X13, (6)

X13 = X11X12 — C1X13,

Xo1 = ax(x2 — x21),
X022 = C2X21 — X21X23, @)

X23 = X21X22 — b2x23,

where the Lii systems exhibits a chaotic attractor at
parameters a; =ap =36, b1 =by =3 and c1 =2 =
20, and the two Lii systems are, respectively, described
as the response systems as follows:

it =az(yi2 — y11) +ui,
Y12 =c3y11 — Y11y13 + Uz, (8
Vi3 =YYz — b3yiz +us,

Va1 = as(y2 — y21) +uj,

Y22 = caya1 — y21y23 + U3, ©)

Y23 = y21y22 — bayas +u3,

where uy, uz, u3, uj, u; and u3 are controllers to be
designed.

For the convenience of our discussions, we as-
sume A = diag(ay, a2, a3), B = diag(B1, B2, B3),
C =diag(y1, y2, v3), D = diag(81, 62, 83) in our syn-
chronization scheme. We get the error system as fol-
lows:

el =a1x11 + Bix21 — yiyi — d1y21,
ex = ax12 + Poax2 — yayi2 — 82y22, (10

e3 = a3x13 + B3x23 — y3y13 — 83)23.
Denote

Uy = y1uy + d1uj,
Uz = yaus + 8ou3, (11)
Us = y3u3 + 83u3.

Theorem 1 If the combination control laws are cho-
sen as follows:

Ui = a1x11 + Bixar — yiyi1 — d1ya1 +ar(ezxi2
+ Box22 — y2yi2 — 82y22) + rai(xi2 — x11)
+ Braz(x22 — x21) — y1az(y1i2 — yi1)
—d1a4(y22 — y21),

Uz = apx12 + Pox22 — y2y12 — 82y22 — ai(a3x13
+ B3x23 — y3y13 — 83y23) — ai(o1x1i
+ B1xa1 — yiy11 — 81y21) + az(cixin
—x11x13) + Pa(caxar — x21x23) — y2(e3¥11
= yuyi3) —2(c3y11 — y11yi3),

Uz = a3x13 + B3x23 — y3y13 — 8323 + ai(cax12
+ B2x22 — y2y12 — 2y22) + @3(x11X12

—c1x13) + B3 (x21x22 — bax23) — 3 (Y11 )12

— b3y13) — 83(y21y22 — bay23),
(12)
then the drive systems (6) and (7) will achieve com-

bination—combination synchronization with the re-
sponse systems (8) and (9).

Proof 1Tt is easy to see from (10) that the error dynam-
ics system can be obtained as follows:

e1 = aqai(x12 — x11) + Braz(x22 — x21)
= vilaz(yi2 — y11) +ui]
—d1laa(y2 — y21) +uil,
e = ap(c1x11 — x11x13) + Pa(caxar — x21%23)
= r2(e3yn1 — yuuyiz +uz)
— 82(cay21 — y21y23 + u3),
€3 = az(x11x12 — €1x13) + Ba(x21x22 — b2x23)

—yv3(y11y12 — b3y1z +u3)

—83(y21y22 — bay2s +u3).
(13)

Choose a candidate Lyapunov function as follows:

Vei,er,e3) = (e%+e§+e§). (14)

1
2
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Then

V =e1é] + exér + e3e3

= er{arai(x12 — x11) + Braz(x2 — x21)
—yilaz(yiz — y11) +u1] — 81[as(y2 — y21)
+uf]} + e2[@a(crxi — x11x13)
+ Ba(caxa1 — x21x23) — y2(c3yin — y1iyis
+ u2) — 82(cayar — ya1y23 + u3)]
+ e3[a3(x11x12 — €1x13) + B3 (x21x20 — b2x23)
— va(y1iyi2 — bayis +u3) — 83(y21y22
— byyrz + uj)]

= eia1ar (x12 — x11) + Braz(x22 — x21)
—y1a3(y12 — y11) — 81aa(y2 — y21)]
— (yiu1 + 81ut) + e2[aa(crxin — x11x13)
+ Ba(c2x21 — x21x23) — ya(cayn
— y11y13) — 82(caya1 — y21y23)]
— (yauz 4 82u3) + 33 (x11x12 — €1x13)
+ B3(x21x22 — bax23) — y3(y11y12 — b3y13)
— 83(y21y22 — bay23) | — (vaus +83u3).  (15)

Substitute (12) into (15),

V =ei[arai(x12 — x11) + Braz(x2 — x21)
—na3(yi2 — yi) — 81aa(ya2 — ya1)]
— [(@1x11 + Bixa1 — yiyir — 81y21)
+ai(az2xiz + Bax2 — y2yi2 — S2y22)
+ajai(xi2 — x11) + Braz(x22 — x21)
—y1a3(yi2 — y11) — 81aa(ya2 — y21)]
+ ea[aa(crxin — x11x13) + Ba(caxa
— x21X23) — v2(c3y11 — y11y13) — 82(caya ]
— y21y23) — [(@2x12 + Bax22 — v2y12 — 82322)
—ai(a3x13 + B3x23 — y3y13 — 33)23)
—ai(arx1 + Bixar — iy — 81y21)

+az(c1x11 — x11x13) + Ba(cax21 — x21x23)
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— ya(eayin — y11y13) — 8a(cayin — yi1y13) ]
+ e3[az(x11x12 — c1x13) + B3(x21x22 — b2x23)
— y3(y11y12 — bay13) — 83(y21y22 — bayns) |
— [3x13 + B3xas — y3y13 — 83y23 + @i (@axnn
+ Bax22 — y2yi2 — 82y22) + a3 (x11x12 — €1X13)
+ B3(x21x22 — box23) — y3(y11y12 — b3y13)
— 83(y21y22 — bay23) ]
=ei(—e; —ajez) +ex(are; —ex+ajes)
+e3(—ajez — e3)
= —e%—e%—e%. (16)
Since V <0 as t — 400, according to the Lya-
punov theorem, we know ¢; — 0 (i = 1, 2, 3), which
means that the drive systems (6) and (7) will achieve

combination-combination synchronization with the re-
sponse systems (8) and (9). (I

The following corollaries are easily obtained from
Theorem 1, and their proofs are similar to Theorem 1,
so the processes will be omitted here.

Corollary 1 (i) Assume 61 = §» = 83 = 0, if the con-
trol laws are chosen as follows:

ﬁ[(alml + Bix21 — yiy11) +ai(onxi

Uy =
+ Bax22 — y2y12) + a1a1(x12 — x11)
+ Braz(x22 — x21)] — az(yi2 — yi1),

Uy = %[(azmz + Bax22 — y2y12) — ai(a3x13
+ B3x23 — y3y13) — ar(arx11 + Bixa
= 71yn) +oa(cixin — x11x13) + Ba(caxan
— x21x23)] — (e3y11 — Y11)13),

I
uz = -lazxiz 4 f3x23 — y3y13 + ai(e2xin

+ Bax2o — yay12) +a3z(x11x12 — €1X13)

— B3(x21x22 — b2x23)] — (Y11y12 — b3y13),
(17)

then the drive systems (6) and (7) will achieve combi-
nation synchronization with the response system (8).
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(1) Assume y| = y» = y3 = 0, if the control laws

are chosen as follows:

uy = ﬁ[(dlxu + Brx21 — 81y21)
+ai(oaxi2 + Baxaa — 82y22)
+arai(xi2 — x11) + Braa(xz2 — x21)]
—as(y22 — y21),

uy = %[(dz)ﬁz + Baxzo — 82y22) — ay(@3xi3
+ B3x23 — 83y23) —ar(@ixi1 + Bix2n
—81y21) + a2(c1x11 — X11%13) (18)
+ Ba(caxa1 — x21x23)]
— (e3y11 — y11y13),

uy = %[0533513 + B3x23 — 83y23 + ai(aaxiz
+ Bax2n — S2y22) + @3(x11X12 — €1X13)

+ B3 (x21x22 — b2x23)]

— (021y22 — bay23),

then the drive systems (6) and (7) will achieve combi-
nation synchronization with the response system (9).

Corollary 2 (i) Assume B1 =Br=p3=0,y1 =y» =
y3 =1 and &1 = 82 = 83 =0, if the control laws are
chosen as follows:

up = (a1x11 — y11) + ar(e2xi2 — yi2)
+arai(xi2 —x11) —az(yi2 — yin),

uz = (a2x12 — y12) — a1(@3x13 — y13)
—ai(aixin — yn) +oa(cixin — x11x13)
—(e3y11 — Y11)13)s

uz =a3xi3 — yi3 +ap(eaxi2 — yi2)

+ a3 (x11x12 — €1X13)

— Omyiz — b3yi1z),
(19)

then the drive system (6) will achieve the projective
synchronization with the response system (8).

(i) Assume o) =ar = a3 =0, Y1 =y =y3 =1
and §1 = 8y = 83 =0, if the control laws are chosen as

follows:

up = (Brx21 — y11) + a1 (Baxa2 — y12) — x11)
+ Braa(x22 — x21) — az(y12 — y11)s

uz = (Bax22 — y12) — a1(B3x23 — y13)
—ai(B1x21 — y1) + Pa(caxa — x21x23)
— (3311 — Y11 y13),

uz = B3xz3 — y13 +a1(Bax22 — y12) — B3 (x21x22

—bax23) — (yuiyiz — bayiz),

(20)
then the drive system (7) will achieve the projective
synchronization with the response system (8).

(iii) Assume B1 =P =PB3=0, y1 =y =y3=0
and §1 = 8y = 83 = 1, if the control laws are chosen as
follows:

uy = aixi) — y21 +ap(eaxi2 — y2)
+ajar(xi2 — x11) —asa(yz2 — y21),

uy =Xz — y — ar(@3x13 — y23)
—ai(a1x1y — y21) + az2(c1x11 — x11x13)
—(e3y11 — y11y13),

uy = a3x13 — y23 +ar(@axi2 — y22) +az(x11x12

—c1x13) — (V2122 — bay23),

(21
then the drive system (6) will achieve the projective
synchronization with the response system (9).

(iv) Assume a1 =y =3 =0, y1 =y =y3=0
and §1 = 8y = 83 = 1, if the control laws are chosen as
follows:

uy = Prxa1 — y21 + a1 (Bax2z — y22)
+ Braa(x2z — x21) — as(y22 — y21),

ui = Box — yn —ar(B3x23 — y23)
—ai(Bix21 — y21) + Pa(caxz1 — x21x23)
—(e3y11 — Y11)13)s

uy = Baxaz — y23 +a1(Bax2z — y22) + B3 (x21x22

— bax23) — (y21¥22 — b4y23),
(22)
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then the drive system (7) will achieve the projective 80 S
synchronization with the response system (9). o
20 ez 1
Corollary 3 (i) Suppose o) = ar = a3 =0, B = “‘
pr=f=0.yi=p=p=lads =5=85=0 "
if the control laws are chosen as follows: ’ H ‘ '1
i “J { J J j '1 {iidttssoommmocncooe
up =—yi —aiyiz +ai(xiz — xi1) ‘ H
—az(yi2 — yi1)s
-20
ur ==y +aiyiz+aiyin — (€3ymn — yyi3),
uz = —yi3 —aiyiz — (ynyiz — b3yiz), -30; s " . . -

(23)

then the equilibrium point (0, 0, 0) of the response sys-
tem (8) is asymptotically stable.

(ii) Suppose ay =az =03 =0, By =P =p3=0
y1=v2=y3=0and 6| = =83 = 1, if the control
laws are chosen as follows:

=—y1 —a1yn —as(y2 — y21),
(c3y11 — y11y13),

*
uyp =

3 =—y»n taiys+aiyn —
uz = —y3 —aryn — (y21y22 — bay2),

(24)

then the equilibrium point (0, 0, 0) of the response sys-
tem (9) is asymptotically stable.

Numerical experiments are given to demonstrate
our results. Fourth-order Runge—Kutta method is used
with time step size 0.001. In the simulation process,
we assume o] =y =3 =1, f1 = B = B3 =1,
yi=y2=y3=1and §; = § = 3 = 1, and the ini-
tial states for the drive systems and response systems
are arbitrarily given by (x11, x12, x13) = (0.5, 1, 1.5),
(x21, X22, x23) = (1, 1, 2), (y11, y12, y13) = (=4, 5, —=6)
and (y21, ¥22, y23) = (—5,25,1). The correspond-
ing numerical results are shown in Fig. 1-4. Fig-
ure | displays time response of the synchronization
error e = (ey, e, e3)”. The error vector converges
to zero which implies that systems (6), (7) and (8),
(9) have achieved combination—combination synchro-
nization. Figures 2, 3 and 4 depict the time response
of the states x11 + x21 and y11 + y21, X12 + x22 and
Y12 + ¥22, x13 + x23 and y;3 + y23 of the drive sys-
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Fig. 1 Synchronization errors ej, 3, e3 between drive sys-
tems (6), (7) and response systems (8), (9)
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Fig. 2 Response for states x1; + x21 and yj; + y21 between
drive systems (6), (7) and response systems (8), (9)

tems (6), (7) and the response systems (8), (9), respec-
tively.

4 Synchronization among four different chaotic
systems

In this section, we can realize the combination—
combination synchronization among four different
chaotic systems. The Lorenz system and Rossler sys-
tem are, respectively, described as the drive systems as
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Fig. 3 Response for states x1p + xp7 and yj» + y2o between
drive systems (6), (7) and the response systems (8), (9)
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Fig. 4 Response for states x13 + xp3 and y|3 + y23 between
drive systems (6), (7) and response systems (8), (9)

follows:
X1 =ai(xi2 — x11),
X12 =b1x11 — X12 — X11X13, (25)

X13 = X11X12 — C1X13,

X21 = —X22 — X23,

X202 = X21 + azx22, (26)

X23 = by + x23(x22 — ¢2),

where the Lorenz system and Rdossler system ex-
hibit chaotic behavior at parameters a; = 10, b; =
28, ¢y = 2.667 and ay = 0.2, b, =0.2, ¢c; = 5.7,
respectively, and Chen’s system and Lii system are
given, respectively, as the response systems as fol-

lows:

yir =az(yi2 — yn) +ui,
yi2 = (€3 — a3y + c3yi2 — y1iyis + u2, (27)

Y13 = Y11y12 — b3yiz +us,

Y21 = as(y2 — y21) +uj,

Y22 = cay21 — y21y23 + 3, (28)

Y23 = y21y22 — bayaz +u3,

where the Chen system and Lii system exhibit chaotic
behavior at parameters az = 35, b3 = 3, ¢3 = 28 and
aq = 36, by = 3, ¢4 = 20, respectively, uy, us, us, u’lk
u; and u3 are controllers to be designed.

For the convenience of our discussions, we as-
sume A = diag(oy, @2, a3), B = diag(B1, B2, B3),
C = diag(y1, 2, v3), D = diag(é1, 82, §3) in our syn-
chronization scheme. We can have the error system as
follows:

e =o1x11 + Bi1x21 — yiyir — d1y21,
€2 = apx12 + fax22 — y2y12 — 62y22, (29)

e3 =a3x13 + B3x23 — y3y13 — 83)23.

Denote

Uy = yruy +81uj,
Uz = yauz + dou3, (30)

Uz = y3u3z + 5314;.

Theorem 2 If the control laws combination are cho-

sen as follows:

@ Springer
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Ur = (a1x11 + Bixa1 — vy — 81ya1) — aieaxin
+ Bax22 — y2y12 — 82y22) + a1ai(x12 — x11)
+ Bi(—x22 — x23) — y1a3(yi2 — y11)
—81as(y22 — y21),

Uz = (a2x12 + Baxon — y2y12 — 82y22) + ar (e xii
+ B1x21 — yiyi1 — 81y21) — aa(a3x13
+ B3x23 — y3y13 — 83y23) + a2(b1x11 — x12
—x11x13) + P2 (x21 + a2x22)
= 2l(e3 —az)yir + c3yi2 — yuyisl
— 8a(cayar — y21y23),

Us = a3x13 + B3x23 — y3y13 — 83y23 + aa(e2x12
+ Bax22 — y2y12 — 82y22) + a3 (x11X12

—c1x13) + B3lb2 + x23(x22 — ¢2)]

—v3(y11y12 — b3y13) — 83(y21y22 — bay23),
(3D

then the drive systems (25) and (26) will achieve
combination—combination synchronization with the
response systems (27) and (28).

Proof 1Tt is easy to see from (29) that the error dynam-
ics system can be obtained as follows:

e =ajar(x12 — x11) + Praz(x22 — x21)
—vilaz(yi2 — yi) +uil
—d1laa(y22 — y21) +uil,

er = ax(c1xin — x11x13) + Ba(caxzr — x21x23)
= y2(e3yin — yuyis +uz) — da(cayai
— y21y23 + u3),

€3 = az(x11x12 — €1x13) + Ba(x21x22 — b2x23)

—y3(y11y12 — b3y13 +u3) — 83(y21y22

— byyrs +u3).
(32)

Choose a candidate Lyapunov function as follows:

Vier, ez, e3) = = (ef +¢3 +¢3). (33)

1
2
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Then

V =e1é] +exér + e3é3
= er{arai(x12 — x11) + Braz(xaz — x21)
—nifaz(viz = yin) +ur] = 81[as(y22 — y21)
+ut]} + e2[@a(crxin — x11x13) + Ba(c2x21
— Xx21x23) — Y2(€3y11 — Y11y13 + u2)
— &2(caya1 — y21y23 + u3) | + es[as(xiixn
— c1x13) + B3(x21x22 — b2x23)
—y3(11y12 — b3y +u3)
— 83(y21y22 — bay2z +u3)]
= eia1a1(x12 — x11) + Braz(x22 — x21)
—y1a3(yi2 — y11) — 81aa(y2 — y21)]
— (y1u1 + 81u}) + ex[@z(crxin — x11x13)
+ Ba(cax21 — x21x23) — y2(c3y11 — y11)13)
— 82(cayar — y21y23)| — (voua + ou3)
+ e3[as(x11x12 — €1x13) + B3 (x21x22 — b2x23)
— v3(yiyi2 — bayiz) — 83(y21y22 — bay3)]
- (7/3u3 + 83u§). (34)
Substitute (31) into (34),

V =ei[aar (x12 — x11) + Braz(x22 — x21)
—y1a3(y12 — y11) — 81aa(y2 — y21)]
— [(@1x11 + Bixa1 — yiyir — 81y21)
—ai(aax12 + Borx22 — yay12 — 82y22)
+ajai(x2 — x11) + Bi(—x22 — x23)
—y1a3(y1i2 — y11) — 81aa(y2 — y21)]
+ ex[an(crxin — x11x13) + Ba(caxar — x21x23)
— ya(e3yin — y11y13) — 82(caya1 — y21y23)
— [(@2x12 + B2xaz — y2y12 — 82y22)
+ai(@ixi1 + Bixar — yiyin — 81y21)
— aa(a3x13 + B3x23 — ¥3y13 — 83y23)
+oa2(bix1n — x12 — x11x13) + Ba(x21 + az2x22)
—ya((e3 — a3y + e3y12 — yiiyi3)

— 82(caya1 — y21y23)] + e3[az(x11x12 — c1x13)
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+ B3(x21x22 — bax23) — y3(V11y12 — b3y13)
— 83(y21y22 — bay23) | — [a3x13 + B3x23
— V313 — 83y23 + as(aaxiz + Baxn
— y2y12 — 82y22) + a3 (x11x12 — €1X13)
+ B3[b2 + x23(x22 — €2)] — 3 (11y12 — B3Y13)
— 83(y21y22 — bay23)]
=ei(—e1 +aiez) +ex(—ajer — ez +ases)
+ e3(—asez — e3)

S (35)

Since V <0 as t — +o00, according to the Lya-
punov theorem, we know e¢; — 0 (i = 1, 2, 3), which
means that the drive systems (25) and (26) will achieve
combination—combination synchronization with the
response systems (27) and (28). U

The following corollaries are easily obtained from
Theorem 2, and their proofs are similar to Theorem 2,
so the processes will be omitted here.

Corollary 4 (i) Assume 61 = §o = 83 = 0, if the con-
trol laws are chosen as follows:

up = %[((xlxll + Bix21 — yiyi1 — d1y21)
—aj(oax12 + faxar — v2y12) + a1a1(x12
—x11) + Bi(—x22 — x23)] —az(yi2 — y11),

uy = %[(Ollez + Bax22 — y2yi2) +ai(arxn
+ Bix21 — yiyi1) — as(ezx13 + B3xz3
—y3y13) +aa(bixin — x12 — x11x13)
+ Ba(x21 + azx22)] — [(e3 — az)y1i
+c3yi2 — yuyizl,

uz = %{03)613 + B3x23 — y3y13 + as(azxi2
+ B2x22 — Y2y12) +@3(x11X12 — €1X13)
+ B3lb2 + x23(x22 — c2) 1}
— (uyiz — b3yz),

(36)

then the drive systems (25) and (26) will achieve

combination synchronization with the response sys-
tem (27).

(i) Assume y| = y» = y3 = 0, if the control laws
are chosen as follows:

—

ﬁ[(alﬁm + Bix21 — d1y21) — ai(azxi2

+ Baxaz — d2y22) +rai(xi2 — x11)

+ Bi(—x22 — x23)] — aa(y22 — y21),

uj = é[(alez + Baxaz — 82y22) +ay(arxyy
+ Bix21 — d1y21) — as(azxi3 + B3x23
—83y23) + a2(b1x11 — X12 — X11X13)
+ Ba(x21 + azx22)] — (cay21 — y21¥23),

uy = %stg + B3x23 — 83y23 + as(oaxi2

+ Bax2n — 82y22) +a3(x11X12 — €1X13)

+ B3lb2 + x23(x22 — )1}

— (2122 — bay23),
37

then the drive systems (25) and (26) will achieve

combination synchronization with the response sys-
tem (28).

Corollary 5 (i) Assume B1 =B =p3=0,y1 = o =
y3 =1 and §1 = 8, = 63 =0, if the control laws are
chosen as follows:

up =a1x11 — yi — 81y21 — ar(eexiz — yi2)
+ajai(xi2 —x11) —az(yi2 — yin),

ur = ax12 — yi2 +ar(aixi — yi) — aa(@zxi3
—y13) +oa(bixir — x12 — x11x13)
—[(c3 —az)y11 +c3y12 — yuyizl,

u3 = a3x13 — y13 +aq(02x12 — y12)

+oa3(x11x12 — c1x13) — (Y11y12 — b3y13),
(38)

then the drive system (25) will achieve the projective
synchronization with the response system (27).

(i) Assume o) = =a3 =0, yy=yp=y3 =1
and §1 = 8y = 83 =0, if the control laws are chosen as

@ Springer
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follows:

up = (Bixz21 — y11 — 8i1y21) — ar(Bax22 — yi12)
+ Bi(—x22 — x23) —a3(yi2 — yu1),

uy = (Bax22 — y12) + a1(Brx21 — y11)
—as(B3x23 — y13) + Ba(x21 + azx22)
—[(e3 —az)yn + c3yiz — yuyizl,

uz = B3x23 — y13 + as(Bax22 — y12) + Bslb2

+x23(x22 — €2)] = (V11y12 — b3y13),

(39)
then the drive system (26) will achieve the projective
synchronization with the response system (27).

(iii) Assume B1 =P =P3=0,y1 =y =y3=0
and §1 = 8y = 83 = 1, if the control laws are chosen as
follows:

ui = (eyx11 — ay(onxi2 — y22)
+ajai(x12 — as(yzn — y21),

uy = (ax12 — y22) +ar(@ixiy — yi)
—as(a3x13 — y23) +a2(bixir — x12
—x11X13) — (cay21 — y21y23),

uy = a3x13 — y23 +as(02x12 — y22)

+az(x11x12 — c1x13) — (y21¥22 — bay23),
(40)

then the drive system (25) will achieve the projective
synchronization with the response system (28).

(iv) Assume o) =y =3 =0, y1 =y =13 =0
and §1 = 8y = 83 = 1, if the control laws are chosen as
follows:

ui = (Bi1xa1 — y21) — a1 (Bax22 — y22)
+ Bi(—x22 — x23) —as(y22 — y21),
uy = (Box22 — y22) +ar(Bixa1 — y21)
—as(B3x23 — y23) + Ba(x21 + azx22) @1)
— (cay21 — y21¥23)5
u} = Baxoz — y23 + as(Baxan — y2)
+ B3[b2 + x23(x22 — ¢2)]

— (021y22 — bay23),

@ Springer

then the drive system (26) will achieve the projective
synchronization with the response system (28).

Corollary 6 (i) Suppose a1 = = a3 =0, B =
Br=B3=0,y1i=y=y3=1and s =68 =358=0,
if the control laws are chosen as follows:

up = —yi1 —81y21 +aryin —az(yi2 — yi1),

Uy = —yi2 —aiyi +aayiz — [(c3 — az)yi
(42)
+c3y12 — y11yi13ls

uz = —y13 —asyi2 — (ynyiz — bayiz),

then the equilibrium point (0, 0, 0) of the response sys-
tem (27) is asymptotically stable.

(ii) Suppose ay =ar =03 =0, 1 = o = B3 =0,
y1 =v2=y3=0and 6 = 8§ =83 = 1, if the control
laws are chosen as follows:

uy = —y21 +aryxn —as(y22 — y21),
Ui =—yn —aiy +asys — (cay21 — y21y23),
uy = —y23 —asy»n — (y21y22 — bay23),
(43)

then the equilibrium point (0, 0, 0) of the response sys-
tem (28) is asymptotically stable.

Numerical experiments are given to illustrate our
results. Fourth-order Runge—Kutta method is used
with time step size 0.001. In the simulation process,
we assume o] =y =a3 =1, 1 = o= B3 =1,
y1i=y2=y3=1and §; = =3 = 1, and the ini-
tial states for the drive systems and response systems
are arbitrarily given by (x11, x12, x13) = (0.5, 1, 1.5),
(x21, %22, x23) = (1, 1, 2), (y11, y12, y13) = (=4, 5, —06)
and (y21, y22, y23) = (—5,25,1). The corresponding
numerical results are shown in Figs. 5-8. Figure 5 dis-
plays the time response of synchronization error e =
(e, e, eg)T. The error vector converges to zero which
implies that systems (25), (26) and (27), (28) have
achieved combination—combination synchronization.
Figures 6, 7 and 8 depict the time response of the
states x11 +x21 and y11 + y21, X12 +x22 and y12 + y22,
X13 + x23 and y13 + y23 of the drive systems (25), (26)
and the response systems (27), (28), respectively.
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Fig. 5 Synchronization errors e, e, e3 between drive systems
(25), (26) and response systems (27), (28)

X1ty

Fig. 6 Response for states x1; + x21; and yj; + y21 between
drive systems (25), (26) and response systems (27), (28)

5 Conclusion

In this paper, we propose a new type of synchro-
nization with two drive systems and two response
systems, which can be seen this synchronization
as combination-combination synchronization. Based
on Lyapunov stability theorem and adaptive con-
trol, some sufficient conditions for combination—
combination synchronization of four identical or dif-
ferent chaotic systems are obtained. Numerical sim-
ulations are shown to verify the feasibility and effec-
tiveness of the proposed control technique.

50
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40r- — Viaap

30+ 1
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Fig. 7 Response for states x12 + xp and yj2 + y2o between
drive systems (25), (26) and response systems (27), (28)

60

Xy3*%3

sor Y13*Ya3 ]
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Fig. 8 Response for states x13 + x23 and yi3 4+ y»3 between
drive systems (25), (26) and response systems (27), (28)

Although the combination synchronization of cha-
otic system has more advantages than synchroniza-
tion between one drive system and one response sys-
tem, it appears that one response system may be
a disadvantage. Combination—combination synchro-
nization is designed to overcome the trouble of combi-
nation synchronization. Most of the previous proposed
adaptive synchronization are included as its special
items. The combination of all the chaotic systems is
regarded as the drive or response systems, such that
we can design a universal combination drive systems
and response systems model and a universal adaptive
controller. According to our actual requirements, we
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choose the corresponding system or systems combina-
tion, the corresponding parameter values are given to
the drive systems and response systems to realize syn-
chronization. Too much time and energy are saved for
our future every application. If synchronization can be
controlled intelligently at will, then it may be possible
to attain vastly better performance for secure commu-
nication and information processing.
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