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Abstract Based on previous studies, a new spatial
curved slender-beam finite element and a new cylin-
drical shell finite element are proposed in the frame
of gradient-deficient Absolute Nodal Coordinate For-
mulation (ANCF). The strain energy of the beam ele-
ment is derived by using the definition of the Green–
Lagrange strain tensor in continuum mechanics so that
the assumption on small strain can be relaxed. By us-
ing the differential geometry and the continuum me-
chanics, the angle between two base vectors of a de-
fined local coordinate frame of the cylindrical shell
element is introduced into the strain energy formula-
tions. Therefore, the new shell element can be used
to model parallelogram shells. The analytical formu-
lations of elastic forces and their Jacobian for the
above two finite elements of gradient-deficient ANCF
are also derived via the skills of tensor analysis. The
generalized-alpha method is used to solve the huge set
of system equations. Finally, four case studies includ-
ing both static and dynamic problems are given to val-
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1 Introduction

The past decade has witnessed numerous theoretical
and numerical advances in the Absolute Nodal Coordi-
nate Formulation (ANCF) for the dynamics of flexible
multibody systems, initially proposed by Shabana [1],
as an accurate, non-incremental finite element method
to deal with the dynamics of those systems subject
to both large overall motions and large deformations.
The ANCF, hence, has become a benchmark in the
development of dynamics of flexible multibody sys-
tems [2–4].

Many kinds of finite elements of ANCF have been
proposed for modeling both large overall motion and
large deformation of a constrained multibody sys-
tem. These finite elements can be classified into two
types according to their gradient coordinates, i.e., the
fully parameterized finite elements and the gradient-
deficient finite elements. For the fully parameterized
finite elements, such as the spatial beam element of
ANCF proposed by Shabana and Yakoub [5, 6], the
plate element of ANCF proposed by Mikkola and Sha-
bana [7], the planar shear deformable beam element
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of ANCF proposed by Omar and Shabana [8] and the
laminated plate element of ANCF proposed by Liu
et al. [9], all the nine gradient coordinates in the spatial
case or all the four gradient coordinates in the planar
case are used to describe the overall motion and the
deformation of a finite element. Such finite elements
lead to the complete description of the element defor-
mation, including the cross-sectional deformation of
beams and plates. The corresponding fully parameter-
ized curved elements of ANCF can also be achieved
by using the isoparametric mapping method, such as
the fully parameterized spatial curved beam element
of ANCF proposed by Sugiyama and Suda [10]. For
modeling slender or thin structures like cables, belts
and membranes, many finite elements of gradient-
deficient ANCF have been proposed. In these finite
elements, fewer gradient coordinates are used to de-
scribe the motion of the centerline of a beam or the
mid-surface of a plate/shell. For example, Mikkola
et al. [11] proposed a shear deformable planar beam
element of gradient-deficient ANCF with two nodes
and demonstrated that the shear deformation can also
be parameterized by using a vector describing the ori-
entation of the cross section as nodal coordinates. The
mass matrix of the proposed finite element, however,
is no longer constant. Shabana and Maqueda [12] pro-
posed a procedure for modeling the slope discontinu-
ities between the gradient-deficient finite elements by
using the concept of intermediate finite element coor-
dinate system while keeping constant mass matrices.

It is also possible to generalize a planar beam ele-
ment of gradient-deficient ANCF to a curved beam of
the same kind. For example, Sugiyama et al. [13] stud-
ied the case of a planar beam element and eliminated
the effect of strains in initially curved beam by using
one-dimensional Almansi strain. Gerstmayr and Sha-
bana [14] proposed a spatial beam element of gradient-
deficient ANCF, and only used one position vector and
one gradient vector as nodal coordinates for each node.
Recently, Gerstmayr and Irschik [15] found that for
the planar slender-beam element of ANCF proposed
in [16], the use of the Green–Lagrange strain and the
Piola–Kirchhoff stress of the second type brings about
a strong coupling between the axial strain and the
bending strain in deriving the elastic energy formu-
lation of the element, whereas such a coupling may
lead to inaccurate numerical results. Thus, they uti-
lized both Biot strain and stress tensors in the descrip-
tion of elastic energy and proposed a novel method

to avoid the strain coupling problems [15]. The cor-
responding spatial curved beam element of gradient-
deficient ANCF, however, has not yet received any
attention. Dmitrochenko and Pogorelov [17] devel-
oped a thin plate element of gradient-deficient ANCF
in which the transverse gradients were not adopted
as nodal coordinates. Furthermore, the Kirchhoff the-
ory that they used does not account for the shear de-
formation. Hence, their plate element cannot be di-
rectly used to model shell structures. Furthermore, the
spatial curved beam and plate elements of gradient-
deficient ANCF may easily suffer from significant
curvature/membrane locking due to the use of Her-
mite spline for shape functions. Sanborn et al. [18]
named the phenomenon a Curve-Induced Distortion
(CID), which can lead to the axial and membrane
strain distortions in a thin plate element of gradient-
deficient ANCF. To counteract CID problem, Sanborn
et al. [18] proposed a Flat-Mapped Extension Mod-
eling (FMEM) method to reduce the effect of CID
through the use of a 1D Hermite polynomial kine-
matically linked to the 3D Hermite curve to repre-
sent the axial displacement field. However, it is still
an open problem to establish any thin shell elements
of gradient-deficient ANCF.

In this paper, based on the previous studies on the
finite elements of gradient-deficient ANCF, especially
the works by Gerstmayr and Shabana [14], Gerstmayr
et al. [15] and Dmitrochenko and Pogorelov [17], a
new spatial curved slender-beam element and a new
thin cylindrical shell element are proposed in the
frame of gradient-deficient ANCF. The remaining part
of the paper is organized as follows. From the defi-
nition of Green–Lagrange strain tensor in continuum
mechanics [19], the strain energy formulation for a
new spatial curved slender-beam element of ANCF
is derived in Sect. 2 so that the assumption on small
element strains can be removed. In Sect. 3, a Carte-
sian coordinate frame and a curved surface coordi-
nate frame are defined at an arbitrary point in a new
cylindrical shell element of ANCF. Based on the care-
ful analysis of element deformation, the formulation
of calculating the strain energy of mid-surface is pro-
posed. The bending strain energy of the cylindrical
shell element of ANCF is also deducted by using
the Weingarten’s formula [20]. The angle between
two base vectors of a defined curved surface coordi-
nate frame on the element mid-surface is introduced
into the formulation of element strain energy so that
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the cylindrical shell element of ANCF can be used
to model flexible curved parallelogram structures. In
Sect. 4, the analytical expression of the elastic forces
and their Jacobian for the above two finite elements
of ANCF are deducted. In Sect. 5, an efficient compu-
tational strategy for solving the equations of motion
is briefly introduced. Four case studies are given in
Sect. 6 to testify the above results. The first case is
the static test of a cantilever thin parallelogram plate.
The second case is about the bending tests of a spa-
tial curved cantilever beam and a cantilever shell. The
third case is a classic example to test the performance
of a cylindrical shell element, that is, an open-ended
cylindrical shell subjected two opposite forces. The fi-
nal case is to study the dynamics of a double pendu-
lum composed of two parts of thin cylindrical shells.
In Sect. 7, the main conclusions are drawn and the per-
spectives for future researches are outlined.

2 A spatial curved slender-beam element of ANCF

2.1 Longitudinal strain energy of a spatial curved
slender-beam element

According to the work by Gerstmayr and Shabana [14],
the nodal coordinates of a spatial curved slender-beam
element of ANCF as shown in Fig. 1 can be expressed
as

e =
[

rT
i rT

i,x rT
j rT

j,x

]T
. (1)

Fig. 1 A spatial curved slender-beam element in initial and cur-
rent configurations

Then, the displacement of an arbitrary point P on the
beam axis yields

r(ξ) = S(ξ)e = [
S1I3 S2I3 S3I3 S4I3

]
e, (2)

where S denotes the element shape function, S1 = 1 −
3ξ2 +2ξ3, S2 = l(3ξ2 −2ξ3), S3 = ξ −2ξ2 +ξ3, S4 =
l(−ξ2 + ξ3). Here, 0≤ ξ ≤ 1, l is the initial arc length
of the axis of the beam element.

In Fig. 1, dx denotes the infinitesimal arc length
along the element axis in current configuration and dX

denotes the infinitesimal arc length along the element
axis in original reference configuration. According to
the continuum mechanics [19], the longitudinal strain
εl can be cast as

(dx)2 − (dX)2 = 2dXεl dX. (3)

The square of the arc length of an infinitesimal arc
segment can be further calculated, by using the in-
finitesimal displacement vector defined in the global
coordinate frame, as

⎧⎪⎪⎨
⎪⎪⎩

(dx)2 = dr · dr = dr
dξ

dξ · dr
dξ

dξ

(dX)2 = dr0 · dr0 = dr0

dξ
dξ · dr0

dξ
dξ.

(4)

From Eq. (4), the differentiation of the arc length of
the beam axis with respect to ξ can be written as

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

dx = ds =
∣∣∣∣
dr
dξ

∣∣∣∣dξ

dX =
∣∣∣∣
dr0

dξ

∣∣∣∣dξ.

(5)

Substitution of Eqs. (4) and (5) into Eq. (3), hence,
gives the longitudinal strain εl

εl = 1

2

(
dr
dξ

∣∣∣∣
dr0

dξ

∣∣∣∣
−1

· dr
dξ

∣∣∣∣
dr0

dξ

∣∣∣∣
−1

− 1

)
. (6)

The value of | dr0
dξ

| is equal to the initial length of the
beam element in theory and can be determined by

∣∣∣∣
dr0

dξ

∣∣∣∣ =
∣∣∣∣
dS
dξ

e0

∣∣∣∣. (7)

Therefore, the longitudinal strain energy formulation
for the beam element shown in Fig. 1 can be expressed
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by

Ul = 1

2

∫

l

EA(εl )2 dl, (8)

where E is the Young’s modulus of the beam material.

2.2 Bending strain energy of a spatial curved
slender-beam element

According to the differential geometry [20] and Eq. (5),
a Frenet coordinate frame α-β-γ can be defined at an
arbitrary point P on the axis of a spatial curved slender-
beam element as shown in Fig. 2 as following:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

α(s) = dr
ds

= rξ |rξ |−1

dα(s)

ds
= κ(s)β(s)

γ (s) = α(s) × β(s),

(9)

where s is the arc coordinate along the curved element
axis, α(s) is the curve tangent vector at point P. The
base vectors β(s) and γ (s) are called the normal and
binormal vectors, respectively; κ(s) = κ(ξ) = |rξ ×rξξ |

|rξ |3
represents the curvature of the curved axis at point P,

rξ = dr
dξ

and rξξ = d2r
dξ2 .

From the definition of base vectors in Eq. (9), it is
obvious that the plane determined by β(s) and γ (s) is
always perpendicular to the tangent vector α(s). Un-
der the deformation assumption of Euler beam, it can
be seen from Fig. 2 that the position vector of an arbi-
trary point B on the plane determined by base vectors
β(s) and γ (s) in the beam element can be described

Fig. 2 The position vector of an arbitrary point on the spatial
curved slender-beam element

by

rB = r + yβ(s) + zγ (s), (10)

where y and z are the local coordinates defined in the
Frenet coordinate frame α-β-γ .

From Eq. (9), the formulation to describe the kine-
matic properties of a moving particle along a curve can
be expressed by

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

α′(s) = dα(s)

ds
= κ(ξ)β(s)

β ′(s) = dβ(s)

ds
= −κ(ξ)α(s) + τ(s)γ (s)

γ ′(s) = dγ (s)

ds
= −τ(s)β(s),

(11)

where τ(s) represents the torsion of the curve.
As shown in Fig. 2, according to the continuum me-

chanics and Eq. (10), the square of the arc length of an
infinitesimal arc segment close to point B in the beam
element in the current configuration can be expressed
by

(
dsB

)2 = drB · drB

=
(

drB

dξ
dξ

)
·
(

drB

dξ
dξ

)

=
(

dr
dξ

+ y
dβ(s)

dξ
+ z

dγ (s)

dξ

)

×
(

dr
dξ

+ y
dβ(s)

dξ
+ z

dγ (s)

dξ

)
dξ dξ

=
(

dr
dξ

+ y
dβ(s)

ds

ds

dξ
+ z

dγ (s)

dξ

)

×
(

dr
dξ

+ y
dβ(s)

ds

ds

dξ
+ z

dγ (s)

ds

ds

dξ

)
dξ dξ.

(12)

Substituting Eqs. (5) and (11) into Eq. (12) and
using the orthogonality relationships among vectors
α(s), β(s) and γ (s), Eq. (12) can be further written
as

(
dsB

)2

≈
(

rξ · rξ + 2yrξ · dβ(s)

dξ
+ 2zrξ · dγ (s)

dξ

)
dξ dξ

= (
rξ · rξ − 2y|rξ |2κ(ξ)

)
dξ dξ. (13)
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In Eq. (13), the higher-order terms of y and z are ig-
nored.

Similarly, the square of the original arc length of an
infinitesimal arc segment close to point B in the beam
element in the initial configuration can be written as
(
dsB

0

)2 ≈ (
(r0)ξ · (r0)ξ − 2y

∣∣(r0)ξ
∣∣2

κ0(ξ)
)

dξ dξ,
(14)

where

(r0)ξ = dr0

dξ
, (r0)ξξ = d2r0

dξ2
and

κ0(ξ) = |(r0)ξ × (r0)ξξ |
|(r0)ξ |3 .

From the definition of the Green–Lagrange strain
tensor in continuum mechanics [19], the strain of in-
finitesimal segment of the beam element close to B can
be obtained by
(
dsB

)2 − (
dSB

0

)2 = 2dSB
0 εBdSB

0 . (15)

Substituting Eqs. (13) and (14) into Eq. (15), the strain
at an arbitrary point in the beam element can be ex-
pressed by

εB = rξ · rξ − (r0)ξ · (r0)ξ − 2y|rξ |2κ(ξ) + 2y|(r0)ξ |2κ0(ξ)

2(|(r0)ξ |2 − 2y|(r0)ξ |2κ0(ξ))

≈ rξ · rξ − (r0)ξ · (r0)ξ − 2y|rξ |2κ(ξ) + 2y|(r0)ξ |2κ0(ξ)

2|(r0)ξ |2
= εl + εκ . (16)

From Eq. (16), the strain function only depends on
the local y coordinates along the direction of β(s) de-
scribing the element bending. The total strain is the
summation of longitudinal strain εl and bending strain
εk , where the pure bending strain εk can be written as

εκ = y

|(r0)ξ |2
(−|rξ |2κ(s) + ∣∣(r0)ξ

∣∣2
κ0(s)

)

= y

|(r0)ξ |2
(
κ̄0(ξ) − κ̄(ξ)

)
, (17)

where κ̄(ξ) = κ̄(s) = |rξ ×rξξ |
|rξ | and κ̄0(ξ) = κ̄0(s) =

|(r0)ξ ×(r0)ξξ |
|(r0)ξ | . Thus, the pure bending strain energy can

be written as

Uκ = 1

2

∫∫∫

V0

Eεκεκ dV0

= 1

2

∫∫∫

V0

Ey2
(

κ̄0(s) − κ̄(s)

|(r0)ξ |2
)2

dV0

= 1

2

∫

l

EI
1

|(r0)ξ |4
[
κ̄(ξ) − κ̄0(ξ)

]2 dl. (18)

Finally, the total strain energy of a beam element can
be obtain by

U = Ul + Uκ

= 1

2

∫

l

[
EA

(
εl

)2 + EI

|(r0)ξ |4 (κ̄ − κ̄0)
2
]

dl. (19)

In some previous studies on the spatial curved slender-
beam element of ANCF, the total elastic energy formu-
lation is written as [14]

U = 1

2

∫

l

[
EA

(
εl

)2 + EIκ2(ξ)
]

dl. (20)

By a careful comparison between Eqs. (19) and (20)
it is possible to see that the terms of the longitu-
dinal energy are identical. However, the formula-
tions of bending energy are slightly different. From
Eq. (15) it can be seen that the definition of the
Green–Lagrange strain is used to derive the formu-
lation of bending strain, whereas for Eq. (20) the
definition of engineering strain is used to deduct the
bending strain energy [14]. In fact, only under the
assumption on small strain in the beam element, the
Green–Lagrange strain tensor can degenerate into the
engineering strain [19]. Therefore, the new spatial
curved slender-beam element of ANCF can be used
in the dynamic analysis of very flexible beams un-
dergoing large strains. Furthermore, Gerstmayr and
Irschik [15] carefully discussed the inaccuracy prob-
lem of Eq. (20) and found that using the Green–
Lagrange strain and the Piola–Kirchhoff stress of the
second type may bring about a strong coupling be-
tween the axis strain and the bending strain in deriving
the elastic energy formulation of the element. In order
to decouple the coupled strain terms in the strain en-
ergy, they utilized the Biot strain tensor and the Biot
stress tensor in the deduction of element elastic en-
ergy.

In fact, the expression of elastic energy of the spa-
tial element presented in this paper can also be degen-
erated into the corresponding formulation derived by
Gerstmayr and Irschik [15]. Based on Eq. (12), for the
planar beam element of ANCF, the square of the arc
length of an infinitesimal arc segment close to point B
in the beam element in the current configuration can
be expressed by
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(
dsB

)2 = drB · drB

=
(

dr
dξ

+ y
dβ(s)

dξ

)
·
(

dr
dξ

+ y
dβ(s)

dξ

)
dξ dξ

= (|rξ |2 − 2y|rξ |2κ(ξ) + y2|rξ |2κ2(ξ)
)

dξ dξ.

(21)

Thus, the strain at an arbitrary point of the beam ele-
ment described by Eq. (16) can be degenerated to

εB = (|rξ |2 − 2y|rξ |2κ(ξ) + y2|rξ |2κ2(ξ)) − |r0ξ |2
2|r0ξ |2

= |rx |2 − 1 − 2y|rx |2κ(ξ) + y2|rx |2κ2(ξ)

2

= |rx |2 − 1 − 2y|rx |K + y2K2

2

≈ |rx |2 − 1 − 2y|rx |K
2

, (22)

where the term K = |rx×rxx |
|rx |2 is a material measure of

curvature. It can be clearly concluded that if the in-
finitesimal term “y2” is not ignored, Eq. (22) will be
identical to Eq. (75) in the work by Gerstmayr and
Irschik [15]. It should be also noted that based on the
definitions of both Biot stress tensor and Biot strain
tensor, more accurate elastic energy formulation can
be deducted based on this work. The readers interested
in the details of the deduction procedures are referred
to the work by Gerstmayr and Irschik [15].

3 A thin cylindrical shell element of ANCF

3.1 Mid-surface strain energy of a thin cylindrical
shell element

Previous studies on the thin structures in the frame of
ANCF have focused on the rectangle plate elements.
Among them, Dmitrochenko and Pogorelov [17] pro-
posed a thin plate element of ANCF. Based on their
work, this section presents a thin cylindrical shell el-
ement of ANCF so as to deal with more complicated
problems of thin structures. From Fig. 3, the displace-
ment of an arbitrary point P(ξ, η) on the mid-surface
of a thin shell element of ANCF can be expressed by

r0(ξ, η) = S(ξ, η)e0, (23)

Fig. 3 Mid-surface and nodes of a thin shell element of ANCF

where S is the element shape function that can be
found in the work by Dmitrochenko and Pogore-
lov [17], 0 ≤ ξ ≤ 1 and 0 ≤ η ≤ 1 can be regarded
as the canonical parameters of the mid-surface of the
thin shell element.

As shown in Fig. 3, a local curved surface coor-
dinate frame (g0)1-(g0)2-n0 and a Cartesian coordi-
nate frame (e0)1-(e0)2-(e0)3 are defined at an arbitrary
point P(ξ, η) for further deformation analysis of the
thin shell element of ANCF. For the local curved sur-
face coordinate frame (g0)1-(g0)2-n0, one has

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(g0)1 = (r0)ξ = ∂r0

∂ξ

(g0)2 = (r0)η = ∂r0

∂η

n0 = (g0)1 × (g0)2

|(g0)1 × (g0)2| .

(24)

From Fig. 3, the tangent plane at an arbitrary point
P(ξ, η) on the mid-surface of the shell element can be
defined by two tangent base vectors g1 and g2.

The unit base vectors, (e0)1, (e0)2 and (e0)3, of the
local Cartesian coordinate frame are defined as fol-
lows:

(e0)1 = (g0)1

|(g0)| , (e0)3 = n0,

(e0)2 = (e0)3 × (e0)1.

(25)

Let point N(ξ +dξ, η+dη) be a point very close to
point P(ξ, η) on the mid-surface of the shell element.
From Fig. 4, the infinitesimal arc segment dr0 on the
mid-surface of the shell element can be decomposed
in the local curved surface coordinate frame and the
Cartesian coordinate frame in Eq. (26), respectively
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Fig. 4 Schematic view of relationship between the two local
coordinate frames for a thin shell element

dr0 = (g0)i′ dχi′ = (e0)j dxj , (26)

in which χ1 = ξ , χ2 = η, x1 = x0, x2 = y0. Further-
more, the relationship between two covariance base
vectors of the local coordinate frames (g0)1-(g0)2-n0

and (e0)1-(e0)2-(e0)3 can be obtained by [23]

(g0)i′ = βi′
j (e0)j , (27)

where βi′ j = (g0)i′(e0)j is called the coefficient of
covariant transformation. Therefore, the contravari-
ance components dχi′ in local coordinate frame (g0)1-
(g0)2-n0 can be expressed by

dχi′ = βi′
kdxk, (28)

where βi′
k is called the coefficient of contravariance

transformation and satisfies βi′
kβi′ j = δ

j
k . In this par-

ticular example, the relationship between the two lo-
cal coordinate frames g1-g2-n and e1-e2-e3 can be ob-
tained:

[
dξ

dη

]
=

[
(g0)1(e0)1 (g0)1(e0)2

(g0)2(e0)1 (g0)2(e0)2

]−T [
dx0

dy0

]

=
[

1
a

− cot(θ)
a

0 csc(θ)
b

][
dx0

dy0

]

= T dX0, (29)

where a and b denote the arc length of element edges
BC and BE in the initial configuration, respectively,
and θ represents the angle between the two base vec-

tors (g0)1 and (g0)2.

T =
[

1
a

− cot(θ)
a

0 csc(θ)
b

]

denotes the transformation matrix between the vector
[dξ dη ]T and the vector dX0 = [dx0 dy0 ]T.

As shown in Fig. 3, the square of the arc length of
the infinitesimal arc segment dson the mid-surface of
the shell element in the reference configuration can be
approximated by

(ds0)
2 = dr0 · dr0 = dX0 · dX0

= (
(g0)1 dξ + (g0)2 dη

) · ((g0)1 dξ + (g0)2 dη
)

= [
dξ dη

][
(g0)11 (g0)12

(g0)12 (g0)22

][
dξ

dη

]
(30)

where (g0)1 = ∂r0
∂ξ

, (g0)2 = ∂r0
∂η

, (g0)αβ = (g0)α ·(g0)β

(α = 1,2 and β = 1,2) is the coefficient of the first
quadratic fundamental form of the mid-surface of the
shell element [21].

Similarly, the square of the arc length of the in-
finitesimal arc segment ds on the mid-surface of the
shell element in the current configuration can be cal-
culated by

(ds)2 = dr · dr = [
dξ dη

][
g11 g12

g12 g22

][
dξ

dη

]
, (31)

where gαβ = gα · gβ (α = 1,2 and β = 1,2).
From Eqs. (30) and (31), the following relations can

be also obtained:

(ds)2 − (ds0)
2

= [
dξ dη

]([
g11 g12

g12 g22

]

−
[
(g0)11 (g0)12

(g0)12 (g0)22

])[
dξ

dη

]
. (32)

According to the continuum mechanics and consider-
ing Eq. (29), the Green–Lagrange strain of the mid-
surface of the shell element can be written as

εmid = 1

2
TT

([
g11 g12

g12 g22

]
−

[
(g0)11 (g0)12

(g0)12 (g0)22

])
T

=
[
ε11 ε12

ε12 ε22

]
. (33)
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Therefore, the mid-surface strain energy of the shell
element can be finally written as

Umid = 1

2

∫

V0

(
εmid)TE

(
εmid)dV0, (34)

where E is the elastic tensor of the fourth order for
plane stress problem.

3.2 Bending strain energy of a thin cylindrical shell
element

Figure 5 gives a scaled view of an arbitrary layer of
the thin shell element of ANCF. Here, the nodes are
still defined on the mid-surface π of the shell element.
Based on the Kirchhoff theory of thin shells, the global
location of an arbitrary point P′ on the outer surface πz

of the shell element can be determined as

rz = r(ξ, η) + zn(ξ, η), (35)

where r indicates the location of the corresponding
point P(ξ, η) on the mid-surface π and n is the unit
normal vector of the mid-surface at this point.

Then, a tangent plane of the mid-surface at point
P′(ξ, η) can be defined by two vectors gz

1 and gz
2, as

⎧⎪⎪⎨
⎪⎪⎩

gz
1 = ∂r(ξ, η)

∂ξ
+ z

∂n(ξ, η)

∂ξ

gz
2 = ∂r(ξ, η)

∂η
+ z

∂n(ξ, η)

∂η
.

(36)

According to Weingarten’s formula in differential ge-
ometry [20], the derivative of the normal vector n with
respect to ξ and η can be written as

∂n
∂χβ

= −ζ
γ
β gγ = −ζβα(gαγ )−1gγ ,

(α = 1,2; β = 1,2; γ = 1,2), (37)

where ζβα = ∂2r
∂χα∂χβ ·n (χ1 = ξ , χ2 = η) is the coeffi-

cient of the second quadratic fundamental form of the
mid-surface of the shell element [21].

Then, the square of the arc length of the infinites-
imal arc segment dsz on the outer surface πz can be
calculated by

d
(
sz

)2 = drz · drz = (
gz

1 dξ + gz
2 dη

) · (gz
1 dξ + gz

2 dη
)

= [
dξ dη

][
gz

11 gz
12

gz
12 gz

22

][
dξ

dη

]
. (38)

Fig. 5 Scaled view of an arbitrary layer in a thin shell element
of ANCF

Hence, the square of the length of an infinitesimal seg-
ment on the surface above the mid-surface in the ref-
erence can be expressed by

d
(
sz

0

)2 = drz
0 · drz

0

= [
dξ dη

][
(g0)

z
11 (g0)

z
12

(g0)
z
12 (g0)

z
22

][
dξ

dη

]
. (39)

Similarly to the procedures described by Eqs. (16) and
(30)–(32), the Green–Lagrange strain of an infinites-
imal arc segment of the outer surface πz can be ob-
tained by

ε ≈ 1

2
TT

[
gz

11 − (g0)
z
11 gz

12 − (g0)
z
12

gz
12 − (g0)

z
12 gz

22 − (g0)
z
22

]
T, (40)

where (gz
0)1 = ∂rz

0
∂ξ

, (gz
0)2 = ∂rz

0
∂η

and (gz
0)αβ = (gz

0)α ·
(gz

0)β .
Substituting Eqs. (35)–(37) into Eq. (40) and ignor-

ing the higher-order terms of z, the strain tensor can be
written as

ε ≈ εmid + εκ , (41)

where εmid is the mid-surface strain formulated by us-
ing Eq. (27), εκ denotes the bending strain of the shell
element and can be further cast as

εκ = −zTT(κ − κ0)T, (42)

where
⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

κ =
[
k11 k12

k12 k22

]
=

⎡
⎣

∂2r
∂ξ2 · n ∂2r

∂ξ∂η
· n

∂2r
∂ξ∂η

· n ∂2r
∂η2 · n

⎤
⎦

κ0 =
[
(k0)11 (k0)12

(k0)12 (k0)22

]
=

⎡
⎣

∂2r0
∂ξ2 · n ∂2r0

∂ξ∂η
· n

∂2r0
∂ξ∂η

· n ∂2r0
∂η2 · n

⎤
⎦ .

(43)
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Thus, the bending strain energy can be expressed by

Uκ = 1

2

∫

V0

(
εκ

)TEεκ dV0. (44)

Finally, according to Eqs. (34) and (44), the total strain
energy of the shell element can be written as

U = Uκ + Umid

= 1

2

∫

V0

[(
εmid)TE

(
εmid) + (

εκ
)TEεκ

]
dV0. (45)

It is easy to see that if the initial configuration of the
shell element is flat and rectangle, Eq. (42) for the
bending stain will degenerate into the previously pro-
posed formulation [19] as

εκ = −z

[
1/a 0

0 1/b

]T
⎡
⎣

∂2r
∂ξ2 · n ∂2r

∂ξ∂η
· n

∂2r
∂ξ∂η

· n ∂2r
∂η2 · n

⎤
⎦

×
[

1/a 0
0 1/b

]

= −z

[
∂2r
∂x2 · n ∂2r

∂x∂y
· n

∂2r
∂x∂y

· n ∂2r
∂y2 · n

]
. (46)

Besides, the formulations of cylindrical shell ele-
ment of ANCF proposed in this work can be directly
extended to the spherical shell element of ANCF in
further works.

4 Elastic forces and their Jacobian of beam and
cylindrical shell elements

4.1 Formulations for a spatial curved slender-beam
element of ANCF

Once the formulations of the element strain energy
(Eqs. (19) and (45)) are deducted, the elastic forces
Fe of the two finite elements and their Jacobian J can
be further derived. For the spatial curved slender-beam
element of ANCF presented in Sect. 2, according to
Eq. (19), the elastic force of the beam element can be
expressed by

Fe = ∂Ul

∂e
+ ∂Uκ

∂e
= Ql + Qk. (47)

The elastic force associated with the longitudinal
strain energy Ql can be obtained by using a compu-
tationally efficient method proposed by Liu et al. [9].

However, this method cannot be directly used to eval-
uate the elastic force Qk associated with the bending
strain energy since the nodal coordinates exist in the
denominator term of the bending strain energy given
in Eq. (18).

Substituting Eq. (18) into Eq. (47), the elastic force
associated with the bending strain energy of the beam
element can be written as

Qκ = ∂Uκ

∂e
= EI

∫

l

κ̄ − κ̄0

|(r0)ξ |4
∂κ̄

∂e
dl. (48)

Accordingly, the Jacobian of the elastic force can be
obtained as

Jκ = ∂Qκ

∂e

= EI

∫

l

1

|(r0)ξ |4
[
(κ̄ − κ̄0)

∂2κ̄

∂e2
+ ∂κ̄

∂e
∂κ̄

∂e

]
dl. (49)

In order to enhance the computational efficiency,
Eq. (2) can be rewritten as [22]

r = ēS̄, (50)

where ē = [ri ri,x rj rj,x ] and S̄ = [S1 S2 S3 S4 ]T.
As can be seen from Eqs. (48) and (49), two partial

derivate terms ∂κ̄
∂e and ∂2κ̄

∂e2 have to be evaluated in or-
der to compute the elastic forces and their Jacobian.
However, Eq. (17) indicates that it is quite difficult to
directly calculate the above partial derivate terms. In
fact, the results of the above two partial derivate terms
can still be obtained by using the relations as follows:

∂κ̄

∂e
= 1

2κ̄

∂κ̄2

∂e
, (51)

∂2κ̄

∂e2
= − 1

4κ̄3

∂κ̄2

∂e
∂κ̄2

∂e
+ 1

2κ̄

∂2κ̄2

∂e2
. (52)

From the formulation of κ̄(ξ) described by Eq. (17),
κ̄2 can be calculated by

κ̄2 = εijk(rξ )i(rξξ )j εrsk(rξ )r (rξξ )s

(rξ )t (rξ )t

= (δi
r δ

j
s − δi

sδ
j
r )(rξ )i(rξξ )j (rξ )r (rξξ )s

(rξ )t (rξ )t

= (rξξ )s(rξξ )s − ((rξξ )r (rξ )r )
2

(rξ )t (rξ )t
, (53)
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where ε denotes the Eddington tensor [23], and the
subscripts in Eq. (53) must satisfy the conditions i =
1–3; j = 1–3; k = 1–3; r = 1–3; s = 1–3; t = 1–3.

Using Eqs. (51)–(53) and performing some compli-
cated mathematic manipulations, the final formulation
describing the elastic forces associated with the bend-
ing strain energy can be expressed by

Qκ = EI

2

∫

l

κ̄ − κ̄0

κ̄
∣∣(r0)ξ

∣∣4
ē · �1 dl (54)

where �1 = 2C − 2N

� O + 2N
2

�2 	, N = (ē · 
) · (ē · �),

� = (ē · 
) · (ē · 
), 
 = ∂S̄
∂ξ

, � = ∂2S̄
∂ξ2 , Cij = ΛcΛd ,

Oij = ΘcΛd +ΘdΛc and Γij = ΘcΘd . Here, the sub-
scripts are i = 3(d − 1)+ t , j = 3(c − 1)+ t , c = 1–4,
d = 1–4, t = 1–3.

Accordingly, the formulation for the Jacobian of the
elastic forces associated with the bending strain energy
of the beam element can be written as

Jκ = EI

2

∫

l

1

|(r0)ξ |4
[
(κ̄ − κ̄0)

×
(

− 1

2κ̄3

∂κ̄2

∂e
∂κ̄2

∂e
+ 1

κ̄

∂2κ̄2

∂e2

)

+ 1

2κ̄2

∂κ̄2

∂e
∂κ̄2

∂e

]
dl

= EI

2

∫

l

1

|(r0)ξ |4
[
κ̄ − κ̄0

κ̄

×
[
�1 − 2

�3
(ē · �2)(ē · �2)

]

+ κ̄0

2κ̄3
(ē · �1)(ē · �1)

]
dl (55)

where �2 = �O − 2N	.

4.2 Formulations for a thin cylindrical shell element
of ANCF

Based on the discussion in Sect. 4.1, the elastic forces
and their Jacobian of a thin shell element of ANCF can
be formulated in a similar way. The elastic forces asso-
ciated with the mid-surface strain energy can be eval-
uated by using the computationally efficient method
proposed by Liu et al. [9]. Based on Eqs. (42)–(44),
the bending strain of the shell element can be further
cast as

Uκ = 1

2

∫

V0

(
εκ

)TEεκ dV0

= 1

2

∫

V0

(� − �0)
TEκ(� − �0)dV0, (56)

where � = −z[k11 k22 2k12 ]T,�0 =
−z[ (k0)11 (k0)12 2(k0)22 ]T,

Eκ = E

1 − ν2
HT

⎡
⎣

1 ν 0
ν 1 0
0 0 1−ν

2

⎤
⎦H and

H =
⎡
⎢⎣

1
a2 0 0

cot2(θ)

a2
csc2(θ)

b2 − cot(θ) csc(θ)
ab

− 2 cot(θ)

a2 0 csc(θ)
ab

⎤
⎥⎦ .

The entries in vector � have been given in Eq. (43).
The elastic forces associated with the bending

strain energy of the shell element can be expressed
by

Qκ = ∂Uk

∂e
=

∫

V0

(� − �0)
TEκ ∂�

∂e
dV0. (57)

Therefore, the Jacobian of elastic forces associated
with the bending strain energy of the shell element can
be written as

Jκ = ∂Qκ

∂e
=

∫

V0

∂�T

∂e
Eκ ∂�

∂e
dV0

−
∫

V0

(� − �0)
TEκ ∂2�

∂e2
dV0. (58)

As can be seen from Eqs. (57) and (58), the terms
∂�
∂e and ∂2�

∂e2 should be evaluated to determine the elas-
tic forces and their Jacobian. From Eq. (56), thus, the

two partial derivative terms ∂καβ

∂e and ∂2καβ

∂2e
(καβ de-

notes the entries in vector �, α = 1,2 and β = 1,2)
should be calculated. After some complicated math-
ematical manipulations, the term ∂καβ

∂e can be directly
expressed in terms of their components as following:

∂καβ

∂e

= ∂[ ēas (S̄,αβ )s ta
‖t‖ ]
∂e

= ‖t‖2 ∂ēas

∂e (S̄,αβ )s ta + ∂n̄f

∂e (‖t‖2ēf s (S̄,αβ )s − ēas (S̄,αβ )s ta tf )

‖t‖3
,

(59)
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where, similarly to Eq. (50), S̄ and ē are respectively the transformed shape function and the nodal coordinates of

the shell element; S̄,αβ denotes the partial derivative of S̄ with respect to η and ξ (for example: S̄,12 = ∂2S̄
∂ξ∂η

), and
t = rξ × rη. The other subscripts in Eq. (59) are f = 1–3, s = 1–12 and a = 1–3.

The formulation for evaluating ∂2καβ

∂2e
can be written as

∂2καβ

∂2e
= 
,αβ + (
,αβ)T + (‖t‖2ēas(S̄,αβ)s − n̄f ēf s(S̄,αβ)s ta)

∂2ta
∂e2 − ēas(S̄,αβ)s ta

∂tf
∂e

∂tf
∂e

‖t‖3
, (60)

in which


,αβ = (S̄,αβ)s

[
‖t‖2 ∂ta

∂e
∂ēas

∂e
− tf

∂tf

∂e
ta

∂ēas

∂e

]
+ ∂tf

∂e
tf

∂ta

∂e

[
3

2‖t‖2
thths(S̄,αβ)s ta − ēas(S̄,αβ)s

]
, h = 1–3,

∂tk

∂e
= ∂ēmd(S̄,ξ )d

∂e
× ēnb(S̄,η)b + ēmd(S̄,ξ )d × ∂ēnb(S̄,η)b

∂e
= εmnk(L − LT)dbēnb

∂ēmd

∂e
, (61)

and

∂2tk

∂ei∂ej

= εmnk

∂ēmd

∂ei

∂ēnb

∂ej

(
L − LT)

db
, (62)

where L = S̄,ξ S̄,η denotes the dyadic product of S̄,ξ

and S̄,η , and the other subscripts in Eqs. (61) and (62)
are i = 1–36, j = 1–36, d = 1–12, b = 1–12, m =
1–3, n = 1–3 and k = 1–3.

Finally, the elastic forces and their Jacobian of the
shell element can be obtained by substituting Eqs.
(59)–(62) into Eqs. (57) and (58).

5 Computation strategy

The assembly of the finite elements of ANCF can be
carried out in a similar way of traditional finite element
method. The nodal coordinate e of a finite element
can be easily transformed into the generalized coor-
dinate q of the flexible multibody system. Based on
ANCF, the final dynamic equations for a constrained
rigid-flexible multibody system can be expressed in a
compact form as a set of differential algebraic equa-
tions with a constant mass matrix as following [24,
25]:

{
Mq̈ + �T

qλ + F(q) = Q(q)

�(q, t) = 0,
(63)

where M is the constant mass matrix of the system,
F(q) is the elastic force vector, which is a nonlin-
ear function of nodal coordinates, �(q, t) represents
the vector that contains the system constraint equa-
tions, �q is the derivative matrix of constraint equa-
tions with respect to the generalized coordinates q, λ

is the Lagrange multiplier, Q(q) is the external gen-
eralized forces, which can be obtained by using the
principle of virtual work.

Many numerical integration methods have been
proposed so far for solving Eq. (63) [26–29]. In this
work, the generalized-alpha method [30, 31] is used
so as to achieve an optimal combination of accuracy at
the low-frequency range and numerical damping at the
high-frequency range. Such a method has exhibited
good applicability to even more tough problems in the
works by Tian et al. [32, 33] and by Liu et al. [34] to
study the dynamics of flexible multibody system with
clearance joints.

6 Case studies and discussion

6.1 Static test of a thin parallelogram plate

This subsection demonstrates that the thin cylindrical
shell element of ANCF is applicable to a thin par-
allelogram plate clamped to the ground as shown in
Fig. 6, where the plate is subject to two concentrated
forces at points B and C. The length L, the width W

and the thickness of the plate are set to be 0.5, 0.15
and 0.001 m, respectively. The angle θ between the
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Table 1 The plate
displacement of point C in
three directions

Element type
(number of elements)

X-displacement
(m)

Y -displacement
(m)

Z-displacement
(m)

ANCF (10 × 3 elements) −8.599 × 10−2 1.498 × 10−2 2.572 × 10−1

ANCF (20 × 6 elements) −9.251 × 10−2 1.184 × 10−2 2.681 × 10−1

ANCF (50 × 15 elements) −9.308 × 10−2 1.146 × 10−2 2.691 × 10−1

ABAQUS (20 × 6 elements) −9.305 × 10−2 1.143 × 10−2 2.691 × 10−1

ABAQUS (50 × 15 elements) −9.308 × 10−2 1.146 × 10−2 2.691 × 10−1

Fig. 6 Initial configuration of a thin cantilever parallelogram
plate subjected to two concentrated forces

edges AB and CD is assumed to yield the conditions:
sin(θ) = 0.8 and cos(θ) = 0.6. The Young’s modulus
of plate material is set to 2.07 × 1011 Pa. The applied
concentrated force F is set to 20 N. For comparison,
the same problem is also computed by using a licensed
commercial software ABAQUS.

Table 1 lists the computational results of the plate
displacement of point C in three directions while dif-
ferent shell elements are used. The table shows that the
numerical results of the thin shell elements of ANCF
will converge to those of ABAQUS with an increase
of the number of shell elements.

6.2 Bending tests of an initially-curved cantilever
beam and a cantilever cylindrical shell

This subsection first presents the case study of an
initially-curved cantilever beam with square cross sec-
tion subject to a concentrated bending moment at its
free end. The initial configuration of the beam is as-
sumed to be a half-circle with a radius 0.5 m. For
numerical comparison, according to [35], the concen-
trated bending moment acting at its free end is set
to λπEI/l. The ratio of the beam height to beam
length (h/L) is set to 0.022. The Young’s modulus of
beam material is set to 2.1 × 1010 Pa, and the Pois-
son’s ratio is assumed to be zero so as to avoid locking
problem. The similar planar model has been studied

Fig. 7 The bending test of an initially-semicircle cantilever
beam

by Sugiyama et al. [13] and Gerstmayr et al. [15]. In
this study, the beam is modeled by using 10 spatial
curved slender-beam elements of ANCF presented in
Sect. 2. The simple way of imposing the concentrated
moment on the finite elements of ANCF proposed by
Liu et al. [36] is adopted in the present work. The final
configuration of the initially curved cantilever beam
approximates a full circle when λ = 1. Figure 7 shows
five different beam configurations under specific con-
centrated moments at its free end. Besides, the final
configuration of the cantilever beam just approximates
a full circle due to the strong coupling between the ax-
ial strain and the bending strain of the element [15].

Furthermore, the subsection turns to the bending
problem of an initially-semicircle cantilever shell. The
initial radius of the shell is set to 0.5 m. The width
and thickness of the shell are 0.5 and 0.001 m, respec-
tively. The Young’s modulus of shell material is set to
2.07×1011 Pa, and the Poisson’s ratio is also assumed
to be zero in order to avoid the Poisson locking. The
external distribution moment applied at the free edge
of the shell is λπEI/(wl). Here, w denotes the shell
width and l denotes the shell length. The cantilever
shell is modeled by using 30 × 6 thin shell elements
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Fig. 8 The bending test of an initially-semicircle cantilever
shell

Fig. 9 Initial configuration of a pinched cylinder

of ANCF presented in Sect. 3. Figure 8 shows five dif-
ferent shell configurations under specific distribution
moments at its free edge. The final configuration of the
shell will also approximate a full circle when λ = 1.

6.3 Pinched cylinder with free edges

This subsection presents a classical benchmark test
for the cylindrical shell element as studied in previ-
ous works [37, 38]. As shown in Fig. 9, a free cylin-
drical shell is subjected to a pair of opposite forces at
the midpoint of the top and bottom surfaces. As sug-
gested in previous studies, the length L of the cylindri-
cal shell is set to 10.35 mm, and the inner radius R and
the thickness are 4.953 and 0.094 mm, respectively.
Both forces applied on the shell are 40 kN. The elas-
tic material properties are represented by the Young’s
modulus E = 10.5 × 106 N/mm2 and Poisson’s ra-
tio ν = 0.3125. As a consequence, the obtained re-
sults are compared with those in the previous litera-
ture [37, 38].

Because of the geometric symmetry, only one up-
per quarter of the whole shell needs to be studied. To

Fig. 10 Magnitudes of displacements at nodes A, B and C

Fig. 11 Deformed configurations of the cylinder shell under
pulling forces

display the deformation process in detail, 100 equidis-
tant time increments are applied, and the adopted er-
ror tolerance is set to 1.0 × 10−6. Figure 10 shows the
magnitudes of displacements at nodes A, B and C with
8×12, 16×24 and 24×36 elements. The figure indi-
cates that 16×24 shell elements are enough to obtain
convergent results. The results are in good agreement
with those in the work by Schwarze and Reese [37].
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Fig. 12 A spatial double
pendulum composed of two
parts of cylindrical shells

From the displacements of point B and C, it is ob-
vious that the response of the cylindrical shell exhibits
two different stages. The beginning of deformation
process is dominated by bending with a large displace-
ment. Subsequently, when the loads are approximate
to F = 20 kN, the displacement of the shell is charac-
terized by a very stiff response. Figure 11 depicts the
four different deformed configurations of the cylindri-
cal shell subjected to F = 10,20,30,40 kN, respec-
tively.

6.4 Dynamics of a double pendulum composed of
two parts of cylindrical shells

The final case is to study the dynamics of a double
pendulum composed of two parts of thin cylindrical
shells. As shown in Fig. 12, the two curved parts come
from two cylindrical shells trimmed by two parallel
cutting planes I and II. The angle θ between a cut-
ting plane and the plane O–X–Z in global coordinate
frame yields tan(θ) = 0.5. The diameters of the cylin-
drical shells are both 0.3 m. As shown in Fig. 12(b),
the generatrices of these two cylindrical shells are both
parallel with the direction of Y -axis of global coor-
dinate frame. The Young’s modulus of shell material
is assumed to be 1.0 × 109 Pa, material density is
7810 kg/m3. The thickness of the cylindrical shell is
set to 0.01 m. As shown in Fig. 12(a), the edge AB
of the shell I is fixed on the ground, and its length is
set to 1.2 m. Shell I and shell II are connected by the
cylindrical joint along the edge CD. The gravitational
acceleration is chosen as 9.81 m/s2.

An objective of this case study is to check the influ-
ence of the number of thin shell elements of ANCF on
the system dynamic responses. As shown in Fig. 13,
the difference of the pendulum displacement of point F

Fig. 13 Pendulum displacement of point F in Z-direction com-
puted by using different number of finite elements

Fig. 14 Dynamic configurations of the double pendulum

in Z-direction becomes smaller and smaller with an
increase of the number of finite elements. Figure 13
indicates that 24 × 16 shell elements are enough to
give convergent results. Figure 14 shows the dynamic
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Table 2 The CPU time for
the models with different
number of elements

Number of elements of each cylindrical shell 3 × 3 6 × 6 12 × 8 24 × 16

The CPU time, seconds 39 162 528 3349

configuration of the system with respect to six specific
moments.

All the above numerical simulations are performed
on a workstation with 12 processors of 3.33 GHz and a
RAM of 96 GB. Table 2 shows the computational time
required for different systems. In the process of simu-
lation, the integration step is set to 5 × 10−4 s. From
Table 2, the effect of the number of the finite elements
on the computational efficiency is significant, and the
cost of computational time is almost proportional to
the number of finite elements.

7 Conclusions

A new spatial curved slender-beam finite element and
a new thin cylindrical shell finite element are proposed
in the frame of gradient-deficient ANCF. The longi-
tudinal strain energy for the spatial curved slender-
beam element is derived by using the definition of
Green–Lagrange strain tensor in continuum mechan-
ics, while the bending strain energy is deducted with
help of a local Frenet coordinate frame of the beam
axis. The assumption on small strains can be relaxed
in the final strain energy formulation. By using similar
procedures, the strain energy for the cylindrical shell
element is also derived. By defining a local curved
surface coordinate frame and a Cartesian coordinate
frame, the angle between two base vectors of the de-
fined surface coordinate frame is introduced into the
finial strain energy formulations for the shell element.
Therefore, the shell element can be used to model the
parallelogram shells. To efficiently solving the sys-
tem equations, the analytical formulations of elastic
forces and their Jacobian of the two finite elements of
gradient-deficient ANCF are derived. The generalized-
alpha method with controllable numerical dissipation
is used to solve the huge set of system equations. Fi-
nally, the validation and performance of the two finite
elements of gradient-deficient ANCF are illustrated by
four numerical case studies including both static and
dynamic problems. In future research, the proposed
method will be applied to study the spherical shell
element based on ANCF. Furthermore, the model of
wrinkle/slack mechanics can be introduced into the

thin shell element of gradient-deficient ANCF in order
to study the complex dynamic behaviors of the large
scale space structures with very soft thin membranes,
such as the solar sails.
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