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Abstract The geometrically exact equations of mo-
tion about the prestressed state discussed in part 1 (i.e.,
the nonlinear equilibrium under centrifugal forces) are
expanded in the Taylor series of the incremental dis-
placements and rotations to obtain the third-order per-
turbed form. The expanded form is amenable to a per-
turbation treatment to unfold the nonlinear features
of free undamped flapping dynamics. The method of
multiple scales is thus applied directly to the partial-
differential equations of motion to construct the back-
bone curves of the flapping modes and their nonlin-
ear approximations when they are away from internal
resonances with other modes. The effective nonlinear-
ity coefficients of the lowest three flapping modes of
elastic isotropic blades are investigated when the angu-
lar speed is changed from low- to high-speed regimes.
The novelty of the current findings is in the fact that
the nonlinearity of the flapping modes is shown to de-
pend critically on the angular speed since it can switch
from hardening to softening and vice versa at certain
speeds. The asymptotic results are compared with pre-
vious literature results. Moreover, 2:1 internal reso-
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nances between flapping and axial modes are exhib-
ited as singularities of the effective nonlinearity coef-
ficients. These nonlinear interactions can entail funda-
mental changes in the blade local and global dynamics.
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flapping vibrations - Nonlinear normal modes -
Method of multiple scales

1 Introduction

The study of dynamics of rotating blades such as he-
licopter blades or wind turbines is important for de-
sign, optimization, and control. The majority of previ-
ous studies on nonlinear vibrations of rotating blades
are based on Euler—Bernoulli beam models, while a
few authors have considered more refined mechanical
blade models.

Linear vibrations of rotating blades are studied
extensively in the literature (see, e.g., Stafford and
Giurgiutiu [1, 2] and Wright et al. [3]). On the other
hand, in the context of studies on nonlinear vibra-
tions of rotating beams, some dealt with flexural-
flexural-torsional vibrations in 3D space while oth-
ers addressed in-plane vibrations. Crespo da Silva and
Hodges [4] investigated the effects of higher-order
terms as well as aerodynamic forces on the stabil-
ity of the coupled elastic flapping, lead-lagging, and
torsional motions of uniform straight rotating blades.
They recognized the cubic-order structural geometric
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nonlinearities in the torsional equation as the most im-
portant nonlinear terms while the bending terms were
shown to be less important.

Chen and Peng [5] studied the dynamic stability of
a rotating blade subjected to axial periodic forces by
Lagrange’s equation and a Galerkin-based finite ele-
ment method. The model included the effects of geo-
metric nonlinearity, shear deformation, and rotary in-
ertia. They applied the iterative method to obtain the
mode shapes and nonlinear frequencies. They showed
that with increasing the flapping amplitude of the
beam tip, the instability regions shift toward high-
frequency ratios and the widths of the instability re-
gions decrease.

Crespo da Silva [6] derived the fully nonlinear
partial-differential equations of motion of rotating
blades including the geometric nonlinearities through
a variational process. He found the equilibrium solu-
tion and the eigenpairs of the perturbed system under
the aerodynamic forces by numerical integration of a
nonlinear two-point boundary-value problem. He then
analyzed the stability of the perturbed blade about its
equilibrium.

Pesheck et al. [7] presented a method based on in-
variant manifolds for reduced-order modeling of rotat-
ing beams including the case of internal resonances.
They employed the Rayleigh—Ritz procedure to obtain
a discrete system of equations with quadratic and cu-
bic geometric nonlinearities.

Apiwattanalunggarn et al. [8] compared the con-
ventional asymptotic approach and the Galerkin-based
approach for a rotating beam with internal resonances.
They showed that the latter provides a more accurate
reduction, especially at large amplitudes.

Hodges [9] derived the exact nonlinear equations
of motion of precurved and pretwisted anisotropic
beams. Using the Kirchhoff analogy, he demonstrated
that a time-discretization scheme for the nonlinear dy-
namics of rigid bodies can be applied, in the same
fashion, in space for the nonlinear static treatment of
beams.

Pierre et al. [10] developed an efficient Galerkin
projection method for constructing the nonlinear
modes up to large amplitudes for systems featuring in-
ternal resonance and for systems subjected to external
excitation. They illustrated the accuracy of the pro-
posed Galerkin-based method in the construction of
the nonlinear normal modes (NNMs) for an isotropic
rotating Euler—Bernoulli beam.
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Das et al. [11] studied free out-of-plane vibrations
of a rotating beam with a nonlinear spring-mass sys-
tem. They obtained the nonlinear frequencies of the
flapping modes by applying the direct method of mul-
tiple time scales to the equations of motion and bound-
ary conditions.

Avramov et al. [12] studied nonlinear flexural-
flexural-torsional vibrations of rotating beams with
asymmetric cross sections. They investigated nonlin-
ear free vibrations of a rotating beam by discussing the
backbone curves and the surfaces describing the non-
linear modes. A softening behavior was predicted for
the first and fourth modes while a hardening behavior
was found for the second and third modes, respec-
tively.

Ghorashi and Nitzsche [14] investigated the elasto-
dynamic response of an accelerating rotating hingeless
composite beam previously studied in [13] by solv-
ing the nonlinear intrinsic differential equations of a
beam. They analyzed the stability of the steady-state
response of rotating beams. They also inspected the
effect of embedded anisotropic piezocomposite actua-
tors in the beam response.

Turhan and Bulut [15] applied the Lindstedt—
Poincaré method and the method of multiple scales
to the discretized integropartial-differential equations
of motion of a rotating Euler—Bernoulli beam with
third-order curvature nonlinearity for analyzing in-
plane vibrations. They observed that the changes in
angular speed have some unusual effects on nonlinear
vibrations of a rotating beam, such as the switching
from hardening to softening and harmonic or super-
harmonic jump phenomena when the beam is under
an external periodic excitation.

Palacios [16] obtained the NNMs of beams from
intrinsic equations, in the framework of the fully in-
trinsic equations of Hodges [9], in which the veloci-
ties and strains were considered as primary unknowns.
Using the Cosserat exact kinematic description, the
NNMs were obtained via an asymptotic approxima-
tion to the invariant manifolds in the space of the
intrinsic modal coordinates. He considered homoge-
neous isotropic and composite cantilevered beams as
illustrative examples.

Arvin and Bakhtiari-Nejad [17] applied the method
of multiple scales to the discretized equations of mo-
tion which were obtained using Hamilton’s princi-
ple, in order to construct the NNMs with or with-
out internal resonances. They investigated the stability



A geometrically exact approach to the overall dynamics

2281

and bifurcations of the NNMs under three-to-one and
two-to-one internal resonances between two flapping
modes and between one flapping mode and one axial
mode, respectively.

In this paper, the equations of motion for arbi-
trary linearly elastic, isotropic beams obtained in part
1 [18] via a geometrically exact approach are ex-
panded in Taylor series about the prestressed equi-
librium to obtain the third-order perturbed form. The
method of multiple scales is applied directly to the
partial-differential equations and boundary conditions
to construct the backbone curves of the flapping modes
along the lines of previous works on the analytical
asymptotic construction of NNMs of general one-
dimensional distributed-parameter systems [19-24].
The results are compared with the results of [17].

2 Equations of motion

The equations of motion were derived in part 1 [18]
by defining the geometry of deformation of the rotat-
ing blade, thus enforcing the local balance of linear
and angular momentum. The equations governing the
prestressed solution read

asn°(s, 1) + fO =01, e))
oym°(s, 1) +v°(s,1) x n°(s, ) + =k’ ()

The component representation of the generalized
stress resultant n° and moment m° in the local frame
(b7, b3, b3) gives n® = Qb + Qb5 + N°b5 and
m°® = MYb} + M3b3 + T°bS where (QF, Q9) are the
shear forces, N° is the tension, (M7, My) are the
bending moments, and 7° is the torque. d; denotes
differentiation with respect to the arclength s along
the base line of the blade in its natural state and o;
indicates differentiation with respect to time ¢. The
vectors I and h° denote the linear and angular mo-
mentum per unit reference length of the blade, respec-
tively. The vector v° = 9,r° is the stretch vector [25]
where r° is the position vector of the blade base line
in the prestressed state.

On the other hand, the equations of motion for the
current configuration, obtained via a total Lagrangian
formulation, are

dsit(s, 1)+ f =o,l, 3)

dsm(s, 1)+ v(s,t) x i(s,t) + ¢ = o;h, “)

where n = é]bl + szz + ]sz, and m = M]b] +
Mzbz + Tbg are the total generalized stress and mo-
ment resultants in the current configuration 5.

The natural decompositions for the generalized
stress resultants in two parts, one related to the pre-
stressed solution and to the incremental part, read:
n(s,t) = n°(s,t) + n(s,t) and m(s,t) = m°(s,t) +
m(s,t) where n(s,t) and m(s,t) are the incremen-
tal contact force and contact couple. The same de-
composition holds for the mechanical data: j‘(s, 1) =
fO(s,t) + f(s,1) and é(s, 1) = ¢°(s,1) + ¢(s,1). By
introducing these decompositions together with the
balance equations (1) and (2) for the prestressed state,
Egs. (3) and (4) are simplified into the following in-
cremental equations of motion:

sn(s, 1)+ f =1 -1, )
oym(s,t) +v(s,t) x n(s,t)

1 dsu(s, 1) x n°(s, 1) + ¢ = d,h — o, (6)

where f(s,t) and c(s,t) are the incremental exter-
nal force and couple per unit reference length, respec-
tively. The vector v = d,F is the fotal stretch vector
[25] where F is the position vector of the blade base
line in the current configuration while u is the dis-
placement vector from the prestressed state to the cur-
rent configuration.

As shown in part 1 [18], by accounting for the low
shear compliance of slender blades, the unshearability
kinematic constraints can be enforced so as to reduce
the equations of motion to four governing equations
via elimination of the shear forces. The boundary con-
ditions respectively for the root and tip sections of the
rotating blade are 7(0, 1) = r}oE (t) and R(0,¢) =1 and
n(L,t) =0 and m(L,t) = o where L is the span of
the blade.

The constitutive laws for the incremental stress re-
sultants of linearly elastic isotropic blades are assumed
in the form N = EA(v — 1), My = EJS w1, My =
Ejzszug, and T = GJ3S3/,L3 where v is the incremen-
tal stretch and (w1, (2, (3) are the incremental bend-
ing and torsional curvatures, while (EA, E Jlsl, E J282’
GJ3S3) denote the blade axial stiffness, the bending
stiffnesses about by and b, and the torsional stiffness,
respectively.

A suitable nondimensionalization is introduced by
dividing all space variables by the span L and time by
1/wy¢. The following nondimensional parameters are
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thus defined:

ri=dy/L, = [GI (0I5t LY),

2
W= \JEIS ) (pAL* %),

PICEES JEJS /(pAL*w?),
Aa:=,/EA/(pAL2w§.), @R := wR /oy,
O 1= @R /has 2=/ (DALY /(pJ3)),
ar =4/ (ALY /(pT),  a3:=

A suitable choice for the characteristic frequency is
wf = JEJ$/(pAL*) by which A" =1, 3P =
EJS/EJsy, ha=\/EAL?/EJ},.

3 Perturbation treatment via the method of
multiple scales

PJlslo‘%/PJ,%Sy

The only nontrivial strain generated by nonlinear flap-
ping vibrations of unshearable rotating blades is the
longitudinal stretch. Hence, to capture the geometric
(stiffening) effects on flapping vibrations, a third-order
Taylor expansion of the equations governing flapping-
axial motions is carried out to yield

I-i+L-u
=iy (u, ) +ixn(u, i) +iz; (u, u, u)

+i3(w, u, i) +ny(u, w) +n3(u, u, w) @)

where u = [u1, u3]T collects the flapping and longitu-
dinal displacement components; I and L are the linear
mass and stiffness operators, respectively; iz, i22, and
ny are the quadratic inertia and stiffness operators, re-
spectively; i31, i3, and n3 are the cubic inertia and
stiffness operators, respectively. The linear mass and
stiffness together with the quadratic and cubic inertia
and stiffness operators are given in Appendix 1.
While carrying out the perturbation expansion, care
must be exercised (see., e.g., [26]) on the fact that the
quadratic operators such as i1, etc. are noncommuta-
tive operators, that is, ip; (@, V) # i>( (v, w). A uniform
perturbation expansion of the NNMs is sought by the
method of multiple scales [27]. In particular, the main
interest is directed toward the analytical construction
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of the backbone curves of the flapping modes together
with their approximations.

To capture the nonlinear influence of longitudinal
effects on flapping vibrations, in consonance with [28]
the following expansions of u(s, ) and u3(s, ) are
considered in terms of a formal perturbation parameter
denoted by &:

ui(s, To, 71, 12)
=eu1,0(s, To, T1, T2) + &u1,1 (s, To, Ty, T2)
+&3u1a(s, To, T1, To) + O(e%), 8)
us(s, To, 71, 12)
=e%u3,1 (5, To. T1, To)
+&3usp(s, To, T1, To) + O (%), )

where T, :=1t is the fast time scale, T; :=¢t and T; :=
&2t are the slow time scales introduced to describe the
nonlinear modulation of the amplitude and phase of
the flapping NNMs. Hence, the first and second time
derivatives respectively take the following forms:

d

= Do +¢Dj + &2 Ds, (10)
2 ) 5 2

where D, (-) := 9/0T,(-). Substituting the assumed
expansions of the displacements, velocities, and ac-
celerations in the equations of motion (7) and retain-
ing up to third-order terms leads to the following first,
second, and third perturbations of the equations gov-
erning flapping motions:

O(e):

Ifluy ol + Lylur ol =0, (12)
0(e?):
Trluy ]+ Lglur ]

=2D Dou1,0 — 2D1 Dod’u1 0/ (a3v7)

+4v, D1 Dodgu,0/ (3vy). (13)

Iq[uz 1]+ Lalus,1]

2 2 2.3 2 2 2
= D3dgu1,00;u1,0/(03v3) — Ay Vodsutt o/ vy

@2 2 4
+ )‘b v, 3SM1,08S ul’o/vo



A geometrically exact approach to the overall dynamics

2283

2 2
+ DZuy 05110/ vo + 2)»1(3 ) Véaszu%,o/”g

2)2
+ Z)Lt(’ ) v(/)38su%,0/vg — 2)\‘38_3‘“1’085,2141’0/])3

22,3 2 3 @2 .y 2 5
- )\’b as Ltl,()as ul,O/vo - )‘b Vo Voasul,()/vo

+ 2285u1,002u1,0/vo

— éﬁasul,oaful,o/(a%‘ﬁ)
_ 4A£2)2v323su1,0352”1»0/v<§
+2A2v,05u7 o/ ve

+ )ngz)zvéagu],oasul,o/‘)g

_2 2 2 4
+va(’)asu1,O/(oz2vo)

— v(/)Dgi?sM],oasul,O/(a%Vé)’ (14)

0(83):
Iflurp]+ Lglur 2]
= 3su1,oD§33u3,1/(a%Vg)
3 ) 2.2\ Ay 2023 4
2D; D, 0; ”1,0/(“2”0) 2)‘b 0 ul,O/vo

2.2 2.2 )2 4 3
—Dlasul,o/(azvo)—kb 83141’()85143,1/\/0
— 25)12{832u1,03su3,1/(a%‘)g)

22
— 2)»{) ) 8?u1,033u3,1/vg +2D1Douy 1
+2D§3su1,033u3,1/(0l§"3)
+2D§8s2u1,03su3,1/(055‘}3)
— SVéDoasu%’oasul,O/(a%vS)

2

+ 13)L|(32) véaxuioaful,o/vg

, 2 2 4
— 3voayu1,oD03sM3,1/(“2Vo)

22

— 240 2 0,u1 002u3,1 /v

22
+ 0D 0 B 007 uz 1 /v
— 9/2)@Rdsui o3 u,0/ (3 vy)
+ (3/2)2305147 g02ur 0/ v3

22

— (3/2 " dyui g} ur0/vs

+ (3/2)D3d7u1,0d5u7 o/ (a3v)

22
- 4)‘1(9 : 83“1,033143,1/”3 - 2)L§33u%’083u1,0/v3

+ G/ i} /03

+ 4, Do Dadsu1 0/ (233

+4v, D1 Dodguy,1 /(a3vy)

+ 2, Ddyuy 0/ (e3v])

+ 7AI()2)2V£)8SM1,033M3,1/V§

— 32)»1()2)2\1(’)283%1,03su3,1/vg
— AZvéasul,oasM&l/Vg

+ 40/\](32)2vg335u1,08su3,1/Vg
— 6V, D23,u1,005u3 o/ (03v3)
- ZSAéz)zvévgaquoasual/V(S)
+ 12At()2)2vé85u3,133141,0/‘)§
+ 16A£2)2vg8§u1,083u3,1/vg
— mﬁasul,oafu3,1/(a§vg)
- 3Al(32>283u1,0333u3,1 /vo

4 3)@11(’)83-141,035“3,1/”3

+ 2D085u1,0D03s2M3,1/(0‘%V3)

— 2)»383141,0351/!3,1/"3

— 2D Dod2uy,1/(a3v2)

_ 50,\](32)21)(’)28314%’083141,o/vg

_ 7)%()2)2&9“:1,oafu1,03@1,0/”31
+2Dodsui gd7ur0/ (3 vy)
+4Dod5u1,005u1,0Dod;ur,0/ (c3vg)

+ @&us,19su1.0/vo + 2)»3"835”?,0/”3

— szgasuio/vg + 667)}%%3#?,0/(“%”3)
+ 2D08§u1,oD08su3,1/(“§V3)

+ 3A£2>2u(’)”asu1,oasu3,1/‘)§

+ 22x§2’2v{,asu1,083u%,o/“§

- Dgug,lasul,o/‘)o

2)2
— 1/2D2uy 085u? o /v2 + 3007 v d5u /vl
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- 6v(’)D03sM1,0Doasu3,1/(“%”3)

+ @3/222 o} g7 0/v]

— A205u1,00%u3,1 v}

+ 82u1,0D285u3,1/ (e3v7)

+ 2202u1,005u3.1/vo

+3D23;u1,095u1,007u1,0/ (3 v7)

+ Diuio+ 9A£2)2V333“1,03su3,1/vé

+ A285u1,092u3,1/vo

— 6V, D3dgu1,095u3,1/(03v;)

+ 60V, dsu1,005u3,1/ (03 v5)
(35/2)A(2) vy vdsui o/v8 + 2Dy Dout o,

15)
where the subscripts f and a denote the flapping and
axial components, respectively, ()’ denotes differenti-
ation with respect to s, and the linear inertia and stiff-

ness operators governing linear flapping and axial vi-
brations are given by

If[1:= = D3() + D30} ()/ (e3vg)
— 20, D23, (-)/(e3v3),
Lf[]:=— 2307 ()/vo + 20535 () /(a3 3)
@302()/ (@2v2) + 3222002 () v
+4Ag2> VL83 () /vl A(z) RYEROYN

2
+ 8322030, (003 — 83270202 () v

AP%930) /02 + 2202() + 2200, () 02
2
T NOYIN]
I[1:= = D3(),
Lal-1:=@R () + 2307 ()/vo — Aqv5ds () /vg.
(16)
For simplicity, the explicit appearance of the argu-

ments (s, Ty, T1, 1) is, here and henceforth, omitted.
The first-order flapping equation, given by Eq. (12),

@ Springer

admits the generating solution u1 ¢ as
w10 = Y1.x($)Ak(T1, To)e' T + cc, (17

where V1 x(s) is the kth linear flapping mode of
the rotating beam, wy is the associated frequency,
Ax(T1, Tz) is the complex-valued amplitude, and cc
stands for the complex conjugate of the preceding
terms. The basis of linear normal modes of the rotating
beam, denoted by 11 x(s) and used to discretize u1,o,
has been obtained using the Galerkin method in [18]
as a combination of linear normal modes of the nonro-
tating beam. Substituting u1 ¢ in the right-hand side of
the second-order flapping equation, given by Eq. (13),
yields the following right-hand side:

2w D1 A(T1, To)e' o[y (5)vo ()
F Y1 K($)eFV3(5) + 20, (V] 1 (9)]/[3ve(5)*]
+ cc. (18)

The solvability condition via Fredholm’s alternative
theorem applied to this equation leads to D1 Ax(T1, T»)
= 0 which implies that Ay is function of the time scale
T, only and that the solution at this order is trivial,
uip1 = 0.

On the other hand, substituting u; ¢ in the second-
order equation governing axial (slaved) motions, given
by Eq. (14), yields
0(?):

Ialuz 11+ Lalus 1]

=—[- gl vy ()22 /a3 — VoW1, () otv2 /a3
F YLDV 1 (V) + A3 1 (5)Pv)
R e O LI L VNN
+ 2029 (Y] (vl — 2xg2)2vgw{{k(s)2v§
— 220 (920 + A2 Y ) (0]
Y] R ORY] () /e
+ RV KOV ()5 /3
+ A{f) Db () v
— 2 U (V]

2)2
D VT Y] (V2
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+ 0PN 2] )] (5)ve)] /w8 A2
(22001 ()70 4 222 0 )
+ SAt(,z)zv(’)zl/f{)k(s)I/f{/,k(s)vo

— 203 vy} 1 ()72 fad — 4x1§2)2u;3¢{ ()2

+ 429 L Y] (vl

208 (Y] (V3 3

+ 291 k()R W] 1 ()v) — 22501 L ()Y ()v]
+ 29 (g (s)vg fa3
- 2V$W1,k(s)2wk‘) /“2 g"él//{,k(s)z"g
R O O

— O (Y

+ 27 Y W] ()V2
— P 222

where the overbar indicates the complex conjugate.
The right-hand side of Eq. (19) suggests the follow-
ing form for the second-order solution expressing the
flapping-induced longitudinal motion:

0 AkAx +ce,  (19)

uz,1 =h31 ()AL (Tr)e*xTo
+ h3(s) Ax(T2) Ak (T2) + cc. (20)

Substituting Eq. (20) into Eq. (19) leads to the follow-
ing two two-point boundary-value problems for A3
and h3p:

41— va () /Vo(s) + (dvo(s)wi /A2

+ Vo ()@} /A2)h31(5) + f(5) =0, 21
) — V) ($)hyy /Vo(s) + vo(s)dRh32(s) /A2
+ f(s)=0 (22)

with the pertinent boundary conditions and the ex-
pression of f(s) given in Appendix 2. The functions
h31(s) and h33(s) have been found as solutions of two-
point boundary-value problems using the Galerkin
method based on the linear normal modes of the ro-
tating beam as trial functions.

Substituting u#1,0 and u3,1 in the right-hand side of
the third-order flapping equation, given by Eq. (15),

delivers a lengthy expression which is reported in
Appendix 2. The solvability condition for this equa-
tion (see Eq. (15)) reads

1
/O [V1,i(s) - Ci(s, T1, To)]ds =0, (23)

where C| is the coefficient of e/ in the right-hand
side of the equation at O(s?), which corresponds to
Eq. (77). This condition turns out to be

AL(T2) = 1/4i Tk x AL(T2) A(To), (24)

where Iy is the effective nonlinearity coefficient
given in Appendix 3. The integral equations of Ap-
pendix 3 are numerically computed using Simpson’s
rule.

By substituting

Ak(T) = 1/2ax (Tp)e T2 (25)

into Eq. (24), the time evolution of ax and Bx on the
times scale 75 is found in the form:

a(T) =ay, PB(Tr) =B a; T + By, (26)

where ap and B/ are defined from the initial condi-
tions and ,BII(\IL = (1/16) Ik . Hence, the second-order
approximation of the nonlinear frequency of the kth
flapping mode is expressed as

o = o + Brray. @7n

By substituting Eq. (24) into the right-hand side of

the equation at third order, given by Eq. (77), it turns
out that u; » has to be in the form:

U= h23(S)Al3(e3iwkT° + hoy (S)Al%AkeiwkT" +cc.
(28)

Putting u > in the third-order flapping equation, rep-
resented by Eq. (15), yields two two-point boundary-
value problems governing /1 (s) and hy3(s) (see Ap-
pendix 4). The functions 4,1 (s) and hy3(s) have been
found as solutions of the two-point boundary-value
problems using the Galerkin method and the linear
normal modes of the rotating beam as trial functions.
The approximation of the flapping deflection associ-
ated to the kth NNM can be obtained by putting to-
gether u1,0, u1,1, and u; 2 in Eq. (8), putting T, =1,
T, = &2t and setting ¢ = 1. The ensuing flapping de-
flection is
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ui(s, 1)
= ax cos[ (wx + B ap)t + B Y1 x(s)
+ 1/4a; cos[3(wx + AR -ay )t + 36 |23 (s)
+ 1/4ai; cos[ (i + By -ag)t + B hai(s). (29)

4 Softening vs. hardening nonlinearity of the
flapping modes

In this section, the results obtained by the present
perturbation treatment for the backbone curves of
the lowest three flapping modes are compared with
those obtained in [17]. Therein the blade mechan-
ical model was based on the von Karman strain-
displacement relationships (i.e., second-order trunca-
tion for the stretch) as the only source of geometric
nonlinearity. In [17], the method of multiple scales
was applied to the Galerkin-reduced discretized ver-
sion of the equations of motion to construct the NNM:s.

The beam geometric, material properties and the
angular speed reported in [17] are shown in Table 1.
The backbone curves of the lowest three flapping
modes are shown in Figs. 1, 2, 3. A good qualitative

and quantitative agreement is found. The obtained lin-
ear frequencies of the lowest three flapping modes are
lower than those obtained in [17] because the current
mechanical model is more relaxed, and thus exhibits
higher flexibility. Both methods predict the same type
of nonlinearity for the considered angular speeds, i.e.,
a softening behavior for the lowest flapping mode and
a hardening behavior for the second and third flapping
modes. Moreover, another systematic feature of the
backbones obtained by the present treatment of the ge-
ometrically exact equations of motion for unshearable
blades is the lower bending with respect to the trun-
cated ad hoc model in [17] which incorporates linear
flexural curvature and higher nonlinear inertia (soften-
ing) contribution.

The dependence of the effective nonlinearity coeffi-
cients associated with the lowest three flapping modes
on the angular speed is shown in Figs. 4, 5, 6. In all of
these plots, there are singularities to infinity of the co-
efficients at certain angular speeds whenever the con-
sidered flapping mode is involved in a 1:2 internal res-
onance with one of the axial modes (see, e.g., [17, 29,
30]). In the neighborhood of the singularity, the ob-
tained approximation of the NNMs breaks down. The
expansion should be constructed differently consider-

Fig. 1 Backbone curves of 0.04 T T T T T T
the lowest flapping mode
calculated via the current 0.035 4
geometrically exact
approach (solid lines) and 0.03 } i
according to [17] (dashed
lines) — 0025} .
g
= 002} .
-
0.015 } -
0.01 } -
0.005 | g
0 L L L L L
33.8 34 342 344 34.6 34.8 35 35.2
,(rad/s)
Table 1 Geometric and Material Properties from [17]
Mass per unit length Axial Stiffness Flexural Stiffness Length Rotor Radius Angular Speed
(kg/m) M) (Nm?) (m) (m) (rad/s)
10 2.23 x 108 3.99 x 10° 9 0.5 30
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Fig. 2 Backbone curves of 0.04 T T T T T
the second flapping mode
calculated via the current 0.035}F J
geometrically exact
approach (solid lines) and 0.03 F ]
according to [17] (dashed o
lines) 0.025 k i
g
o o002} 1
=
0.015F g
0.01 -
0.005 g
0 't M M M M M M M
95.5 96 9.5 97 975 98 985 99 99.5 100
o, (rad/s)
Fig. 3 Backbone curves of 0.04 -
the third flapping mode
calculated via the current 0.035F
geometrically exact
approach (solid lines) and 0.03
according to [17] (dashed ) o
lines)
— 0.025}F
)
= 0.02f
=
0.015F
0.01}F
0.005 |
o L= . . . . .
200 205 210 215 220 225 230
,(rad/s)

ing the linear modes involved in the internal resonance
in the generating solution as shown in [29] in the study
of NNMs of nonshallow suspended cables. To high-
light the fact that there is a region close to the sin-
gularity where the current solution is no longer valid,
a shaded grey area centered about the singularity has
been superimposed. The first effective nonlinearity in
Fig. 4 exhibits a singularity at about 3,387 rpm where
a 1:2 internal resonance between the lowest flapping
mode and the lowest axial mode occurs. While the
softening character is more pronounced at low speeds,
it decreases significantly with increasing the speed up
to 1,349 rpm. Above this speed, the mode becomes

hardening and after the singularity it switches to soft-
ening. The width of the region where the effective non-
linearity calculated with one mode in the generating
solution breaks down cannot be ascertained a priori.
Therefore, the shaded areas highlight the fact that there
are uncertain ranges of angular speeds in the neighbor-
hood of the singularities where the effective nonlin-
earity coefficients cannot be predicted by the present
analysis.

The second flapping mode in Fig. 5 exhibits two
singularities at 1,481 rpm and 4,336 rpm, respectively.
At the first singularity, a 1:2 internal resonance be-
tween the second flapping mode and the lowest axial
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Fig. 4 The effective

nonlinearity coefficient of

6 L
the first flapping mode 17 1
vs. the angular speed wr
4 =
2 -
r o

-4

Fig. 5 The effective

nonlinearity coefficient of
the second flapping mode
I 5 vs. the angular speed
WR

mode occurs. On the other hand, at the second singu-
larity (at 4,336 rpm), the second flapping mode and
the second axial mode are in 1:2 internal resonance.
The second flapping mode has a hardening nonlinear-
ity until the first singularity, past which it becomes
softening until 3,677 rpm. Past this angular speed, it
becomes hard until the second singularity, past which
it switches to softening again.

The third effective nonlinearity coefficient shown
in Fig. 6 exhibits three singularities at 861, 2,798, and
4,553 rpm. Differently from the first and second effec-
tive nonlinearity coefficients, it is invariant under the
variation of the angular speed, i.e., it remains always
hardening except near the singularities. At the three

@ Springer

0.5 1 15 2 25 3 35 4 45 5x10°
o (rpm)
JI
I
|
|
| i
05 1 15 2 25 3 35 4 45 5x10°
O (rpm)

singularities, 1:2 internal resonances occur between
the third flapping mode and the lowest axial mode at
861 rpm, the third flapping mode and the second axial
mode at 2,798 rpm, the third flapping mode and the
third axial mode at 4,553 rpm.

To appreciate the effects of the nonlinearities on the
shape of the NNMs in terms of spatial nonlinear cor-
rections (spatial over-tones), the deflection profiles of
the lowest three flapping NNMs are calculated at time
t =0 and wr = 30 rad/s for increasing amplitudes
ay. The results are shown in Figs. 7, 8, 9 in compar-
ison with the corresponding linear normal modes. It is
shown that with increasing the amplitude ay the shape
of the NNMs deviates from the corresponding linear
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Fig. 6 The effective x10
nonlinearity coefficient of T ] T T T T T T T
the third flapping mode I3 3 1 I |
vs. the angular speed wr | |
| |
os b | |
| | |
| | |
| | |
F50
| | |
| |
—o0s5F | |
| |
| |
-1} I |
L | N L | L L L
0 0.5 1 15 2 25 3 35 4 45 5x10°
o (rpm)
Fig. 7 Deflection profiles 2 , , , . . . . .
of the lowest flapping NNM s
for different amplitudes ay, 18} :k;o 5103 7
compared with the linear 16k al;:f.o 103 ]
normal mode (filled circles) — a=1.5103
1.4r 15t LNM 7
1.2F b
u L }
0.8 | -
0.6 4
04} 4
02F b
05 i ) 3 : ' ' 7 8 9
S [m]

normal modes due to the nonlinear space-wise distor-
tions at third order which are captured by the functions
ho3(s) and hj1(s), solutions of the stated two-point
boundary-value problems.

A series of snapshots of the deflections of the men-
tioned flapping modes (for a; = 1.5 x 1073) during
one-half of their nonlinear periods Ty are presented
in Figs. 10, 11, 12.

5 Conclusions

The third-order Taylor expansion of the geometrically
exact equations of motion about the prestressed state
of the blades under centrifugal forces was treated by
a perturbation method to unfold the nonlinear features

of the individual flapping modes away from internal
resonances.

The geometrically exact equations, obtained within
the context of an updated Lagrangian formulation in
the companion paper [18], can describe overall mo-
tions of elastic isotropic blades of arbitrary cross sec-
tions. The equations include all geometric terms with-
out any restriction on the geometry of deformation.
This is a substantial aspect of the present contribu-
tion since the obtained equations of motion lend them-
selves to global studies about the overall blade dynam-
ics arising from instabilities and resonances. The per-
turbation approach applied directly to the geometri-
cally exact model overcomes the limitations of trun-
cated models based on ad hoc kinematic assumptions.
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Fig. 8 Deflection profiles
of the second flapping
NNM for different
amplitudes ay, compared
with the linear normal mode
(filled circles)

Fig. 9 Deflection profiles
of the third flapping NNM
for different amplitudes ay,
compared with the linear
normal mode (filled circles)

Fig. 10 Snapshots of the
deflection profiles of the
lowest flapping NNM
during one-half of the
corresponding nonlinear
period TnL

The method of multiple scales was thus applied di-
rectly to the system of partial-differential equations
of motion to construct the so-called individual flap-

@ Springer
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r =0 5
--=-q=05103 N
AY
..... =10 103 “
=3k ]
mm @ =15103
. 2nd LNM
-4 1 1 1 1 1 1
0 1 2 3 6 8 9
S [m]
2.5 : : : T T
2

a,=0

- == =05 103

..... a,=1.0 103

== @=15103
L3 3rd LNM

ping nonlinear normal modes away from internal res-
onances. The virtue of the direct perturbation approach
is in the fact that space discretization errors are over-
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Fig. 11 Snapshots of the
deflection profiles of the
second flapping NNM
during one-half of the
corresponding nonlinear
period TnL

Fig. 12 Snapshots of the 25
deflection profiles of the
third flapping NNM during
one-half of the
corresponding nonlinear
period TnL

come and all spatial over-tones (i.e., nonlinear correc-
tions to the linear mode shapes) can be described ac-
curately through functions which are solutions of two-
point boundary-value problems. The obtained results
confirm a good agreement with previous results in
the prediction of the backbones of the lowest flapping
modes at given angular speeds. The most significant
results can be summarized as follows: (i) the effective
nonlinearity coefficients based on the direct perturba-
tion expansion blow up to infinity at angular speeds
where 2:1 internal resonances between one of the axial
modes and the considered flapping mode occur. The
centrifugal forces are the geometric tuning mechanism
by which the frequencies of the flapping modes in-
crease drastically thus reducing the typical frequency
gap between the flapping modes and the axial modes
to a level such that 2:1 frequency ratios can be at-

tained; (ii) the lowest flapping mode is softening at low
angular speeds with a decreasing trend of its soften-
ing nonlinear character with increasing the speed up
to a threshold value at which it becomes hardening
until undergoing a singularity point. Past this angular
speed, the nonlinearity switches to softening; (iii) the
third flapping mode is always hardening; (iv) the sec-
ond flapping mode exhibits a hardening nonlinearity
until its first singularity point past which it becomes
softening until a threshold angular speed. Then it be-
comes hardening and undergoes a second singularity,
past which it becomes softening again. The implica-
tion is that the dynamics arising from modal interac-
tions between flapping and axial modes can exhibit
significantly different nonlinear phenomena depend-
ing on the operating range of angular speeds. There
are various 2:1 internal resonances by which the cou-
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pling between flapping and axial modes can give rise
to coupled nonlinear modes with a continuous trans-
fer of energy together with the associated nonlinear
phenomenology typical of 2:1 autoparametric reso-
nances such as saturation, Hopf bifurcations, chaos,
etc.
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Appendix 1: The linear mass, stiffness, second-
and third-order inertia and stiffness
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where RHS(&%) denotes the right-hand side of the
third-order flapping problem.

Appendix 3: The effective nonlinearity coefficient
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