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Abstract Episodic or compound bursting arises from
a transition between a burst episode composed of a
long burst and several short bursts and a relatively
long subthreshold oscillation in this work. The min-
imal and generic phantom bursting model proposed
by Bertram et al. is employed to produce compound
bursting of a single pancreatic β-cell and compound
bursting synchronization with antiphase spikes of two
electrical coupling pancreatic β-cells. Two different
fast/slow analysis for the moderate and the slower
slow variables in three-dimensional spaces are com-
bined to highlight better how these two slow variables
with different time scales commonly or separately re-
sult in complex dynamic of the compound bursting
of both the single β-cell and the two electrical cou-
pling β-cells. For the compound bursting synchroniza-
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tion with antiphase spikes, we reveal how varying cou-
pling strength leads to a change of the number of short
bursts within the burst episode for different types of
compound bursting.

Keywords Compound bursting · Slow variables with
different time scales · Electrical coupling ·
Synchronization · Fast/slow analysis

1 Introduction

Electrical bursting in electrically excitable cells is
characterized by alternation of fast spiking oscillations
with silent periods. As a very complex bursting pat-
tern, episodic or compound bursting is exhibited as a
transition between a burst episode composed of a few
bursts and a long silent phase or “desert”. As reported
in pancreatic islets the compound bursting is respon-
sible for pulsatile insulin secretion, since its period is
considerably longer than a single simple burst [1, 2].

In a variety of bursting models, the variables can
typically be classified as either “fast” or “slow,” and
there is usually a single slow variable determining the
period of bursting [3–8]. Instead the compound burst-
ing can be represented in some bursting models with
two or more disparate-time-scale slow variables, and
the burst period is determined by some combination
of the slow variable time constants [9, 10].

It is usually thought that independent glycolytic os-
cillations play a key role in producing the compound
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bursting [11–13]. A minimal model for electrical ac-
tivity and independent glycolysis oscillation demon-
strates the occurrence of compound bursting [11].
More realistic models for both the electrical and the
glycolytic components including the participation of
mitochondria describe this mechanism for compound
bursting in pancreatic β-cells [12, 13]. As data have
been gradually accumulated and some biological phe-
nomena to be explained have expanded, the models be-
come more and more complex, culminating in the so-
called dual oscillator model [14, 15], where slow os-
cillations in glycolysis are combined with an already
complex model of electrical activity. At this level of
complexity, the classical fast-slow approach becomes
intractable due to the large number of slow variables.
For consideration of simplification, Bertram et al. [16]
uses a minimal and generic phantom bursting model
[9] to produce episodic or compound bursting in some
parameter settings. It is obtained from time courses of
a moderate and a slower slow variable and membrane
potential that dynamics of the moderate slow variable
is responsible for fast bursts, while dynamics of the
slower slow variable clusters bursts together with in-
tervening deserts. So, the compound bursting oscilla-
tion is examined by a fast/slow analysis treating the
slower slow variable as the sole slow variable in [16].
Nevertheless, the compound bursting pattern is driven
by a combination of these two slow variables with
different time scales, which can commonly or sepa-
rately play an important but distinct role in different
aspects of the compound bursting. It is obviously not
enough to explain dynamic behavior of the complex
compound bursting only considering the slower slow
variable. Moreover, one needs to investigate some un-
known questions associated with the occurrence of the
compound bursting listed as follows. What underlies
the initiating and terminating of every burst, which is
same or not to that of the beginning and ending of a
burst episode? What leads to shape of the bursts in the
burst episode? Why to a certain extent of amplitude the
first burst in the burst episode can continue for a long
time and appears to be long while the other bursts have
to end very soon and be short? Also, why subthresh-
old oscillation exists in the quiescent state between the
burst episodes, but not between the bursts in the burst
episode? In this work, different fast/slow analysis for
the moderate and the slower slow variables, respec-
tively, are exhibited in a three-dimensional space so as
to investigate preferably how these two different-time-

scale slow variables commonly or separately give rise
to the compound bursting.

On the other hand, synchronization of bursting ac-
tivity in pancreatic islets when pancreatic β-cells are
coupled together by gap junctions plays an important
role in the insulin secretion [17, 18]. In addition, an
impact of the channel noise in the important ATP-
sensitive K+ channels can be reduced when shared by
all the cells in the islet [18–20]. The phenomenon of
synchronization via gap junctions has been extensively
investigated in the pancreatic β-cell models [21–24]
and even in some other coupled biological oscilla-
tors [25–27]. However, compound bursting induced by
electrical coupling is little studied and is still a chal-
lenging problem because of complexity of two or more
disparate-time-scale slow variables. Here, the mini-
mal phantom bursting model of two electrical coupling
pancreatic β-cells is applied to examine for the first
time compound bursting synchronization phenomena
with antiphase spikes. In particular, it is more con-
cerned with what evokes a change of the number of
the short bursts within a burst episode in different com-
pound bursting.

The structure of this paper is settled as follows. Fol-
lowing this brief introduction in Sect. 1, the phantom
bursting model is presented in Sect. 2. Numerical in-
vestigations and fast/slow analysis for both the single
cell model and the two coupled cells model are de-
scribed in Sects. 3 and 4, respectively. Finally, conclu-
sions and discussions are given in Sect. 5.

2 The phantom bursting model

An important feature of the minimal compound burst-
ing model [9] is two slow variables with different time
scales that interact with a fast subsystem. The fast sub-
system is composed of two differential equations

dV

dt
= −(ICa + IKdr + ILeak + IK1 + IK2)/Cm (1)

dn

dt
= [

n∞(V ) − n
]
/τn(V ) (2)

In Eq. (1), Cm is the membrane capacitance and V is
membrane potential. A fast Ca2+ current ICa, a fast
delayed rectifier current IKdr, a constant-conductance
leakage current ILeak, and two slow K+ currents IK1
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and IK2 with slowly changing conductances are ex-
pressed as follows, respectively:

ICa = gCam∞(V )(V − VCa) (3)

IKdr = gKdrn(V − VK) (4)

ILeak = gLeak(V − VLeak) (5)

IK1 = gK1s1(V − VK) (6)

IK2 = gK2s2(V − VK) (7)

where VCa, VK, and VLeak are the Nernst potentials
of the Ca2+ current, the K+ current and the leakage
current, respectively, and gCa, gKdr, gLeak, gK1, and
gK2 are the maximum conductances of the respective
ionic currents. An equilibrium function m∞(V ) for
the Ca2+ current activates very rapidly, and an acti-
vation variable n for the delayed rectifier current IKdr

satisfies Eq. (2) with an equilibrium function n∞(V )

and a time scale function τn(V ).
The other two activation variables s1 and s2 chang-

ing very slowly in virtue of large time constants τs1

and τs2 , constitute the slow subsystem as described in
the following differential equations:

ds1

dt
= [

s1∞(V ) − s1
]
/τs1 (8)

ds2

dt
= [

s2∞(V ) − s2
]
/τs2 (9)

Moreover, a big difference in values of τs1 and τs2 can
induce disparate time scales of these two slow pro-
cesses.

The equilibrium functions m∞(V ), n∞(V ),
s1∞(V ), and s2∞(V ) have the form of x∞(V ) below:

x∞(V ) = 1

1 + exp((vx − V )/sx)
(10)

Parameter values are fixed as shown in [16], except for
the maximum conductance of the moderate slow K+
current gK1 as a key parameter. All numerical simu-
lations and bifurcation diagrams were calculated with
Matlab and XPPAUT [28] software packages.

3 Compound bursting in the single β-cell model

Compound bursting consisting of bursts episodes fol-
lowed by long silent phases can appear in the minimal
phantom bursting model (1)–(10) in Fig. 1, due to the

impact of these two slow variables with different time
scales. Just as the time course of the membrane poten-
tial V for gK1 = 21.5 pS shown in Fig. 1(a), a burst
episode in the compounding bursting is composed of a
long burst with many spikes, several short bursts with
a few spikes, and subthreshold oscillation with large
amplitude on both sides but small on the middle dur-
ing a long silent phase. In the meantime, the membrane
potential of the compounding bursting is accompanied
with a no-spike compound mode of the moderate slow
variable s1 in Fig. 1(b) and a relatively large jagged
oscillation of the slower slow variable s2 in Fig. 1(c).

The slow variables s1 and s2 with different time
scales may commonly or separately contribute to com-
plex dynamic of the compound bursting. So, two dif-
ferent fast/slow analyses for the slow variables s1 and
s2 are given in three-dimensional V –s1–s2 spaces in
Figs. 2 and 3, respectively, are combined to explore
the dynamic behavior of the compound bursting.

In the fast/slow analysis in Fig. 2, the moderate
variable s1 is treated as a bifurcation parameter of the
fast subsystems (1) and (2) and the slower slow vari-
able s2 is fixed at different values between 0.40 and
0.47 presented in the oscillatory range in Fig. 1(c).
A slow manifold surface is composed of multiple Z-
shaped bifurcation curves of the fast subsystem with
respect to the bifurcation parameter s1 for these differ-
ent values of s2. Stable nodes on the lower branches
and saddles on the middle branches of the Z-shaped
curves coalesce via fold bifurcation (LP) at left knees.
As s1 increases, the minimum and the maximum of
amplitude of stable limit cycles via Hopf bifurcations
(H) on upper branches of the Z-shaped curves form a
C-shaped surface, since the stable limit cycles hit sad-
dles on middle branches of the Z-shaped curves and
disappear via saddle homoclinic bifurcation. The S1-
nullcline surface for the different values of s2 (blue)
and trajectory of the compound bursting (red) are over-
lapped in Fig. 2. Figure 2(b) is obtained when rotating
Fig. 2(a) 90◦ and making it bigger, and Fig. 2(c) is a
projection of Fig. 2(a) in the V –s1 plane.

At the lower level of the s1, the trajectory jumps
up from the stable lower branch to the stable limit cy-
cle branch, and the burst starts to appear in the active
phase owing to coalescence of the lower branches and
the middle branches via the fold bifurcation. A little
tilted form at the start of the burst results when it is lo-
cated in the C-shaped stable limit cycles, and then the
burst terminates and the trajectory returns to the lower
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Fig. 1 Time courses of the membrane potential V (a), the moderate slow variable s1 (b) and the slower slow variable s2 (c) for
gK1 = 21.5 pS in the single cell model

Fig. 2 (a) The fast/slow analysis of the compound bursting
for gK1 = 21.5 pS in the single β-cell model in the three-
dimensional V –s1–s2 space, when the moderate variable s1
is treated as the bifurcation parameter of the fast subsystems
(1) and (2), and the slower slow variable s2 is considered as a

constant. The s1-nullcline surface (blue) and trajectory of the
compound bursting (red) are overlapped; (b) is obtained when
rotating (a) 90◦ and making it bigger; (c) is a projection of (a) in
the V –s1 plane (Color figure online)

branch as the stable limit cycles disappear via saddle
homoclinic bifurcation. It follows that these two bi-
furcations with respect to the fast slow variable s1 are
primarily responsible for the beginning and the ending
of every burst in burst episode. However, we wonder if
there are same generation mechanisms of the start and
end of every burst to those of the whole burst episode.
Then why can the burst episode terminate and go into
subthreshold oscillation in the quiescent state? In the
burst episode, why can the first burst continue for a
long time and appear to be long while the other bursts
have to end very soon and be short?

It is worth noting that the slower slow variable s2

gradually increases during the occurrence of the burst
episode in the three-dimensional V –s1–s2 space in
Fig. 2. Therefore, the fast/slow analysis for the moder-
ate slow variable s1 in Fig. 2 should be combined with
that for the slower slow variable s2 in Fig. 3, where the

moderately slow variable s1 is converted to a fast vari-
able and a fast subsystem consists of (1), (2), and (8).
The fast subsystem also forms a Z-shaped bifurcation
curve as shown in Fig. 3, where (b) and (c) are enlarge-
ments of two different parts in (a), respectively. But
differently, the stable limit cycle occurring via a su-
percritical Hopf bifurcation (H1) on the upper branch
loses stability via the period-doubling bifurcation, and
then the unstable limit cycle hits saddle on the mid-
dle branch and disappears via the saddle homoclinic
bifurcation. Apart from that, there is another subcrit-
ical Hopf bifurcation (H2) on the lower branch, be-
fore which only the unstable limit cycle coexists with
a stable focus, and then hits the saddle on the middle
branch.

The first burst in the burst episode above both s1-
nullcline in Fig. 2(b) and s2-nullcline in Fig. 3(b) be-
gins to move from forward to backward along an in-
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Fig. 3 The fast/slow analysis of the compound bursting
for gK1 = 21.5 pS in the single β-cell model in the three-
dimensional V –s1–s2 space, when the slower variable s2 is
treated as the bifurcation parameter of the fast subsystems (1),

(2), and (8), where H1 and H2 appear in upper and lower
branches, respectively; (b) and (c) are enlargements of two dif-
ferent parts in (a), respectively

creasing direction of s2. When the stable limit cycle
hits saddle on the middle branch of the z-shaped bifur-
cation curve for the bifurcation parameter s1 in Fig. 2,
the trajectory exactly reaches the stable limit cycle
around the upper branch of the z-shaped bifurcation
curve for the bifurcation parameter s2 in Fig. 3. There-
fore, the fast/slow analysis for the slower slow variable
s2 in Fig. 3 is employed to consider different dynamic
behaviors of the long burst and the short bursts before
their termination via the saddle homoclinic bifurcation
in Fig. 2. The first burst at smaller values of s2 can con-
tinue to possess so many spikes in a very long interval
of s2 until the stable limit cycle becomes unstable at
the PD bifurcation point in Fig. 3. However, the other
bursts located in the unstable limit cycles at larger val-
ues of s2 are not able to continue and have to become
the short bursts. As s2 continues to rise, the whole
burst episode composed of the long burst and the short
bursts is totally terminated via the saddle homoclinic
bifurcation for the slower slow variable s2 in Fig. 3.
Thus, the initiation of the burst episode, that is, the
first burst is induced by fold bifurcation for s2, while
the termination of the burst episode, that is, the last
short burst results from collaboration of the different
saddle homoclinic bifurcations for s1 and s2. Further-
more, the trajectory falls down and stays in gradually
decreasing oscillatory mode around the stable focus on
the lower branch of the Z-shaped curve for the bifurca-
tion parameter s2 in Fig. 3. As s2 decreases, the stable
focus becomes unstable through the subcritical Hopf
bifurcation (H2) so that the trajectory goes away from
the lower branch in a gradually increasing oscillatory
mode. That can account for the subthreshold oscilla-

tion with large amplitude on both sides and a small
one on the middle during the long silent phase.

4 Compound bursting synchronization with
the different number of short bursts

Bursting synchronization induced by electrical cou-
pling in the pancreas islet plays an important role in
the insulin secretion and it has been explored in many
pancreatic β-cell models. However, synchronization
of the compound bursting induced by two or more
disparate-time-scale slow variables is still a challeng-
ing problem. In the present work, the minimal phan-
tom model is extended to two pancreatic β-cells con-
nected by a gap junction to explore synchronization
behaviors of the compound bursting evoked by differ-
ent electrical coupling strength. To model gap junc-
tions of pancreatic β-cells, the two electrical coupling
cells model is often handled by adding the following
linear coupling term gc(Vi − Vj ), where gc is the cou-
pling strength between two neighbor identical cells 1
and 2.

dVi

dt
= −[

ICa(Vi) + IKdr(Vi, ni) + ILeak(Vi)

+ IK1(Vi, si1) + IK2(Vi, si2)

+ gc(Vi − Vj )
]
/Cm (11)

dni

dt
= [

n∞(Vi) − ni

]
/τn(Vi) (12)

dsi1

dt
= [

s1∞(Vi) − si1
]
/τs1 (13)
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dsi2

dt
= [

s2∞(Vi) − si2
]
/τs2 (14)

where i, j = 1, 2, and i �= j represent the number of
the cells. In this work, the coupling strength of gap
junctions gc is treated as a free parameter.

The compound bursting with the long burst, the
short bursts, and the subthreshold oscillation for gK1 =
21.5 pS can be presented in the single cell model in
Fig. 1. Actually in a certain range of the parameter
gK1, the increasing electrically coupled strength gc

in the two coupled cells model (11)–(14) can make
a transition from fast bursting to compound bursting

Fig. 4 The existing ranges of the different bursting patterns in
the gK1–gc plane

even to slow bursting. As shown in (gK1, gc)-plane in
Fig. 4, compound bursting can dominate a very wide
region, especially as it can always exist, no matter
whether it is coupled or uncoupled when gK1 varies
between 21.3 and 21.7.

Here, we only consider different bursting behaviors
induced by different electrically coupled strength gc

for gK1 = 21.2 pS. As shown in Fig. 5, the fast burst-
ing in the uncoupled case is a square-wave burster.
From a dynamic point of view, it is classified as
“fold/homolinic” bursting by the fast/slow analysis for
the moderate slow variable s1 and a fixed value of s2

chosen from its very narrow oscillatory range from
0.47 to 0.48 in Fig. 5(b). Furthermore, all these com-
pound bursting patterns for the different electrically
coupled strength gc in the two electrical coupling cells
model gradual synchronize in the membrane potential
V1 and V2, two moderate slow variables s11 and s21

and two slower slow variables s12 and s22 as shown in
Fig. 6. In every burst episode of these different syn-
chronized compound bursting patterns, the number of
the short bursts will decrease from 4 to 3, 2 and 1 when
the coupled strength gc is fixed as 1.6, 1.95, 2.5, and
3.3, respectively. Additionally, it can be seen in return
maps of Inter-Burst Intervals (IBIs) in Fig. 7 that time
intervals between two adjacent short bursts have little
change but the number of the minimal IBIs decreases
from 3 to 2, 1 and 0. That means the different num-
ber of the short bursts is decided by the difference in
total time durations of all these short bursts. There-

Fig. 5 Fast “fold/homoclinic” bursting for gK1 = 21.2 pS in the single β-cell model, where (a) is time course of the membrane
potential V and (b) is the fast/slow analysis for the bifurcation parameter s1 as s2 is fixed at 0.483
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Fig. 6 Compound bursting synchronization shown in time
courses of the membrane potentials V1 and V2, two moder-
ately slow variables s11 and s21 and two slower slow variables

s12 and s22 in the two coupled β-cells model when the coupled
strength gc = 1.6 (a), 1.95 (b), 2.5 (c), and 3.3 (d), respectively
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Fig. 7 Return maps of Interburst intervals (IBIs) of the compound bursting patterns for gc = 1.6 (a), 1.95 (b), 2.5 (c), and 3.3 (d),
respectively

fore, the mechanism behind the different durations of
all these short bursts in the burst episode for the cou-
pled strength gc = 1.6, 1.95, 2.5, and 3.3, respectively,
will be deep revealed by the fast/slow analysis of the
two coupled β-cells model.

Without the loss of generality, we only give the
fast/slow analysis of the compound bursting synchro-
nization with a long burst and two short bursts for
gc = 2.5. Just as the time courses of the moderate
slower variables and the slower slow variables for
cells 1 and 2 in Fig. 6, the moderately slower variable
s11 ≈ s21 = s1 for different values of s12 ≈ s22 and
the slower slow variable s12 ≈ s22 = s2 are regarded

as a bifurcation parameter in the fast/slow analyses
in Fig. 8 and Fig. 9, respectively. Stable limit cycles
via two Hopf bifurcation points H1 and H2 on upper
branch of z-shaped bifurcation curves in the fast/slow
analyses in Fig. 8 and Fig. 9, correspond to in-phase
(IP) and anti-phase (AP) branches, respectively. Since
there is a function relationship between V1 and V2,
the dynamic behavior of V1 is only considered here.
The stable limit cycle along the AP branch decides
anti-phase spike of burst synchronization in a burst,
which can be seen in the time courses of V1 and V2

in Fig. 10(a) and the V1–V2 phase plane in Fig. 10(b).
In the fast/slow analysis for the bifurcation parameter
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Fig. 8 (a) The fast/slow analysis for s11 ≈ s21 = s1 as the bi-
furcation parameter when the coupled strength gc = 2.5 in the
three-dimensional V –s1–s2 space, where stable limit cycles via
these two Hopf bifurcations H1 and H2 correspond to in-phase

(IP, yellow) and anti-phase (AP, grey) branches, respectively.
(b) is gotten when rotating (a) 90◦ and making it bigger. (c) is a
projection of (a) in the V1–s1 plane (Color figure online)

Fig. 9 (a) The fast/slow analysis for s12 ≈ s22 = s2 as the bi-
furcation parameter when the coupled strength gc = 2.5 in the
three-dimensional V –s1–s2 space, where stable limit cycles via

these two Hopf bifurcations H1 and H2 correspond to in-phase
(IP) and anti-phase (AP) branches, respectively. (b) and (c) are
enlargements of two different parts in (a), respectively

Fig. 10 An anti-spike burst synchronization in the compound bursting for gc = 2.5 is represented in (a) time courses of V1 (black)
and V2 (orange) and (b) the trajectory in V1–V2 phase plane (Color figure online)
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Table 1 The difference of the TR bifurcation points and the
saddle homoclinic points for the increasing coupled strength gc

gc s2 for TR s2 for HC The difference between them

1.6 0.4596 0.4745 0.0149

1.95 0.4654 0.4787 0.0133

2.5 0.4742 0.4827 0.0085

3.3 0.4853 0.4916 0.0063

s12 ≈ s22 = s2 in Fig. 9, the first anti-spike burst along
the stable AP limit cycle branch exists in a long in-
terval of s2 before Torus bifurcation (TR). The other
anti-spike bursts lying in the unstable limit cycle af-
ter the TR bifurcation can not continue but return to
the stable lower branch via the saddle homoclinic bi-
furcation (HC). It follows that the total time dura-
tion of all the short bursts in every compound burst-
ing is determined by the existing range of the unstable
limit cycle between the TR bifurcation point and the
saddle homoclinic point for the bifurcation parameter
s12 ≈ s22 = s2. Moreover, it can be seen in Table 1 that
the difference of the TR bifurcation points and the sad-
dle homoclinic points gradually decreases with the in-
creasing coupled strength gc, thereby it so that the total
time duration of all these short bursts decrease with the
increasing coupled strength gc. Based on rough invari-
ability in the time durations of every short burst and in
the time intervals between the short bursts, the number
of the short bursts gradually decreases from 4 to 3, 2
and 1.

5 Conclusions and discussions

Episodic or compound bursting is a very complex
but important bursting pattern in bursting models
with two or more disparate-time-scale slow variables.
For consideration of simplification, the minimal and
generic phantom bursting model [9] is used to pro-
duce episodic or compound bursting, when two slow
variables with different time scales commonly or sep-
arately play different roles in different aspects of the
compound bursting. It is obviously not enough to ex-
plain dynamic behavior of the complex compound
bursting only considering the slower slow variable.
Therefore, different fast/slow analysis for the mod-
erate and the slower slow variables, respectively, are
given in a three-dimensional space to reveal complex

dynamic of the compound bursting. At first, the begin-
ning and the ending of every burst in burst episode are
decided by the fold bifurcation and the saddle homo-
clinic bifurcation for the moderate slower variable s1,
where the little tilted form at the start is resulted from
locating in the C-shaped stable limit cycles. Nonethe-
less, the burst episode is terminated by common ef-
fects of the different saddle homoclinic bifurcations
for s1 and s2. Then, the first burst exactly reaches
the stable limit cycle for the bifurcation parameter s2,
when the stable limit cycle for the bifurcation param-
eter s1 hits saddle on the middle branch. So the first
burst existing in stable limit cycle for s2 have many
spikes but the others locating in the unstable limit cy-
cles for s2 are not able to continue and become the
short bursts, which can explain different occurrence
of the long burst and the short bursts. Finally, during
the long silent phase the property of the stable focus
on the lower branch for the bifurcation parameter s2

accounts for the subthreshold oscillation with large
amplitude on both sides and small amplitude on the
middle.

Furthermore, synchronization of bursting activity
plays an important role in the insulin secretion. Using
the minimal phantom bursting model of two electrical
coupling pancreatic β-cells, we examine for the first
time compound bursting synchronization phenomena
with anti-phase spikes. Moreover, we also discuss the
fundamental mechanism of the change of the number
of the short bursts within a burst episode for differ-
ent compound bursting. Since the total time duration
of all the short bursts is decided by the existing range
of the unstable limit cycle between the TR bifurcation
point and the saddle homoclinic point. So the decrease
of the difference between these two points for the in-
creasing coupled strength gc leads to the decreasing
durations of all these short bursts. All above can ex-
plain the number of the short bursts decreasing from
4 to 3, 2 and 1, in consideration of rough invariability
of the time duration of every short burst and the time
intervals between the short bursts.

In fact, heterogeneity in the coupled phantom-
burster model with heterogeneous electrical coupling
can reproduce many aspects of the measured islet elec-
trical dynamics. Furthermore, it would be interesting
to study the influence of the topology of the network
and the coupling strength between β-cells inside the
Langerhans islets. Using complex networks theory,
one can investigate under what conditions synchro-
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nization emerges for β-cell network models. In ad-
dition, periodic insulin secretion appears to be con-
trolled by metabolic oscillations within the cells. To
explore the bases of the synchronization phenomenon,
both electrical and metabolic features of a mathemat-
ical gap junction model will be taken into account to
study biological functions of the β-cell cluster.
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