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Abstract In this paper, the moment Lyapunov expo-
nent and stochastic stability of binary airfoil subjected
to non-Gaussian colored noise are investigated. The
noise is simplified to an Ornstein–Uhlenbeck process
by applying a path-integral approach. Via the singular
perturbation method, the second-order expansions of
the moment Lyapunov exponent are obtained, which
agree with the results obtained using the Monte Carlo
simulation well. Finally, the effects of the noise and
system parameters on the stochastic stability of the bi-
nary airfoil system are discussed.

Keywords Moment Lyapunov exponent · Stochastic
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1 Introduction

Aeroelasticity is the field of study that describes the re-
sponse and stability characteristics of physical systems
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dealing with the interaction of structural, inertial, and
aerodynamic forces. The airfoil flutter is an important
phenomenon of self-excited vibration in aeroelasticity,
which is caused by the coupling of structural nonlin-
earities and aerodynamic nonlinearities. Flutter insta-
bility may decrease the performance and life span of
aircraft or even lead to a catastrophe in aircraft flight.
Therefore, the airfoil flutter has attracted more and
more attention, and so far, the phenomenon of which
has been investigated greatly [1–6].

However, in most of the previous works, the ran-
dom factors were seldom considered in the mathe-
matical model of the flutter system. In recent years,
along with the advance of the nonlinear random vi-
bration theory, the almost analysis probability method
which is based on the Fokker–Planck equation has
been used more and more to deal with stochastic flut-
ter. For example, Ibrahim and Orono [7, 8] studied
the stochastic flutter of a panel subjected to random
in-plane forces using the Fokker–Planck equation and
cumulant-neglect closure approximation. The stochas-
tic flutter of airfoil has been investigated by D. Poired
and S.J. Price [9, 10], and they used a probabilistic
and statistical approach to obtain the numerical re-
sults, which made the problem more realistic and more
understanding in some ways. Recently, the Lyapunov
exponent also has been used to research the stability
of a stochastic flutter system in some works [11, 12]
(If the maximal Lyapunov exponent is negative, the
system is almost-sure stable; otherwise, it is almost-
sure unstable.) Even for an almost-sure stable random
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system, the mean-square response of the system may
still grow exponentially and exceed some threshold,
which means that the mean-square response is unsta-
ble. Therefore, it is needed to study the moment Lya-
punov exponent of the stochastic flutter system.

The pth moment Lyapunov exponent is defined as

Λ(p,x0) = lim
t→∞

1

t
logE

∥
∥x(t;x0)

∥
∥

p
, p > 0,

where x(t;x0) is the solution process of a linear
random dynamical system. If Λ(p,x0) < 0, then
E‖x(t;x0)‖p → 0 as t → ∞ and it implies that the
pth moment is stable.

The moment Lyapunov exponent is very significant
in the research of the dynamic stability of the random
system, but it is greatly difficult to determine the mo-
ment Lyapunov exponent. Among the researchers re-
ported by now, there are only a few results on the mo-
ment Lyapunov exponent, and most of which were ob-
tained based on the approximate analytical methods,
such as the perturbation method and the stochastic av-
eraging method. For a two-dimensional system driven
by white or real noise, Arnold et al. [13] used a per-
turbation approach to construct an asymptotic expan-
sion of the pth moment Lyapunov exponent. Utilizing
a method similar to that in [13], Namachchivaya et al.
[14] obtained an approximation for the moment Lya-
punov exponent of two coupled oscillators under real
noise. Furthermore, Namachchivaya et al. [15] deter-
mined the moment Lyapunov exponent and set up the
eigenvalue problem of two coupled oscillators driven
by real noise using the perturbation and stochastic av-
eraging methods, respectively. For a limited value of
p, Khasminskii and Moshchuk [16] proved that the
moment Lyapunov exponent can be expanded to a se-
ries of low noise intensity via researching the two-
dimensional system of two imaginary eigenvalues. Liu
and Liew [17] examined the stability of a Van der
Pol–Duffing oscillator that is excited parametrically
by a small intensity real noise. Zhu et al. [18] studied
the dynamic stability of two degrees-of-freedom under
bounded noise excitation with a narrowband character-
istic through the determination of moment Lyapunov
exponents. Recently, Predrag Kozić et al. [19, 20] con-
struct an approximation for the moment Lyapunov ex-
ponent of a two-dimensional system under white noise
by applying the procedure employed in Khasminskii
and Moshchuk [16].

In the present paper, the stochastic stability of bi-
nary airfoil under non-Gaussian colored noise is con-
sidered. The non-Gaussian colored noise, which can
be simplified to an Ornstein–Uhlenbeck process by
using a path-integral approach, has been applied in
many physical systems [21–25]. Via the singular per-
turbation method, second-order asymptotic expansion
of the moment Lyapunov exponent is obtained, and
the eigenvalue problem governing the moment Lya-
punov exponent is also established. Moreover, the
Monte Carlo simulation results for the original sys-
tem are given. The combined results from the pertur-
bation method and numerical simulations may allow
us to better understand the behavior of the original sys-
tem. Finally, the effects of the non-Gaussian colored
noise and the system parameters are investigated and
discussed.

2 Mathematical model

Considered the typical section, also known as the two-
dimensional airfoil, with degrees of freedom in pitch
and plunge is shown in Fig. 1. The non-dimensional
equations of motion of the flutter system are given as
(for the detailed derivation, see [26, 27])

ḧ + xθ θ̈ + chḣ + � 2h = −2
(

u2/μ
)

θ,

(1)
xθ ḧ + r2

θ θ̈ + cθ θ̇ + r2
θ θ + k3θ

3 = du2θ,

where μ = m/(πρb2), d = (2a + 1)/μ, � = ωh/ωθ ,
u = V/(bωθ ); h is the plunge displacement, θ is the
pitching angle, ρ is the air density, m is the air-
foil mass, b is the semi-chord length, ab is the dis-
tance of the elastic axis E from the mid-chord point,
xθb is the distance of the center of gravity G from
E, rθb is the radius of gyration of the airfoil with
respect to the elastic axis, ch, cθ are the nondimen-
sional damping coefficients in plunge and pitch, re-
spectively, k3 is the nondimensional nonlinear pitching
stiffness, ωh,ωθ are the eigenfrequencies of the con-
strained one-degree-freedom system associated with
the linear plunging and the pitching springs, respec-
tively, and V is the mean of wind speed.

By linearizing the original system (1) and introduc-
ing a non-Gaussian colored noise ξ(t) in the nondi-
mensional speed u, the governing equations are ob-
tained as
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Fig. 1 Sketch of the
two-dimensional airfoil

ḧ + xθ θ̈ + ε2chḣ

+ � 2h + (

2
(

u2 + 2εuξ(t)
)

/μ
)

θ = 0, (2)

xθ ḧ + r2
θ θ̈ + ε2cθ θ̇ + r2

θ θ − d
(

u2 + 2εuξ(t)
)

θ = 0,

where assuming the damping is a second-order small
quantity of ε, and the random term is a small quantity
of ε. The (εξ(t))2 term is neglected, and 0 < ε � 1 is
a small parameter.

Via a series of transformations and simplifications,
the governing equations can be written as

q̈ +
[

ω2
1 0

0 ω2
2

]

q + ε2
[

a11 a12

a21 a22

]

q̇

+ ε

[

b11 b12

b21 b22

]

qξ(t) = 0, (3)

where
[

h

θ

]

= T

[

q1

q2

]

,

T =
[

r0ω
2
2 − r2

θ � 2 r0ω
2
1 − r2

θ � 2

xθ�
2 xθ�

2

]

,

r0 = r2
θ − x2

θ ,

ω2
1,2 =

(
μr2

θ (� 2 + 1) − u2(2xθ + μd)

2μr0

)

±
((

μr2
θ (� 2 − 1) + u2(2xθ + μd)

2μr0

)2

+ μ� 2x2
θ r2

θ − u2� 2xθ (2r2
θ + μxθd)

μr2
0

) 1
2

,

a11 = −ω2
1(r0ω

2
2 − r2

θ � 2)

r0� 2(ω2
1 − ω2

2)
ch + ω2

1 − � 2

r0(ω
2
1 − ω2

2)
cθ , (4)

a12 = −ω2
1(r0ω

2
1 − r2

θ � 2)

r0� 2(ω2
1 − ω2

2)
ch + ω2

1 − � 2

r0(ω
2
1 − ω2

2)
cθ ,

a21 = ω2
2(r0ω

2
2 − r2

θ � 2)

r0� 2(ω2
1 − ω2

2)
ch − ω2

2 − � 2

r0(ω
2
1 − ω2

2)
cθ ,

a22 = ω2
2(r0ω

2
1 − r2

θ � 2)

r0� 2(ω2
1 − ω2

2)
ch − ω2

2 − � 2

r0(ω
2
1 − ω2

2)
cθ ,

b11 = b12 = 2uμd� 2 − 2u(2xθ + μd)ω2
1

μr0(ω
2
1 − ω2

2)
,

b21 = b22 = −2uμd� 2 − 2u(2xθ + μd)ω2
2

μr0(ω
2
1 − ω2

2)
.

3 Approximation to the Markov process

The process ξ(t) is a non-Gaussian colored noise
given as

dξ(t)

dt
= − 1

τ0

d

dξ
Vr(ξ) + 1

τ0
η(t), (5)

Vr(ξ) = D

τ0(r − 1)
ln

[

1 + τ0

D
(r − 1)

ξ2

2

]

, (6)

where r is the departure coefficient of non-Gaussian
noise, denoting the departure from the Gaussian noise;
D is the intensity of Gaussian noise; τ0 is the noise
correlation time; η(t) is a Gaussian white noise, and
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its statistical properties are

〈

η(t) = 0
〉

,
〈

η(t)η(s)
〉 = 2Dδ(t − s). (7)

For r → 1, the process ξ(t) is an Ornstein–Uhlenbeck
process with correlation time τ0. That is to say that it
is an exponential Gaussian colored noise with correla-
tion function given as 〈ξ(t)ξ(s)〉 = (D/τ0)e

−|t−s|/τ0 ;
and when τ0 → 0, the process ξ(t) is further reduced
to a Gaussian white noise. As shown in [21, 28], the
stationary probability density Ps(ξ) can be normaliz-
able if and only if r ∈ (−∞,3). The final expression
for Ps(ξ) of Eq. (5) is

Ps(ξ) = 1

Z

[

1 + τ0

D
(r − 1)

ξ2

2

]−1/r−1

, (8)

where Z is a normalization constant. From Eq. (8), it
is clear that the statistical properties of ξ(t) are

〈

ξ(t)
〉 = 0,

(9)
〈

ξ2(t)
〉 =

{

2D/[τ0(5 − 3r)], r ∈ (−∞,5/3),

∞, r ∈ (5/3,3).

For |r − 1| � 1, using a path-integral approach [21–
23, 28], one has

1

τ0

d

dξ
Vr(ξ) = ξ

τ0

[

1 + τ0

D
(r − 1)

ξ2

2

]−1

≈ ξ

τ0

[

1 + τ0

D
(r − 1)

〈ξ2〉
2

]−1

= ξ

τ1
, (10)

with the effective noise correlation time

τ1 = 2(2 − r)

5 − 3r
τ0, (11)

and the associated noise intensity

D1 =
(

2(2 − r)

5 − 3r

)2

D. (12)

Therefore, Eq. (5) is simplified to an Ornstein–Uhlen-
beck process with noise correlation time τ1 and the
associated noise intensity D1.

dξ(t)

dt
= − 1

τ1
ξ(t) + 1

τ1
η1(t), i.e.,

(13)
dξ(t) = −α0ξ(t) dt + σ0 ◦ dW,

where
{ 〈η1(t)〉 = 0, 〈η1(t)η1(s)〉 = 2D1δ(t − s),

α0 = 1/τ1, σ0 = √
2D1/τ1 = √

2D/τ0.
(14)

W(t) is a Wiener process with unit intensity, and “◦”
denotes a Stratonovitch stochastic integral. Both the
Itô form and the Stratonovitch form of the stochastic
differential equation of the Ornstein–Uhlenbeck pro-
cess are identical, because the diffusion coefficient of
the Ornstein–Uhlenbeck process is constant i.e.,

dξ(t) = −α0ξ(t) dt + σ0 dW, (15)

with the power spectral density

S(ω) = σ 2
0

α2
0 + ω2

. (16)

4 Moment Lyapunov exponent

Applying the transformation qi = x2i−1, q̇i = ωix2i ,
i = 1,2, Eq. (3) is written as

ẋ = Bx + B1xξ(t),

(17)
dξ(t) = −α0ξ(t) dt + σ0 dW,

where

B =
⎡

⎣

0 ω1 0 0
−ω1 −ε2a11 0 −ε2a12ω2/ω1

0 0 0 ω2
0 −ε2a21ω1/ω2 −ω2 −ε2a22

⎤

⎦ ,

(18)

B1 = ε

⎡

⎢
⎢
⎣

0 0 0 0
−b11/ω1 0 −b12/ω1 0

0 0 0 0
−b21/ω2 0 −b22/ω2 0

⎤

⎥
⎥
⎦

.

The following transformation from (x1, x2, x3, x4) to
(ρ,φ1, φ2, ϑ)

x1 = eρ cosφ1 cosϑ, x2 = −eρ sinφ1 cosϑ,

x3 = eρ cosφ2 sinϑ, x4 = −eρ sinφ2 sinϑ,

φ1, φ2 ∈ [0,2π], ϑ ∈
[

0,
π

2

]

, (19)

yields a set of equations of the arguments of the ampli-
tude ρ, phase variable (φ1, φ2, ϑ) and noise process ξ ,



Moment Lyapunov exponent and stochastic stability of binary airfoil driven by non-Gaussian colored 1851

i.e.,

ρ̇ =
2

∑

j=0

εj qj (φ1, φ2, ϑ, ξ),

φ̇i =
2

∑

j=0

εjh
j
i (φ1, φ2, ϑ, ξ),

(20)

ϑ̇ =
2

∑

j=0

εj sj (φ1, φ2, ϑ, ξ),

dξ = −α0ξ dt + σ0 ◦ dW,

where

q0(φ1, φ2, ϑ, ξ) ≡ 0,

s0(φ1, φ2, ϑ, ζ ) ≡ 0,

h0
i (φ1, φ2, ϑ, ξ) = ωi

and

q1(φ1, φ2, ϑ, ξ) = 1

4

[

q1
0 (φ1, φ2) + q1

c (φ1, φ2) cos 2ϑ

+ q1
s (φ1, φ2) sin 2ϑ

]

ξ,

q1
0 (φ1, φ2) = p11 sin 2φ1 + p22 sin 2φ2,

q1
c (φ1, φ2) = p11 sin 2φ1 − p22 sin 2φ2,

q1
s (φ1, φ2) = p+

12 sinφ+ + p−
12 sinφ−,

s1(φ1, φ2, ϑ, ξ) = 1

4

[

s1
0(φ1, φ2) + s1

c (φ1, φ2) cos 2ϑ

+ s1
s (φ1, φ2) sin 2ϑ

]

ξ,

s1
0(φ1, φ2) = −p−

12 sinφ+ − p+
12 sinφ−,

s1
c (φ1, φ2) = p+

12 sinφ+ + p−
12 sinφ−,

s1
s (φ1, φ2) = p22 sin 2φ2 − p11 sin 2φ1,

h1
1(φ1, φ2, ϑ, ξ)

= 1

2

[

h1
1(0)(φ1) + h1

1(ϑ)(φ1, φ2) tanϑ
]

ξ,

h1
2(φ1, φ2, ϑ, ξ)

= 1

2

[

h1
2(0)(φ2) + h1

2(ϑ)(φ1, φ2) cotϑ
]

ξ,

h1
1(0)(φ1) = p11(1 + cos 2φ1),

h1
2(0)(φ2) = p22(1 + cos 2φ2),

h1
1(ϑ)(φ1, φ2) = p12

(

cosφ+ + cosφ−)

,

h1
2(ϑ)(φ1, φ2) = p21

(

cosφ+ + cosφ−)

,

q2(φ1, φ2, ϑ, ξ) = −1

4

[

q2
0 (φ1, φ2)

+ q2
c (φ1, φ2) cos 2ϑ (21)

+ q2
s (φ1, φ2) sin 2ϑ

]

,

q2
0 (φ1, φ2) = a11(1 − cos 2φ1) + a22(1 − cos 2φ2),

q2
c (φ1, φ2) = a11(1 − cos 2φ1) − a22(1 − cos 2φ2),

q2
s (φ1, φ2) = k+

12

(

cosφ− − cosφ+)

,

s2(φ1, φ2, ϑ, ξ) = 1

4

[

s2
0(φ1, φ2)

+ s2
c (φ1, φ2) cos 2ϑ

+ s2
s (φ1, φ2) sin 2ϑ

]

,

s2
0(φ1, φ2) = k−

12

(

cosφ− − cosφ+)

,

s2
c (φ1, φ2) = −k+

12

(

cosφ− − cosφ+)

,

s2
s (φ1, φ2) = a11(1 − cos 2φ1) − a22(1 − cos 2φ2),

h2
1(φ1, φ2, ϑ, ξ)

= −1

2

[

h2
1(0)(φ1) + h2

1(ϑ)(φ1, φ2) tanϑ
]

,

h2
2(φ1, φ2, ϑ, ξ)

= −1

2

[

h2
2(0)(φ2) + h2

2(ϑ)(φ1, φ2) cotϑ
]

,

h2
1(0)(φ1) = a11 sin 2φ1, h2

2(0)(φ2) = a22 sin 2φ2,

h2
1(ϑ)(φ1, φ2) = k12

(

sinφ+ − sinφ−)

,

h2
2(ϑ)(φ1, φ2) = k21

(

sinφ+ + sinφ−)

,

kij = aijωj /ωi, pij = bij /ωi,

k±
12 = k12 ± k21, p±

12 = p12 ± p21,

φ± = φ1 ± φ2.

Since the processes (φ1, φ2, ϑ, ξ) are independent of

the variable ρ, the processes (φ1, φ2, ϑ, ξ) alone form

a diffusive Markov process with the following genera-

tor:

L(p) = L0(p) + εL1(p) + ε2L2(p), (22)
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where

L0(p) = −α0ξ
∂

∂ξ
+ 1

2
σ 2

0
∂2

∂ξ2
+

2
∑

i=1

ωi

∂

∂φi

+ pq0(φ1, φ2, ϑ, ξ) := L0 + pq0,

L1(p) = s1(φ1, φ2, ϑ, ξ)
∂

∂ϑ

+
2

∑

i=1

h1
i (φ1, φ2, ϑ, ξ)

∂

∂φi

+ pq1(φ1, φ2, ϑ, ξ) := L1 + pq1, (23)

L2(p) = s2(φ1, φ2, ϑ, ξ)
∂

∂ϑ
+

2
∑

i=1

h2
i (φ1, φ2, ϑ, ξ)

∂

∂φi

+ pq2(φ1, φ2, ϑ, ξ) := L2 + pq2.

The moment Lyapunov and Λ(p) is the principal sim-
ple eigenvalue for the operator L(p) [16, 29], i.e.,

L(p)ψ(p) = Λ(p)ψ(p). (24)

4.1 Asymptotic analysis

In order to use the perturbation method, both the mo-
ment Lyapunov and Λ(p) and the eigenfunction ψ(p)

are expanded in the power series of ε, respectively i.e.,

Λ(p) = Λ0(p) + εΛ1(p) + ε2Λ2(p)

+ · · · + εnΛn(p) + · · · ,

(25)
ψ(p) = ψ0(p) + εψ1(p) + ε2ψ2(p)

+ · · · + εnψn(p) + · · · .

Insertion of Eq. (25) into Eq. (24) and equating terms
of the equal power of ε, the following equations are
obtained:
(

L0(p) − Λ0(p)
)

ψ0 = 0; (26)
(

L0(p) − Λ0(p)
)

ψ1 = Λ1(p)ψ0 − L1(p)ψ0; (27)
(

L0(p) − Λ0(p)
)

ψ2 = Λ2(p)ψ0 + Λ1(p)ψ1

− L2(p)ψ0 − L1(p)ψ1. (28)

4.1.1 Zeroth-order perturbation

Since q0(φ1, φ2, ϑ, ξ) ≡ 0, the operator L0(p) reduces
to L0. From the definition of Λ(p), we obtain that

Λ0(p) ≡ 0 for all possible p. Thus, Eq. (26) reduces
to

L0ψ0 = 0, i.e.,
(29)

−α0ξ
∂ψ0

∂ξ
+ 1

2
σ 2

0
∂2ψ0

∂ξ2
+

2
∑

i=1

ωi

∂ψ0

∂φi

= 0.

Applying the method of separation of variables and
letting

ψ0(φ1, φ2, ϑ, ξ) = Φ1(φ1)Φ2(φ2)Θ(ϑ)Z(ξ),

Equation (29) becomes

Φ̇1

Φ1
= a1,

Φ̇2

Φ21
= a2,

(30)

−α0ξ
Ż

Z
+ σ 2

0

2

Z̈

Z
= −(ω1a1 + ω2a2).

One can easily obtain Φ1(φ1) = C1e
a1φ1 and Φ2(φ2) =

C2e
a2φ2 . Based on the periodic boundary conditions

ψ0(φ1 + 2π,φ2, ϑ, ξ) = ψ0(φ1, φ2 + 2π,ϑ, ξ) =
ψ0(φ1, φ2, ϑ, ξ), we obtain a1 = a2 = 0. So,
Φ1(φ1) = C1, Φ2(φ2) = C2 and

−α0ξ
Ż

Z
+ σ 2

0

2

Z̈

Z
= 0. (31)

The solution of Eq. (31) is Z(ξ) = C3 + C4 ×
erf(j

√
α0ξ/σ0), where erf(·) denotes the error func-

tion and j is the imaginary unit. For Z(ξ) to be a
bounded function as ξ → ±∞, it is required that
C4 = 0 i.e., Z(ξ) = C3. Therefore, we obtain

ψ0(φ1, φ2, ϑ, ξ) = C1C2C3Θ(ϑ) = ψ0(ϑ),

ϑ ∈ [0,π/2], (32)

where ψ0(ϑ) is a function to be determined.
The adjoint equation of Eq. (29) is

L0 ∗ Ψ0 = 0. (33)

Using the similar method of solving Eq. (29), we ob-
tain

Ψ0(ϑ, ξ) = Ps(ξ)F (ϑ)

4π2
, ϑ ∈

[

0,
π

2

]

, ξ ∈ M, (34)

where F (ϑ) is an arbitrary function, and Ps(ξ) is the
stationary probability density of the process ξ(t).
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4.1.2 First-order perturbation

Substituting Eq. (32) into Eq. (27) leads to

L0ψ1 = −s1(φ1, φ2, ϑ, ξ)ψ ′
0

+ [

Λ1(p) − pq1(φ1, φ2, ϑ, ξ)
]

ψ0. (35)

Applying the solvability condition to Eq. (35) yields

Λ1(p) = 〈

pq1ψ0 + s1ψ ′
0,Ψ0

〉

= 1

16π2

〈

R1(φ1, φ2, ϑ;p)ξ,Ps(ξ)F (ϑ)
〉

= 0, (36)

where

R1(φ1, φ2, ϑ;p) = p
[

q1
0 (φ1, φ2) + q1

c (φ1, φ2) cosϑ

+ q1
s (φ1, φ2) sinϑ

]

ψ0(ϑ)

+ [

s1
0(φ1, φ2) + s1

c (φ1, φ2) cos 2ϑ

+ s1
s (φ1, φ2) sin 2ϑ

]

ψ ′
0(ϑ),

〈

(·), (··)〉 =
∫ π/2

0

∫

M

∫ 2π

0

∫ 2π

0
(·)(··)dφ1 dφ2 dξ dϑ.

The last equality in Eq. (36) results from the fact that
R1(φ1, φ2, ϑ;p) is periodic in φ1 and φ2, and ξ is a
zero mean process. Hence, Eq. (35) reduces to

L0ψ1 = −ξ

4
R1(φ1, φ2, ϑ;p). (37)

Introduce an auxiliary time t such that Eq. (37) be-
comes
(

∂

∂t
− L0

)

ψ1t (t, φ1, φ2, ϑ, ξ ;p)

= ξ

4
R1(φ1, φ2, ϑ;p), (38)

where ψ1t (0, φ1, φ2, ϑ, ξ ;p) = 0.
ψ1(φ1, φ2, ϑ, ξ ;p) is the stationary solution of

Eq. (38) and solves Eq. (37) i.e.,

ψ1(φ1, φ2, ϑ, ξ ;p) = lim
t→∞

(

ψ1t (t, φ1, φ2, ϑ, ξ ;p)
)

.

Applying the transformation t̃ = t, φ̃1 = φ1 + ω1t and
φ̃2 = φ2 + ω2t in Eq. (38) yields
(

∂

∂t̃
−

(

−α0ξ
∂

∂ξ
+ 1

2
σ 2

0
∂2

∂ξ2

))

ψ̃1t

= ξ

4
R̃1(t̃ , φ̃1, φ̃2, ϑ;p), (39)

where ψ̃1t (t̃ , φ̃1, φ̃2, ϑ, ξ ;p) = ψ1t (t, φ1, φ2, ϑ, ξ ;p)

and R̃1(t̃ , φ̃1, φ̃2, ϑ;p) = R1(φ1, φ2, ϑ;p).
Using Duhamel’s principle (see, for example, [30]),

we obtain the solution of Eq. (39) i.e.,

ψ̃1t (t̃ , φ̃1, φ̃2, ϑ, ξ ;p)

= 1

4

∫ t̃

0
R̃1(τ, φ̃1, φ̃2, ϑ;p)

×
∫

M

ηP (η, τ ; ξ,0) dη dτ, (40)

where P(η, τ ; ξ,0) is the transient density which
solves
(

∂

∂t̃
−

(

−α0ξ
∂

∂ξ
+ 1

2
σ 2

0
∂2

∂ξ2

))

P(η, τ ; ξ,0) = 0,

P (η,0; ξ,0) = δ(ξ − η).

The solution ψ1(φ1, φ2, ϑ, ξ ;p) to Eq. (37) is obtained
by taking the limit as t̃ → ∞:

ψ1(φ1, φ2, ϑ, ξ ;p)

= 1

4

∫ +∞

0
R1(φ1 + ω1τ,φ2 + ω2τ,ϑ;p)

×
∫

M

ηP (η, τ ; ξ,0) dη dτ. (41)

4.1.3 Second-order perturbation

Applying the above results, Eq. (28) reduces to

L0ψ2 = [

Λ2(p) − pq2(φ1, φ2, ϑ, ξ)
]

ψ0

− s2(φ1, φ2, ϑ, ξ)ψ ′
0

+ L1ψ1(φ1, φ2, ϑ, ξ ;p). (42)

The solvability condition is

〈

Λ2(p)ψ0 − pq2ψ0 − s2ψ ′
0 − L1ψ1 − pq1ψ1,Ψ0

〉

= 0. (43)

Employing the correlation function of ξ and the power
spectral density given, respectively, by

R(τ ) =
∫

M

∫

M

ξηP (η, τ ; ξ,0)Ps(ξ) dη dξ,

S(ω) = 2
∫ ∞

0
R(τ ) cos(ωτ)dτ.
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The solvability condition (43), via some calculations,
becomes
∫ π/2

0

{[

Λ2(p) − pQ(ϑ) − 1

2
p2Q̂(ϑ)

]

ψ0(ϑ)

− [

μ(ϑ) + pμ̂(ϑ)
]

ψ ′
0(ϑ)

− 1

2
σ 2(ϑ)ψ ′′

0 (ϑ)

}

F (ϑ)dϑ = 0, (44)

where

σ 2(ϑ) = (A − D) cos2(2ϑ) + B cos(2ϑ) + C,

μ(ϑ) = σ 2(ϑ) cot(2ϑ) − � sin(2ϑ),

μ̂(ϑ) = (A − D) cos(2ϑ) sin(2ϑ)

+ 1

2
(B − F) sin(2ϑ),

Q(ϑ) = σ 2(ϑ) + � cos(2ϑ) + E,

Q̂(ϑ) = −(A − D) cos2(2ϑ) + F cos(2ϑ) + A + D,

A = 1

32

(

(p12 + p21)
2S

(

ω+) + (p12 − p21)
2S

(

ω−))

,

B = − 1

16

(

p2
12 − p2

21

)(

S
(

ω+) + S
(

ω−))

,

C = 1

32

(

(p12 − p21)
2S

(

ω+) + (p12 + p21)
2S

(

ω−))

,

D = 1

32

(

p2
11S(2ω1) + p2

22S(2ω2)
)

,

E = (�1 + �2) + 1

8
p12p21

(

S
(

ω+) − S
(

ω−))

,

F = 1

16

(

p2
11S(2ω1) − p2

22S(2ω2)
)

,

�i = −1

4
aii + 1

16
p2

iiS(2ωi), i = 1,2,

� = �1 − �2, ω± = ω1 ± ω2.

for Eq. (44) must hold for arbitrary F (ϑ), and the
bracketed quantity must vanish identically. This leads
to

L̃(p)ψ0 = Λ2(p)ψ0, (45)

where

L̃(p) = 1

2
σ 2(ϑ)

d2

dϑ2
+ [

μ(ϑ) + pμ̂(ϑ)
] d

dϑ

+
[

pQ(ϑ) + 1

2
p2Q̂(ϑ)

]

.

The boundary conditions of Eq. (45) are determined by
considering the adjoint equation for the case p = 0:

L̃ ∗ (

m̃(ϑ)
) := 1

2

d2

dϑ2

(

σ 2(ϑ)m̃(ϑ)
)

− d

dϑ

(

μ(ϑ)m̃(ϑ)
) = 0 (46)

as [15] has shown that ϑ = 0 and ϑ = π/2 are en-
trance boundaries. The eigenfunction ψ0 satisfies the
zero Neumann boundary condition, and Λ2(p) is the
largest eigenvalue of Eq. (45) with zeros Neumann
boundary.

Since Λ0(p) = 0,Λ1(p) = 0, and ε is a small pa-
rameter, the second-order approximation of the mo-
ment Lyapunov exponent is given as

Λ(p) ∼= ε2Λ2(p).

Hence, the approximate analytic expression of mo-
ment Lyapunov exponent can be obtained by solving
the largest eigenvalue of Eq. (45).

4.2 Solution of the eigenvalue problem

According to Bolotin [31] and Wedig [32], the solu-
tion of Eq. (45) can be calculated by an orthogonal
expansion. Since the zero Neumann boundary condi-
tions, the eigenfunction ψ0 is expressed as a Fourier
cosine series i.e.,

ψ0(ϑ) =
∞
∑

m=0

zm cos(2mϑ). (47)

Substituting Eq. (47) into Eq. (45) leads to the follow-
ing set of equations:

∞
∑

m=0

rm0zm = 2Λ2(p)z0,

(48)∞
∑

m=0

rmnzm = Λ2(p)zn, n = 1,2, . . .

where

rmn = 4

π

∫ π/2

0
L̃(p)

(

cos(2mϑ)
)

cos(2nϑ)dϑ,

m,n = 0,1,2, . . . .

Equation (48) can be written as
(

M − Λ2(p)I
)

y = 0, (49)
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Fig. 2 Comparison of the perturbation results and numerical results of the moment Lyapunov exponent for the case r = 0.95, D = 0.5,
τ0 = 0.1; μ = 20, d = 0.05; (a) u = 1.4; (b) u = 1.7

where M = RG−1,R = (rmn), G = (Gmn) =
diag(2,1,1, . . .), z = (z0, z1, z2, . . .)

T, and y = Gz.
The existence of a nontrivial solution for z requires

that the determinant of the coefficient matrix equals
zero. Therefore, the problem of evaluating Λ2(p) is
converted to evaluate the leading eigenvalue of M. We
construct a set of approximations by finding the eigen-
values of a set of submatrices:
[

1

2
r00

]

,

[ 1
2 r00 r01

1
2 r10 r11

]

, . . .

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
2 r00 r01 r02 · · ·
1
2 r10 r11 r12 · · ·
1
2 r20 r21 r22 · · ·
...

...
...

. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The set of approximate eigenvalues obtained by this
method converges to the associated true eigenvalues as
n → ∞. However, the amount of calculation increases
rapidly with the increase of n. So, we obtain the ap-
proximate eigenvalues by the truncation of n. For ex-
ample, Λ2(p) ∼= 1

2 r00 as n = 0. Because of the com-
plexity of expressions, we only present the elements
of the second-order submatrix.

r00 = 1

64
p(3p + 10)

[

p2
11S(2ω1) + p2

22S(2ω2)
]

+ 1

64
p(p + 6)(p12 + p21)

2S
(

ω+)

+ 1

64
p(p + 6)(p12 − p21)

2S
(

ω−)

− 1

2
p(a11 + a22),

r01 = 1

32
p(p + 2)

[

p2
11S(2ω1) − p2

22S(2ω2)
]

− 1

16
p
(

p2
12 − p2

21

)(

S
(

ω+) + S
(

ω−))

− 1

4
p(a11 − a22),

r10 = 1

32
(p + 2)2[p2

11S(2ω1) − p2
22S(2ω2)

]

+ 1

4

(

p2
12 − p2

21

)(

S
(

ω+) + S
(

ω−))

− 1

4
(p + 2)(a11 − a22),

r11 = 1

256

(

7p2 + 22p − 8
)[

p2
11S(2ω1)

+ p2
22S(2ω2)

] + 1

256

[

p(p + 10)(p12 + p21)
2

− 8(p12 − p21)
2 − 48

(

p2
12 + p2

21

)]

S
(

ω+)

+ 1

256

[

p(p + 10)(p12 − p21)
2

− 8(p12 + p21)
2 − 48

(

p2
12 + p2

21

)]

S
(

ω−)

− 1

4
p(a11 + a22).
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Fig. 3 Effect of the noise on the moment Lyapunov exponent for the case u = 1.5,μ = 20, d = 0.05; (a) D = 0.5, τ0 = 0.1;
(b) r = 0.95, τ0 = 0.1; (c) r = 0.95,D = 0.5

5 Numerical results and discussions

Monte Carlo simulation is used to determine the mo-
ment Lyapunov exponents of system (3) for the pur-
pose of validating the accuracy of the approximate re-
sults obtained by the perturbation method. The algo-
rithm presented in [33] is applied to simulate the mo-
ment Lyapunov exponents. For the simulation, the pa-
rameters are chosen as ε = 0.1, � 2 = 0.2, xθ = 0.25,
r2
θ = 0.5, ch = 0.1, cθ = 0.1.

Letting y1 = q1, y2 = q̇1, y3 = q2, y4 = q̇2, Eq. (3)
is presented as

Ẏ (t) = A
(

ξ(t)
)

Y(t), (50)

where

dξ(t) = −α0ξ(t) dt + σ0 dW,
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A
(

ξ(t)
) =

⎡

⎢
⎢
⎣

0 1 0 0
−ω2

1 − εb11ξ(t) −ε2a11 −εb12ξ(t) −ε2a12

0 0 0 1
−εb21ξ(t) −ε2a21 −ω2

2 − εb22ξ(t) −ε2a22

⎤

⎥
⎥
⎦

.

The comparison of approximate analytical moment
Lyapunov exponents obtained by perturbation and the
Monte Carlo simulation results for different values of
n and u are shown in Fig. 2. Based on the fact that is
disclosed in Fig. 2, one easily finds that the approx-
imate results agree well with the simulation results.
And it also can be seen that the approximate results
converge and the fourth-order approximations are suf-
ficient. The two figures also indicate that the system
may be almost-sure stable, as the slope of Λ′(0) (i.e.,
the maximal Lyapunov exponent) is negative, but un-
stable in pth moment sense for sufficiently large p in
Fig. 2(a); and the system may be almost-sure unsta-
ble, as the slope of Λ′(0) is positive, but stable in pth
moment sense for −2 ≤ p ≤ 0 in the Fig. 2(b).

The effects of the noise and system parameters are
discussed by using the fourth-order approximate ana-
lytical moment Lyapunov exponents.

The moment Lyapunov exponents for different pa-
rameters of the noise are plotted in Fig. 3. From
Figs. 3(a) and 3(b), it is clear that both the noise pa-
rameters r and D can weaken the stability of the sys-
tem along with the increase of them. But the effect of
the noise parameters r on the stability of the system is
very small as r → 1, which can be neglected. Hence,
we only need to notice the noise intensity D, trying to
avoid the strong noise in actual engineering. The sta-
bility of the system can be strengthened by the noise
correlation time τ0, which is presented in Fig. 3(c).
And in view of Fig. 3(c), it is seen that the moment
Lyapunov exponents of the system are almost identi-
cal for the cases τ0 = 0.00001 and τ0 = 0.01, which
implies when τ0 is very small, the stochastic stability
of the system is invariable along with the change of τ0.

Figure 4 depicts the moment Lyapunov exponent
for different values of u. It is clear that the stability of
the system is weakened with the increase of the pa-
rameter u. And the maximal Lyapunov exponent of
the system is changed from negative to positive, which
implies that the stability of the system varies from
almost-sure stable into almost-sure unstable. Based on
the expression of parameter u, one easily finds that the
system will come up flutter instability with probability

1 as the mean of wind speed V reaching the threshold,
which expounds the mechanization of flutter from the
view of stochastic theory.

Figure 5 gives the moment Lyapunov exponent
with different values of parameter μ. Along with the
increase of μ, the stochastic stability of the system is
strengthened, as shown in Fig. 5. The parameter μ

is mainly determined by the airfoil mass m, which
can be seen from the expression of μ. However, in
actual engineering, the airfoil mass is always limited
and needed as small as possible. Therefore, we should
choose the appropriate airfoil mass m to stabilize the
system.

The moment Lyapunov exponent is depicted in
Fig. 6 with different values of parameter d . In the view
of Fig. 6, it is seen that the stochastic stability of the
system weakens with the increase of d . From the ex-
pression of parameter d and the above discussion, it is
clear that parameter d is determined by specific value
(i.e., a) of the distance of the elastic axis E from the
midchord point and the semichord length. So, the elas-
tic axis of the airfoil should try to stay close to the
midchord point in actual designing.

Fig. 4 Effect of the parameter u on the moment Lyapunov
exponent for the case r = 0.95, D = 0.5, τ0 = 0.1; μ = 20,
d = 0.05
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Fig. 5 Effect of the parameter μ on the moment Lyapunov
exponent for the case r = 0.95, D = 0.5, τ0 = 0.1; u = 1.5,
d = 0.05

Fig. 6 Effect of the parameter d on the moment Lyapunov
exponent for the case r = 0.95, D = 0.5, τ0 = 0.1; u = 1.5,
μ = 20

6 Conclusion

In the present paper, the stochastic stability of a bi-
nary airfoil system subjected to non-Gaussian col-
ored noise is investigated by determining the mo-
ment Lyapunov exponents. The noise is simplified to
an Ornstein–Uhlenbeck process by applying a path-
integral approach. For weak noise excitations, the
singular perturbation method is employed to obtain
second-order expansions of the moment Lyapunov ex-

ponents. And the approximate analytic expression of
the moment Lyapunov exponent is obtained by ex-
panding the eigenfunction as a Fourier cosine series.
Furthermore, the Monte Carlo simulation results are
given to validate the accuracy of the approximate an-
alytical results. It is seen that the analytical results fit
rather well with the numerical results. Finally, the ef-
fects of the noise and the system parameters on the
stochastic stability are discussed, and some results are
presented.

Acknowledgements This research was supported by the
National Natural Science Foundation of China (Grant Nos.
11072107, 91016022) and the Specialized Research Fund for
the Doctoral Program of Higher Education of China (Grant No.
20093218110003).

References

1. Woolston, D.S., Runyan, H.L., Andrews, R.E.: An investi-
gation of effects of certain types of structural nonlinearities
on wing and control surface flutter. J. Aeronaut. Sci. 24(1),
57–63 (1957)

2. Lee, B.H.K., LeBlanc, P.: Flutter analysis of a two-
dimensional airfoil with cubic non-linear restoring force.
National Research Council of Canada, Aeronautical Note
NAE-AN-36, NRC No. 25438 (1986)

3. Alighanbari, H., Price, S.J.: The post-Hopf-bifurcation re-
sponse of an airfoil in incompressible two-dimensional
flow. Nonlinear Dyn. 10(4), 381–400 (1996)

4. Zhao, Y.H.: Stability of a time-delayed aeroelastic system
with a control surface. Aerosp. Sci. Technol. 15(1), 72–77
(2011)

5. Chen, Y.M., Liu, J.K., Meng, G.: Analysis methods for non-
linear flutter of a two-dimensional airfoil: a review. J. Vib.
Shock 30(3), 129–134 (2011)

6. Chen, F.Q., Zhou, L.Q., Chen, Y.S.: Bifurcation and chaos
of an airfoil with cubic nonlinearity in incompressible flow.
Sci. China, Technol. Sci. 54(8), 1954–1965 (2011)

7. Ibrahim, R.A., Orono, P.O., Madaboosi, S.R.: Stochastic
flutter of a panel subjected to random in-plane forces, I:
two mode interaction. AIAA J. 28(4), 694–702 (1990)

8. Ibrahim, R.A., Orono, P.O.: Stochastic non-linear flutter of
a panel subjected to random in-plane forces. Int. J. Non-
Linear Mech. 26(6), 867–883 (1991)

9. Poirel, D., Price, S.J.: Random binary (coalescence) flutter
of a two-dimensional linear airfoil. J. Fluids Struct. 18(1),
23–42 (2003)

10. Poirel, D., Price, S.J.: Bifurcation characteristics of a two-
dimensional structurally non-linear airfoil in turbulent flow.
Nonlinear Dyn. 48(4), 423–435 (2007)

11. Zhao, D.M., Zhang, Q.C., Tan, Y.: Random flutter of a 2-
DOF nonlinear airfoil in pitch and plunge with freeplay in
pitch. Nonlinear Dyn. 58(4), 643–654 (2009)

12. Huang, Y., Fang, C.J., Liu, X.B.: On stochastic dynamical
behaviors of binary airfoil with nonlinear structure. Acta
Aeronaut. Astronaut. Sin. 31(10), 1946–1952 (2010)



Moment Lyapunov exponent and stochastic stability of binary airfoil driven by non-Gaussian colored 1859

13. Arnold, L., Doyle, M.M., Namachchivaya, N.S.: Small
noise expansion of moment Lyapunov exponents for two-
dimensional systems. Dyn. Stab. Syst. 12(3), 187–211
(1997)

14. Namachchivaya, N.S., Van Roessel, H.J., Doyle, M.M.:
Moment Lyapunov exponent for two coupled oscillators
driven by real noise. SIAM J. Appl. Math. 56(5), 1400–
1423 (1996)

15. Namachchivaya, N.S., Van Roessel, H.J.: Moment Lya-
punov exponent and stochastic stability of two coupled os-
cillators driven by real noise. J. Appl. Mech. 68(6), 903–
914 (2001)

16. Khasminskii, R., Moshchuk, N.: Moment Lyapunov expo-
nent and stability index for linear conservative system with
small random perturbation. SIAM J. Appl. Math. 58(1),
245–256 (1998)

17. Liu, X.B., Liew, K.M.: On the stability properties of a van
der Pol–Duffing oscillator that is driven by a real noise. J.
Sound Vib. 285(1–2), 27–49 (2005)

18. Zhu, J.Y., Xie, W.C., So, R.M.C., Wang, X.Q.: Parametric
resonance of a two degrees-of-freedom system induced by
bounded noise. J. Appl. Mech. 76(4), 041007 (2009)

19. Kozic, P., Pavlovic, R., Janevski, G., Stojanovic, V.: Mo-
ment Lyapunov exponents and stochastic stability of mov-
ing narrow bands. J. Vib. Control 17(7), 988–999 (2011)

20. Kozic, P., Janevski, G., Pavlovic, R.: Moment Lyapunov
exponents and stochastic stability of a double-beam sys-
tem under compressive axial loading. Int. J. Solids Struct.
47(10), 1435–1442 (2010)

21. Fuentes, M.A., Toral, R., Wio, H.S.: Enhancement of
stochastic resonance: the role of non Gaussian noises. Phys-
ica A 295(1–2), 114–122 (2001)

22. Fuentes, M.A., Tessone, C.J., Wio, H.S., Toral, R.: Stochas-
tic resonance in bistable and excitable systems: effect of
non-Gaussian noises. Fluct. Noise Lett. 3(4), L365–L371
(2003)

23. Bouzat, S., Wio, H.S.: New aspects on current enhancement
in Brownian motors driven by non-Gaussian noises. Phys.
A, Stat. Mech. Appl. 351(1), 69–78 (2005)

24. Majee, P., Goswami, G., Bag, B.C.: Colored non-Gaussian
noise induced resonant activation. Chem. Phys. Lett.
416(4–6), 256–260 (2005)

25. Baura, A., Sen, M.K., Goswami, G., Bag, B.C.: Colored
non-Gaussian noise driven open systems: generalization of
Kramer’s’ theory with a unified approach. J. Chem. Phys.
134(4) (2011)

26. Zhao, L.C., Yang, Z.C.: Chaotic motions of an airfoil with
non-linear stiffness in incompressible flow. J. Sound Vib.
138(2), 245–254 (1990)

27. Liu, J.K., Zhao, L.C.: Bifurcation analysis of airfoils in in-
compressible flow. J. Sound Vib. 154(1), 117–124 (1992)

28. Fuentes, M.A., Wio, H.S., Toral, R.: Effective Markovian
approximation for non-Gaussian noises: a path integral
approach. Phys. A, Stat. Mech. Appl. 303(1–2), 91–104
(2002)

29. Arnold, L.: A formula connecting sample and moment sta-
bility of linear stochastic systems. SIAM J. Appl. Math.,
793–802 (1984)

30. Zauderer, E.: Partial Differential Equations of Applied
Mathematics. Wiley-Interscience, New York (1989)

31. Bolotin, V.V.: The Dynamic Stability of Elastic Systems,
vol. 1. Holden-Day, San Francisco (1964)

32. Wedig, W.V.: Lyapunov Exponent of Stochastic Systems
and Related Bifurcation Problems. Stochastic Structural
Dynamics—Progress in Theory and Applications. Elsevier
Applied Science, London (1988)

33. Xie, W.C., Huang, Q.H.: Simulation of moment Lya-
punov exponents for linear homogeneous stochastic sys-
tems. J. Appl. Mech. 76(3), 031001 (2009)


	Moment Lyapunov exponent and stochastic stability of binary airfoil driven by non-Gaussian colored noise
	Abstract
	Introduction
	Mathematical model
	Approximation to the Markov process
	Moment Lyapunov exponent
	Asymptotic analysis
	Zeroth-order perturbation
	First-order perturbation
	Second-order perturbation

	Solution of the eigenvalue problem

	Numerical results and discussions
	Conclusion
	Acknowledgements
	References


