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Abstract This study presents experimental realiza-
tions of the HR neuron model with programmable
hardware and synchronization applications. The HR
neuron model exhibiting burst, spike, and chaotic
dynamics has been implemented with both FPAA
(Field Programmable Analog Array) and FPGA (Field
Programmable Gate Array) devices. These devices
provide flexible design possibilities such as reduc-
ing the complexity of design, real-time modification,
software control and adjustment within the system.
And it is also examined experimentally that how
the synchronization of two HR neurons are able to
achieve by using these hardware. The experimental
results obtained from FPAA and FPGA based real-
izations agree with the numerical simulations very
well.
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1 Introduction

Describing the dynamic behavior of an individual neu-
ron mathematically is one of the important issues in
computational neuroscience. Many artificial neuron
models were proposed to model neurons in the ner-
vous system to express the ion flows through the sur-
face of membrane, examine exactly how brain works,
and simulate the activities of the brain. The first neu-
ron model is the classical neuron model proposed by
McCullach and Pitts in 1943 [1]. Several assump-
tions such as “all or nothing” principle were made
in this model for easy calculation, and these assump-
tions constitute a basis for other models. In 1952, the
most successful and widely used neuron model, the
Hodgkin–Huxley model was presented in the litera-
ture [2]. The ionic mechanism and electrical current on
membrane surface were discussed in this comprehen-
sive model. After that, the FitzHugh–Nagumo neuron
model, which is the simplified type of the Hodgkin–
Huxley neuron model, was proposed [3]. In 1972,
Nagumo and Sato [4] defined a neuron model and the
weakly coupled Wilson–Cowan neuron model was de-
fined in the same year [5]. The Moris–Lecar neuron
model proposed in 1981 is a conductance based neu-
ron model [6]. The Hindmarsh–Rose [7] and Izhike-
vich [8] neuron models were proposed in 1984 and in
2003, respectively. The studies that deal with the be-
havior of the collective neurons rather than an individ-
ual neuron have come forward, because the biological
information process and production of regular rhyth-
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mic activity are related to the cooperative behavior of
neurons [9–14].

To obtain and examine physically the behavior of
an individual or collective neuron model is very im-
portant, because it is very difficult to measure the in-
dividual signal of a real neuron and to identify the in-
teraction of the collective neurons in the living body
except for some applications. Several alternative sys-
tem approaches such as numerical modeling and hard-
ware implementations, which allow us to observe the
fire patterns or synchronizations of neurons, have be-
come crucial. While the software examinations of the
biological neuron models simulate the behavior of the
neurons, hardware realizations are able to emulate the
behavior of an individual biological neuron or cou-
pled neurons with real time adaptability. Furthermore,
hardware realizations of neuron models can be used
in practical applications such as bioinspired robotic
systems and CPGs (Central Pattern Generators) [15,
16]. While there are mostly discrete analog and digi-
tal hardware implementations of neuron models [17–
24], there are few studies about hardware implementa-
tion of synchronal neurons [25–27], because hardware
realization of the synchronous neural system is very
complex and hard to implement in terms of the cir-
cuit network structure and parameter adjustability. For
these reasons, alternative hardware solutions should be
considered. Nowadays, FPAA and FPGA based sys-
tem solutions offer a good alternative for the versa-
tile implementations of the complex structures such as
neural systems. Although there are some studies uti-
lizing FPAA or FPGA implementation of the differ-
ent neuron models [28–31], there is no comprehensive
study about the programmable and reconfigurable im-
plementation of the HR neuron model and its synchro-
nization to the best of our knowledge. In this study,
Hindmarsh–Rose neuron model (HR), which exhibits
several fire patterns of the neuron and widely used in
synchronization studies, is realized with both FPAA
and FPGA devices by utilizing their programmable
and reconfigurable features. The usage of both FPAA
and FPGA for modeling the HR neuron reflects an-
other originality of this study. And also, the synchro-
nization of two HR neurons is implemented with these
devices experimentally by using electrical coupling
method.

The HR neuron model and its dynamics are briefly
introduced in Sect. 2. The synchronization issues of
biological neurons and the coupled HR neurons are

handled in Sect. 3. The details of FPAA and FPGA
based realizations of HR neuron model and synchro-
nization applications are given in Sect. 4. Some con-
cluding remarks and comparisons are presented in the
last section.

2 HR neuron model

A real biological neuron has very different dynamic
behavior such as quiescent, spiking, bursting, and
chaotic. If the input signal applied to the neuron is
below a threshold value, the neuron does not gener-
ate an output response and this behavior is known as
quiescent. If there is a regular series at the output of
the neuron, this behavior is spiking. If the output re-
sembles ensembles of spikes separated by a certain pe-
riod, the neuron exhibits bursting behavior. And if the
output signal of the neuron is produced in the chaos
mode; its behavior is also chaotic. In terms of reflect-
ing these properties of neurons, the most successful
neuron model is the Hodgkin–Huxley model [2], but it
is a very complex model. The FitzHugh–Nagumo neu-
ron model [3] is the simplified type of the Hudgkin–
Huxley neuron model. This model is defined by two
differential equations, but it does not have the capa-
bility of exhibiting certain behavior of neurons. The
HR neuron model was derived from the FitzHugh–
Nagumo neuron model. Despite its simplicity, the HR
neuron model is able to exhibit several dynamic be-
havior of a real neuron [32–36] and it is defined by the
following differential equations:

ẋ = fx(x, y, z) = y − x3 + bx2 + I − z

ẏ = fy(x, y, z) = 1 − 5x2 − y (1)

ż = fz(x, y, z) = μ
(
s(x − xrest) − z

)

where (I ) represents the membrane input current, (b)

controls the transition between bursting and spiking,
(μ) controls the spiking frequency and the number of
spikes per burst in the case of spiking and bursting
respectively, (s) adjusts adaptation, and (xrest) is the
resting potential.

By fixing the parameters μ = 0.01, s = 4, xrest =
−1.6, the HR neuron model dynamics are inves-
tigated with a numerical simulation tool, namely
MATLAB™, depending on parameters (I ) and (b).
In these numerical simulations, the Dormand–Prince
integration algorithm was used. The time step is based
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Fig. 1 HR neuron dynamics and x–y plane demonstration for (a) Spiking mode, (b) Bursting mode, and (c) Chaotic mode

on a variable step solver with a relative tolerance of
10−3. The 200 ms transitory responses are discarded
for the simulations in Fig. 1. While b = 2.96, I = 5
are set to observe the spiking behavior as shown in
Fig. 1a, the bursting behavior in Fig. 1b is obtained for
the parameter values of b = 2.6, I = 2.66. The (b) and
(I ) parameters are chosen 2.96 and 3, respectively, to
observe the chaotic behavior in Fig. 1c.

3 Electrical coupling of HR neurons and
synchronization

Real neurons communicate with each other through
their synapses and there are two ways to couple them:
chemical coupling and electrical coupling. Chemical
coupling is slower than electrical coupling and electri-
cal coupling is used in the operations needed to the fast

transmissions [37]. The experimental studies carried
out on the living neurons reveal two important cases
about synchronization on neurons:

First case: Even if a neuron is isolated from its part-
ners with different methods such as dc hyperpolariza-
tion or photo-inactivating, it still maintains to generate
fire patterns by itself [38, 39].

Second case: When two neurons are coupled with
an artificial coupling method, the artificial coupling
parameters influence the activity patterns and synchro-
nization of neurons. On the other hand, the injecting
external dc currents to neurons change their character-
istics in both cases [12].

The features of these real neurons and coupling
methods are emulated with various studies thanks to
the biological neuron models. For example, the arti-
ficial coupling method can be constituted with a nu-
merical simulation easily. To investigate the behaviors
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of the coupled neurons numerically, one of the most
convenient biological model is HR neuron model. The
HR neurons can be coupled with each other by using
the artificial coupling methods such as electrical and
synaptic coupling [40, 41]. Typical coupling mecha-
nism is illustrated in Fig. 2.

The two coupled HR neurons can be defined by the
following equations:

ẋ1 = fx(x1, y1, z1) − gsσ (x1)ĉ12γ (x1, x2)

ẏ1 = fy(x1, y1, z1)

ż1 = fz(x1, y1, z1)

ẋ2 = fx(x2, y2, z2) − gsσ (x2)ĉ21γ (x2, x1) (2)

Fig. 2 Coupled two HR neurons

ẏ2 = fy(x2, y2, z2)

ż2 = fz(x2, y2, z2)

where ĉ12 = ĉ21 = 1. The parameter gs in Eq. (2)
is known as the strength of coupling. In the case of
the synaptic coupling, for the first neuron γ (x1, x2) =
γs(x2) = (1/(1 + e−k(x2−θs ))), σ (x1) = −(x1 − Vs),
and for the second neuron, γ (x2, x1) = γs(x1) =
(1/(1 + e−k(x1−θs ))), and σ(x2) = −(x2 − Vs). Two
neurons with synaptic coupling were simulated ac-
cording to k = 10,Vs = −2, θs = −0.28 by using a
simulation model where no control method is applied.
Numerical simulation results are given in Fig. 3. The
neurons coupled with synaptic coupling usually ex-
hibit asynchronous behavior [40] and various control
methods are proposed to be synchronized to them [41–
43].

In the case of electrical coupling for the first neu-
ron γ (x1, x2) = γe(x1, x2) = (x2 − x1), σ (x1) = 1 and
the second neuron γ (x2, x1) = γe(x2, x1) = (x1 −
x2), σ (x2) = 1. When two HR neurons are coupled
with electrical coupling, they can be exhibit syn-
chronous behaviors, but coupling parameters may af-
fect the behavior. For example, antiphase synchrony
behavior is observed between neurons for the nega-
tive values of gs as in Fig. 4. If <0.52, the neurons

Fig. 3 The behaviors of synaptic coupled HR neurons: membrane potentials (x1 and x2) of the coupled neurons, the error between the
membrane potentials, and x1−x2 plane demonstration
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Fig. 4 The antiphase synchrony behavior of electrical coupled HR neurons for gs = −0.2: membrane potentials (x1 and x2) of the
coupled neurons, the error between the membrane potentials, and x1−x2 plane demonstration

Fig. 5 The asynchronous behaviors of electrical coupled HR neurons for gs = 0.2: membrane potentials (x1 and x2) of the coupled
neurons, the error between the membrane potentials, and x1−x2 plane demonstration
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Fig. 6 Synchronous behavior of electrical coupled HR neurons for gs = 0.8: membrane potentials (x1 and x2) of the coupled neurons,
the error between the membrane potentials, and x1−x2 plane demonstration

Fig. 7 The FPAA implementation scheme of HR neuron model
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Fig. 8 The experimental
results of the FPAA based
HR neuron model
(a) Spiking mode, x:
0.5 mV/div, y: 0.5 mV/div,
time/div: 1 ms, (b) x–y

phase portrait illustration of
the spiking mode, x:
0.5 mV/div, y: 0.5 mV/div
(c) Bursting mode, x:
0.5 mV/div, y: 0.5 mV/div,
time/div: 10 ms, (d) x–y

phase portrait illustration of
the bursting mode x:
0.2 mV/div, y: 0.2 mV/div

are asynchronous as shown in Fig. 5. Otherwise, they
exhibit synchronous behavior as in Fig. 6 without no
need to use any control method [41].

4 Programmable analog and digital
implementations of the HR neuron model and
coupled HR neurons

In this study, HR neuron model and the two electrical
coupled neurons have been implemented with FPAA
as an example of analog realization, and then they have
been implemented with FPGA as an example of digital
realization for the first time in literature. Here, the de-
sign processes of FPAA and FPGA based HR neuron
model implementations are given in detail.

4.1 FPAA-based implementation of the HR neuron
model and coupled HR neurons

FPAAs are electrically reprogrammable integrated cir-
cuits, which contain basic analog building blocks.
They are used in implementations of analog and mixed
circuits providing high stability, accuracy, and rapid

prototyping techniques. FPAA devices have several
CABs (Configurable Analog Blocks), which consist
of op-amps, an array of switches, and a capacitor
bank and this device use switched-capacitor technol-
ogy for implementing various analog functions in a
CAB. In this study, AN231E04 type FPAA boards
were used and each board has four configurable
blocks.

Various configurable analog blocks (CAMs-Config-
urable Analog Modules) are predefined in Anadigm
Designer2 software tool. These CAM blocks are used
to implement analog functions such as multiplication,
addition, filtering, rectification, etc. The comprehen-
sive descriptions about these CAMs are available on
this software tool.1 An FPAA chip has limited capac-
ity and a specific saturation level, (±2 V). To elimi-
nate the capacity limitation, the FPAA boards can be
combined with each other. And, to overcome the sat-
uration problem, the system model must be rescaled
according to numerical simulation results and satura-
tion levels in design process. In order to implement

1Online available: www.anadigm.com.

http://www.anadigm.com
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Fig. 9 (a) A block
diagram, (b) Experimental
setup, for FPAA based two
coupled Hindmarsh–Rose
neurons with electrical
coupling

the FPAA based HR neuron model and the synchro-
nization of two coupled neurons, their mathematical
equations must be modified because of the saturation
level of the FPAA. If the numerical simulation results
of this neuron model are examined, it is seen that the
y-state variable exceeds saturation level. The modified
HR neuron definitions are given in Eq. (3).

ẋ = x − x3 + bx2 + I − az + cy

ẏ = e − f x2 (3)

ż = 0.9976z + (0.016 + 0.02x)

The continuous time modified equations defined by
Eq. (3) are the basis for implementing a HR neuron on
FPAA. This neuron is designed with FPAA by using
predefined SUMFILTER, TRANSFER FUNCTION,
MULTIPLIER, and VOLTAGE blocks as shown in
Fig. 7. x, y, and z state variables in Eq. (3) are im-
plemented with SUMFILTER blocks. This block con-
sists of a single pole low pass filter and three ana-
log weighted inputs. These inputs can be used both

in addition and subtraction operations. They are ap-
plied to a single pole low pass filter part that has a pro-
grammable corner frequency. The quadratic and cu-
bic functions of membrane potential and itself, namely
(x − x3 + bx2) function in x-state variable are embed-
ded on a TRANSFER FUNCTION block. This block
produces output voltage with 256 quantization steps
according to a function defined by the user. Therefore,
a specified output voltage is generated according to the
value of the sampled input voltage. Another quadratic
function in recovery variable y is realized with the
MULTIPLIER block. It is used for performing the
multiplication operation. The membrane input current
(I ) and the other constant parameters are constituted
with a DC voltage source called the VOLTAGE block.
The remaining addition and subtraction operations are
implemented with the SUMDIFF blocks. This block is
similar to the SUMFILTER block, but it does not con-
sist of a filter.

To observe the spiking behaviors of the neuron,
the FPAA modeling is downloaded to the develop-
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Fig. 10 The FPAA implementation scheme of two HR neurons with electrical coupling

ment board by setting the parameters in Eq. (3) as
in follows: a = 2, b = 2.96, c = 4, f = 3.125, e =
0.125, I = 0.5. And the experimental results of the
FPAA realization were measured via an oscilloscope
in time domain and x–y illustration. The experimen-
tal result of spiking behavior is shown in Fig. 8a and
x–y phase portrait of the HR neuron model is given in
Fig. 8b. To obtain the bursting behavior of the FPAA
based HR neuron model, only the variable parame-
ters in Eq. (3) are adjusted to the following values:
a = 2, b = 2.6, c = 10, f = 0.055, e = 1, I = 0.8 on
the same FPAA hardware in Fig. 7 in a programmable
manner. The bursting behavior of FPAA based HR
neuron and x–y phase portrait of this behavior are
given in Figs. 8c and 8d.

After the HR neuron is implemented with the
FPAA device, two coupled HR neurons are imple-

mented on FPAA devices by using electrical cou-
pling. To realize the FPAA based synchronous two
neurons, four FPAA boards are used in this study as in
Fig. 9. Here, the neuron structures are constituted sep-
arately, Neuron 1 is embedded FPAA1&2 and Neu-
ron 2 is embedded FPAA3&4. The external sources
used to change the fire patterns of neurons are real-
ized in FPAA1&3. Electrical coupling operations and
the adjustable strength parameter are implemented in
FPAA1&3.

The electrical coupling between these neurons is re-
alized only a SUMDIFF block, because γe(xj ) func-
tion consists of a difference expression, σ(xi) = 1 is
ignored and the values of strength parameter (gs) are
adjusted with the gain of SUMDIFF block. The FPAA
circuit scheme of two coupled HR neurons with elec-
trical coupling is presented in Fig. 10.
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Fig. 11 The experimental
results of the electrical
coupled two HR neurons
(a) x1, x2 and error signal
for gs = 0.2, x: 1 V/div, y:
1 V/div, time/div: 10 ms,
(b) x–y phase portrait
illustration for gs = 0.2 x:
1 V/div, y: 1 V/div (c) x1,
x2 and error signal for
gs = 0.8, x: 1 V/div, y:
1 V/div, time/div: 10 ms,
(d) x–y phase portrait
illustration for gs = 0.8 x:
0.5 V/div, y: 0.5 V/div

Table 1 The power consumptions and CAB usage capacity of the FPAA based coupled neurons implementation

Power
consumption

CAB1
(used/total
capacity)

CAB2
(used/total
capacity)

CAB3
(used/total
capacity)

CAB4
(used/total
capacity)

Neuron I FPAA 1 128 ± 38 mW 8/8 7/8 5/8 5/8

FPAA 2 56 ± 17 mW 7/8 0/8 0/8 0/8

Neuron II FPAA 3 128 ± 38 mW 8/8 7/8 5/8 5/8

FPAA 4 56 ± 17 mW 7/8 0/8 0/8 0/8

The asynchronous and synchronous situations can
be obtained by changing the (gs ) parameter, as men-
tioned previously. The experimental measurements of
the FPAA based realization of two coupled neurons
are obtained via an oscilloscope in time domain and
their synchronizations can be appeared from the x–y

illustrations. These experimental results are given in
Figs. 11a, 11b, 11c, and 11d for asynchronous (gs =
0.2) and synchronous (gs = 0.8) situations, respec-
tively.

The systems, which include the nonlinear expres-
sions defined by different mathematical functions, are
affected the adjustable parameters within the nonlin-
ear functions. Moreover, these nonlinear functions are
difficult to implement with discrete devices. However,

they are embedded on the TRANSFER FUNCTION
block in FPAA and the variable parameters in the sys-
tem are adjusted with FPAA software tool Anadigm
Designer2 without any need for extra design effort.
For these reasons, quadratic and cubic descriptions in
membrane potential and artificial coupling functions
are realized with FPAA in a precise way. The results
are consistent with numerical simulations. The CAB
usage capacity and power consumptions of these im-
plementations are summarized in Table 1.

4.2 FPGA-based implementation of the HR neuron
model and coupled HR neurons

FPGAs are reconfigurable integrated circuits, which
consists of programmable digital blocks and pro-
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Fig. 12 (a) A block diagram of the implementation of the FPGA based HR Neuron Model, (b) Experimental setup

grammable interconnections between them. Unlike
standard digital microprocessors, FPGAs provide mas-
sive parallelism in digital implementations. The FPGA
device used in these implementations is the Cyclone
III IC available on the Altera DE0 educational board.
A Cyclone III has 15408 digital blocks called logic el-
ements and 112 9-bit embedded multipliers. Also, an
Altera DE0 board has various peripherals like switches
and LEDs.2

To implement FPGA based HR neuron model, con-
tinuous time equations are discretized using the Eu-
ler discretization method by taking discretization con-
stant as 0.01. The other parameter values are the same
as that in the numerical simulation. The discrete time
equations are as follows:

xn+1 = xn + �h(yn − x3
n + bx2

n + I − zn)

yn+1 = yn + �h(1 − 5x2
n − yn) (4)

zn+1 = zn + �h
(
μ

(
s(xn − xrest) − zn

))

2[Online]. Available: www.altera.com.

Derived equations are realized with VHDL (Very high
speed integrated circuit Hardware Description Lan-
guage) on QuartusII software using 32-bit fixed point
numerical notation. In the design process, the main
system in Eq. (4) is first formed using VHDL. The pa-
rameters b and I , which affect the fire patterns, are
adjusted via the software tool to observe the differ-
ent behavior of the neuron with the FPGA. The pre-
defined system model of the neuron is downloaded
to this device by changing the variable parameters as
similar to FPAA. Since the output of an FPGA de-
vice is digital, unlike FPAA, the outputs of the FPGA
device are fed to 8-bit DACs. Experimental measure-
ments are monitored through a DAC block. The exper-
imental setup of FPGA based HR neuron is shown in
Fig. 12.

Three different behaviors of the neuron model on
FPGA are shown in the following figures depending
on the adjustable parameters. First of these represents
the regular spiking behavior in Fig. 13a. The burst-
ing behavior is given in Fig. 13c and the last one is
chaotic dynamic of an FPGA based HR neuron as in
Fig. 13e.

http://www.altera.com
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Fig. 13 The experimental
results of FPGA based HR
neuron model (a) Spiking
mode, x: 2 V/div, y:
2 V/div, time/div: 50 µs,
(b) x–y phase portrait
illustration of the spiking
mode, x: 2 V/div, y:
2 V/div, time/div: 50 µs,
(c) Bursting mode x:
2 V/div, y: 2 V/div,
time/div: 500 µs, (d) x–y

phase portrait illustration of
the bursting mode x:
1 V/div, y: 1 V/div,
(e) Chaotic mode x:
2 V/div, y: 2 V/div,
time/div: 1 ms, and (f) x–y

phase portrait illustration of
the chaotic mode x:
1 V/div, y: 1 V/div

Table 2 The synthesis results and estimated power consumptions of the FPGA based neuron implementation

Area usage (logic
elements)

Embedded multiplier
usage

Maximum frequency Power consumption

I neuron 1156 (%8) 64 (%57) 23.1 MHz 83.02 mW

II neuron 4851 (%31) 104 (%93) 14.19 MHz 83.14 mW

To implement two coupled neurons, which have
the same characteristic on the same FPGA device,
their initial conditions must be set to different val-
ues. Because the clocks on the FPGA are applied to
these neurons simultaneously, they already exhibit a

synchronous behavior. When the same initial condi-
tion is assigned to the neurons in numerical analy-
ses, the error signal between the neurons is zero as
in Fig. 14a. To make these neurons asynchronous,
their initial conditions are adjusted to different val-
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Fig. 14 The numerical simulation results of two HR neurons
with the different initial conditions-IC (a) the error signal be-
tween the neurons with the same IC, (b) the error signal between
the neurons with the different IC

ues and the error signal between them increases as in
Fig. 14b.

Similar to numerical simulation, initial conditions
of the neurons fulfilled on the same FPGA device are
set to different values and the neurons become asyn-
chronous. After two HR neurons are coupled with
electrical coupling, the synchronization behavior is ad-
justed by depending on the values of gs . For gs =
−0.2, gs = 0.2, gs = 0.35, and gs = 0.8, experimen-
tal results of FPGA based implementation are given in
Fig. 15.

It is noted that when the value of gs is negative, the
system exhibits the antiphase behavior as in Fig. 15a.
While the asynchronous behaviors are observed for
gs ≤ 0.52 as in Figs. 15b–c, the synchronous behavior
is shown in Fig. 15d for gs > 0.52. In addition, both
the neuron dynamics results and the synchronization
results of the FPGA based HR neuron are in agreement
with the numerical simulations and FPAA realizations.
The synthesis results and estimated power consump-
tion values of FPGA based implementations are given
in Table 2.

5 Conclusions

A comprehensive study about the Hindmarsh–Rose
neuron model has been presented in this paper. The
HR neuron model has been implemented with analog
and digital programmable embedded hardware for the
first time in literature. In addition, two HR neurons

are coupled with electrical coupling and the synchro-
nization behaviors are investigated in both FPAA and
FPGA based experimental setups.

In the FPAA based design process, HR Neuron
Model is rescaled because of the saturation level of
the device and the continuous time system description
is used for FPAA based implementations. A neuron
is constructed with two FPAA devices. There is no
need for extra process except for the parameter ad-
justments in the software tool. To observe the syn-
chronization condition of the neurons, four devices are
used.

In the FPGA based design process, because of the
digital structure of FPGA, the equations of the HR
neuron model are discretized. The discrete equations
with adjustable parameters are built on FPGA devices
by using VHDL. After two neurons, which have two
different initial conditions, are constituted on FPGA
separately, they are combined with electrical coupling
to synchronize on the FPGA.

When the performances of analog and digital HR
neuron platforms are compared, it can be seen that
both of them reflect the dynamics of a neuron and neu-
ral system similar to the numerical analyses. As seen
in Tables 1 and 2, while one FPGA board was suffi-
cient for FPGA implementations in terms of capacity
usage, multiple FPAA boards were required for FPAA
implementations. Also, using multiple boards made
FPAA consume more power compared to the power
consumption of the FPGA. The outputs of the FPGA
were obtained through DACs. Therefore, the perfor-
mance of the FPGA remained dependent on the bit
resolution of the DAC in use. In contrast, there was
no requirement for an external device to observe the
neural dynamics for FPAA.

The programmability and reconfigurability features
of FPAA and FPGA devices provide convenience for
observation of fire patterns of the neuron, because the
different behaviors of the neuron are predefined in the
software tools and the variable parameters are adjusted
easily and sensitively. The constructed structures in
software tools are downloaded to devices one by one
for evaluation. Thus, the experimental tools, which
deal with neural system dynamics, are provided to re-
searchers.
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Fig. 15 Experimental results of FPGA based coupled HR neurons for the values of gs = {−0.2,0.2,0.35,0.8}. (i) The results of
neurons states, x1(t), x2(t) and the error signal x1(t)−x2(t). (ii) Phase portraits in x1(t)−x2(t) domain
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