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Abstract Lyapunov exponents indicate the asymp-
totic behaviors of nonlinear systems, the concept of
which is a powerful tool of the stability analysis for
nonlinear systems, especially when the dynamic mod-
els of the systems are available. For real world sys-
tems, however, such models are often unknown, and
estimating the exponents reliably from experimental
data is notoriously difficult. In this paper, a novel
method of estimating Lyapunov exponents from a time
series is presented. The method combines the ideas of
reconstructing the attractor of the system under study
and approximating the embedded attractor through
tuning a Radial-Basis-Function (RBF) network, based
on which the Jacobian matrices can be easily derived,
making the model-based algorithm applicable. Three
case studies are presented to demonstrate the effi-
cacy of the proposed method. The Hénon map and
the Lorenz system feature spectra including not only
the positive exponent, but also the negative one, while
the standing biped balance system is characterized by
four negative exponents. Compared with the existing
methods, the numerical accuracy of the Lyapunov ex-
ponents derived through the newly proposed method
is much higher regardless of their signs even in the
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presence of measurement noise. We believe that the
work can contribute to the stability analysis of nonlin-
ear systems of which the dynamics are either unknown
or difficult to model due to complexities.
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1 Introduction

Stability analysis is of crucial importance for most
control systems, especially in real-world industries. As
a powerful tool, the concept of Lyapunov exponents,
which are numbers reflecting the averaged exponen-
tial rate of divergence or convergence of nearby orbits
in the state space, has been the subject of intensive re-
search for diagnosing chaotic systems and revealing
stability of complex nonlinear systems [1–6].

The general approach of calculating Lyapunov ex-
ponents is very constructive. Basically, the model-
based method [2, 7] can estimate the spectrum of
Lyapunov exponents accurately for systems of which
the mathematical models are well developed, provided
that the numerical artifact is under control. For the
cases that rather than knowing system models, only
experimental data are at hand, the time-series-based
method using linear mapping was developed [2, 8].
The major shortcoming of this method comes from
the fact that it is not reliable for estimating negative
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exponents, due to the inaccuracy induced by the local
linear mapping [2, 9]. Brown et al. did an excellent
research by introducing the higher-order Taylor ex-
pansion for the local neighborhood-to-neighborhood
mapping [9], which separated the problem of finding
the analogue Jacobian matrices from the determination
of mapping neighborhoods to neighborhoods, and im-
proved the accuracy of the full set of Lyapunov expo-
nents significantly. Later, Yang and Wu [10] success-
fully applied this method to a biped control system,
of which the both negative Lyapunov exponents can
be estimated accurately using a quadratic polynomial
mapping. However, compared with linear mapping,
nonlinear mapping involves the heavy load of mathe-
matical derivations. Both the size of the neighborhood-
to-neighborhood matrices associated with nonlinear
mapping and the number of unknown parameters as-
sociated with such matrices grow rapidly with the in-
crement of the embedding dimension and the order
used in the Taylor expansion. In addition, the numeri-
cal precision of the estimated Lyapunov exponents re-
ported in Brown’s work showed that it does not always
get improved along with increasing the order of the
Taylor expansion, which should be determined prop-
erly in what manner remains problematic. Recently, al-
though a more general form developed for deriving the
neighborhood-to-neighborhood matrix of arbitrary di-
mensionality has been reported by Yang and Wu [11],
the order of the Taylor expansion in their derivation
was restricted only to be 2.

On the other hand, Gencay and Dechert proposed
an advanced method based on the neural model [12],
where multiple layer feedforward (MLF) networks
were employed to discover the embedded mapping,
providing the Jacobian matrices of the reconstructed
dynamics. However, the details of the networks em-
ployed for the corresponding systems were not pro-
vided in their paper. More recently, under the as-
sumption that all the system states are available, a
similar method based on the radial-basis-function
(RBF) network was developed [13], where a multiple-
input-multiple-output (MIMO) RBF network was con-
structed to approximate the original nonlinear system.
This method features advantages in three folds. First of
all, no mathematical models are required, which inher-
its the attractiveness of the time-series-based methods;
Secondly, the derivation of Jacobian matrices based
on the RBF network is quite straightforward even to
systems of large dimension; last but not least, Lya-
punov exponents can be estimated reliably regardless

of the signs, that is the very merit of the model-based
method. However, for developing the MIMO neural
model, the precondition that all states are at hand can
rarely be satisfied in the real world, which stimulated
the research presented in this paper.

Apart from the derivation of Jacobian matrices, de-
veloping a noise resistant method for reliably estimat-
ing Lyapunov exponents using a time series is another
challenge. In practice, it is inevitable to have measure-
ment noise in the observations. Several methods for
estimating Lyapunov exponents using a noisy time se-
ries for chaotic systems have been developed [2, 9, 12,
14, 15]. Regarding to the nonlinear mapping method, it
was documented that the values of negative exponents
in “thin” directions of the data set start to become af-
fected when the measurement noise level grows above
about 10 % of the thickness of the data set in the asso-
ciated Lyapunov direction [9]. However, in Yang and
Wu’s work, it can be observed that the negative ex-
ponent of the certain system under study was appar-
ently underestimated using nonlinear mapping even
the measurement noise was maintained at a relatively
low level as 5 % [15]. Regarding the methods based
on the neural models, due to the existence of noise,
the extent to which the deterministic map can be un-
covered is reduced, and the performance of successive
rescaling and reorthogonalization may also be deteri-
orated when calculating the exponents [12]. Although
in [12] the method was successfully applied to the ob-
served chaotic data with measurement noise as well as
system noise, of which the largest exponents are all
positive, the validity of the method has not been tested
on exponentially stable systems featuring only nega-
tive exponents, leaving the power of the method less
convincing.

Motivated by the above analysis, estimating Lya-
punov exponents reliably from a scalar time series
with additive measurement noise becomes the exact
object of this paper. Consider that one can always find
an existing RBF network capable of accurately mim-
icking a specified MLF network, or vice versa [16],
in this paper, the previously proposed method based
on the RBF network is combined with Gencay and
Dechert’s work in the way that the system attractor
is reconstructed in an embedding space first using a
scalar time series, then instead of carrying out system
approximation directly, the RBF model is tuned prop-
erly to reveal the embedded mapping. In fact, owing to
the reconstruction of the system attractor, a time series
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along only one state is required, and approximation us-
ing the RBF network makes the derivation of Jacobian
matrices constructive and reliable. Here, not restricted
to the chaotic systems, a standing biped balance sys-
tem is taken as an additional case study to demon-
strate the effectiveness of the proposed method besides
the classical Hénon map and the Lorenz system. The
biped is simplified by a two-link inverted pendulum
representing the leg and the torso, respectively, with
an additional one rigid foot-link. The control torques
are applied at the ankle and the hip joints to main-
tain the biped at the upright posture with the min-
imal energy consumption. Rather than being pinned
to the ground, the foot-link is required to be station-
ary on the ground, indicating that there is no lifting,
no slipping, and no rolling over during standing. As
documented in some early works [17, 18], these three
constraints jointly determine that the control bounds
change with the biped states, and for such a case
analyzing the system stability via the classical Lya-
punov’s second method is extremely difficult. Thus,
the concept of Lyapunov exponents is employed in this
work. To investigate the sensitivity of our method to
the measurement noise, numerical results of the es-
timated Lyapunov exponents for three different sys-
tems are also provided, respectively. For the Lorenz
and the biped balance system, analysis and discus-
sion are carried out in order of two different circum-
stances: in the first circumstance, the noisy data se-
ries are used only for calculating the exponents; while
in the second one, the noisy data series are employed
for tuning the network first, then estimating the expo-
nents.

2 Mathematical preliminary

2.1 The concept of Lyapunov exponents

A Lyapunov exponent of a dynamic system is a quan-
tity that characterizes the averaged rate of separa-
tion of infinitesimally close trajectories in the state
space. Consider a smooth dynamic system in an
n-dimensional state space expressed in the following
form:

ẋ = f (x, t), (1)

where x ∈ R
n is the state vector, x(0) = x0, and

f (x, t) is a continuously differentiable vector func-

Fig. 1 Evolution of an initially infinitesimal 2-dimensional
sphere

tion. Monitoring the long-term evolution of an in-
finitesimal n-sphere of initial conditions, the sphere
becomes an n-ellipsoid due to the local deforming na-
ture of the flow. Figure 1 shows the evolution of a
2-dimensional sphere which is initially infinitesimal.
The ith dimensional Lyapunov exponent is then de-
fined in terms of the length of the ellipsoidal principal
axis ‖δxi(t)‖:

λi = lim
t→∞

1

t
ln

‖δxi(t)‖
‖δxi(t0)‖ , i = 1, . . . , n, (2)

where ‖δxi(t0)‖ and ‖δxi(t)‖ represent the lengths of
the ith principal axis of the infinitesimal n-dimensional
hyperellipsoid at initial and current time instances, t0
and t , respectively. This definition indicates that Lya-
punov exponents are related to the expanding or con-
tracting nature of different directions in the state space,
and the spectrum of Lyapunov exponents is equal in
number to the dimensionality of the state space. In ad-
dition, the concept of Lyapunov exponents provides
a generalization of the linear stability analysis for
nonlinear dynamic systems. They are global proper-
ties and independent of the fiducial trajectory selected
to estimate them. This feature was presented in Os-
eledec’s work [1], which has been applied in the limit
of infinite time. While in practical applications, finite-
time Lyapunov exponents are frequently used in the
following form:

λi = 1

t
ln

‖δxi(t)‖
‖δxi(t0)‖ , i = 1, . . . , n. (3)

In the limit as t → ∞, the finite-time Lyapunov expo-
nents converge to the true Lyapunov exponents [14].

Wolf et al. [2] developed the algorithm for calculat-
ing the spectrum of Lyapunov exponents from explicit
mathematical models of the systems. In Wolf’s algo-
rithm, a fiducial trajectory (the center of the sphere)
is defined by the action of the nonlinear motion equa-
tions on some initial conditions. The principal axes are



1692 Y. Sun, C.Q. Wu

Fig. 2 The geometrical interpretation of GSR for δx
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determined by the evolution via the linearized equa-
tions of an initially orthonormal vector frame anchored
to the fiducial trajectory. This leads to the following set
of equations [2]:

ẋ(t) = f
(
x(t)

)
, (4a)

�̇ t = J
(
x(t)

)
� t , (4b)

where � t is the state transition matrix of the linearized
system δx(t) = � t δx(0). The initial conditions for
numerical integrations are

{ x(t0)

� t (t0)

} = { x0
I

}
, where I

is the identity matrix of a proper dimension. The Jaco-
bian matrix J (x(t)) is defined as

J
(
x(t)

) = ∂f (x)

∂xT

∣∣∣∣
x=x(t)

, (5)

of which the significance lies in the fact that it is re-
lated to a linear approximation to a nonlinear function
near a given point. In this sense, the Jacobian matrix of
a dynamic system describes the amount of flow distor-
tion induced by a transformation in the neighborhood
of a given point.

To avoid misalignment of all the vectors δxi along
the direction of maximal expansion, they are re-
orthonormalized at each integration step by involv-
ing the Gram–Schmidt Reorthonormalization (GSR)
scheme, which generates an orthonormal set
{u1, . . . , un} of n vectors with the property that
{u1, . . . , un} spans the same subspace as {δx1, . . . ,

δxn}. This orientation-preserving property of GSR
suggests that the initial labeling of the vectors may
be done arbitrarily. Figure 2 shows the geometrical
interpretation of the orthonormalization for two prin-
ciple axes at the j th step. Once the orthonormal vector

frame {u1, . . . , un} is produced by GSR, for a large
enough integer k, one can obtain Lyapunov exponents
as follows with the time-step h properly chosen:

λi ≈ 1

kh

k∑

j=1

ln
∥∥u

(j)
i

∥∥, i = 1,2, . . . , n, (6)

where j is the number of integration steps.

2.2 Noise levels

One important issue of estimating Lyapunov expo-
nents using experimental data is the robustness of the
estimates to the measurement noise. In this work, only
additive Gaussian white noise is considered. Gaussian
white noise is of special interest here since it is the
type of measurement noise commonly encountered in
experimental situations, especially for mechanical sys-
tems [15]. The noise level has been frequently repre-
sented by the signal-to-noise ratio (SNR), which is de-
fined as the power ratio between a signal and the back-
ground noise. It is usually expressed using the loga-
rithmic decibel scale as follows:

SNR (dB) = 10 log10(Psignal/Pnoise), (7)

where P is the average power. Consequently, as an al-
ternative measure of the noise level, the percentage of
noise can be obtained as

Noise (%) = (Pnoise/Psignal)
1/2 × 100. (8)

The percentage of noise varies upon the measured sig-
nals; it can be easily controlled below 2 % for robots
consisting of close-to-rigid links. When the percent-
age of noise is greater than 5 %, the measured val-
ues would be considered unreliable. Correspondingly,
a time series with an SNR greater than 35 dB is be-
lieved to be contaminated with low noise, and those
with an SNR less than 25 dB are regarded as having
high noise.

3 Methodology

3.1 Main idea

Two important components constitute the main idea of
this paper for estimating Lyapunov exponents, which
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are introduced in the following two subsections, re-
spectively. One is reconstruction of the system attrac-
tor in an embedding phase space using a scalar time
series, and another one is approximation of the re-
constructed attractor through tuning an RBF network,
which actually provides structure information for de-
riving Jacobian matrices of the reconstructed mapping.
Once the approximated sequence of Jacobian matrices
are at hand, Lyapunov exponents can be estimated fol-
lowing the model-based algorithm with ease.

3.2 The reconstruction of system attractors

Associated with the dynamic system in Eq. (1), there is
a collected scalar time series xi = x(i�t), where i =
1,2, . . . ,N . N is the number of observations and �t

is the time interval between measurements. According
to the conventional time delay embedding technique
[19], an orbit representing the time evolution of the
system can be reconstructed using the vectors formed
by the delay coordinates:

y
dE

k = (xi, xi+Tlag , . . . , xi+(dE−1)Tlag)
T,

k = 1,2, . . . ,K, (9)

where dE is the embedding dimension, Tlag denotes
the time lag, k labels the iteration step such that after
one step iteration, y

dE

k becomes y
dE

k+1. The whole iter-
ation steps can be inferred as K −1 since K is the total
number of the reconstructed vectors ydE . i may arbi-
trarily selected from [1,N − (K + dE − 2)×Tlag] and
it unnecessarily equals k. The superscript ‘T’ stands
for matrix transposition. It is different from the nota-
tion used in [12], where Tlag was defaulted to be 1 for
all systems. This default value, in some cases where
sampling rate �t is very small, will cause that the
delayed coordinates at successive points in the state
space represent almost the same information. To avoid
this shortcoming, no fixed values are assigned to Tlag

in this paper, making our method more general.
Rather than a single point in the reconstructed

space, Eq. (9) depicts a fiducial trajectory for the esti-
mation of Lyapunov exponents. Generically, for dE ≥
2n + 1 there exists a mapping L : R

dE → R
dE such

that:

y
dE

k+1 = L
(
y

dE

k

)
, (10)

where y
dE

k+1 = (xi+Tlag , xi+2Tlag , . . . , xi+dETlag)
T. The

mapping L is to be estimated by an RBF network.

Considering that L may be taken as

L :

⎡

⎢⎢⎢⎢
⎣

xi

xi+Tlag

...

xi+(dE−1)Tlag

⎤

⎥⎥⎥⎥
⎦

→

⎡

⎢⎢⎢⎢
⎣

xi+Tlag

xi+2Tlag

...

xi+dETlag

⎤

⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢
⎣

xi+Tlag

xi+2Tlag

...

g(xi, xi+Tlag , . . . , xi+(dE−1)Tlag)

⎤

⎥⎥⎥⎥
⎦

, (11)

estimating L can be reduced to estimating the regres-
sion equation

xi+dETlag = g(xi, xi+Tlag , . . . , xi+(dE−1)Tlag). (12)

Consequently, the derivatives of L can be expressed as

J
(
y

dE

k

)

= DL
y

dE
k

=

⎡

⎢⎢⎢⎢⎢⎢
⎣

0 1 0 . . . 0

0 0 1 . . . 0

...
...

...
. . .

...

∂g
∂xi

∂g
∂xi+Tlag

∂g
∂xi+2Tlag

. . .
∂g

∂xi+(dE−1)Tlag

⎤

⎥⎥⎥⎥⎥⎥
⎦

,

(13)

which provides the general form of the Jacobian ma-
trix of the reconstructed map, making the model-based
algorithm applicable.

3.3 The Radial-Basis-Function (RBF) network

To estimate the reconstructed mapping g, the off-line
identification, say, system approximation via an RBF
network is adopted in this paper. Modeling through
RBF networks is a widely-used method for nonlin-
ear mapping approximation. It has been reported that
any Borel-measurable function (a function for which
all subsets of the type E(x : f (x) ≥ α) in its domain
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Fig. 3 A typical schematic of the RBF network

of definition are Borel sets, such functions are known
as Borel-measurable functions [20]) with respect to an
appropriate norm can be approximated to any desired
degree of accuracy by carefully choosing parameters
of the network, provided the network structure is suf-
ficiently large [21, 22].

The classical architecture of the RBF network is a
three-layer feedforward network which contains the
input layer, the hidden layer, and the output layer.
A typical RBF network configuration with l hidden
nodes is depicted in Fig. 3. Such a network imple-
ments a mapping f : R

n → R according to the overall
outputs:

ŷ = w0 × bias+
l∑

j=1

wjφj

(‖x − cj‖
)
, (14)

where x ∈ R
n is the input vector, wj are the output

weights. The bias neuron always emits 1, and its con-
nection weight w0 has an effect of increasing or low-
ering the net input of the summation junction in the
next layer, which facilitates training. φj (·) is a given
radial basis function with its center vector defined
as cj = [cj1, cj2, . . . , cjn]T, where 1 ≤ j ≤ l. In our
study, we select the Gaussian function for φj , which
has the following expression:

φj = exp

(
−‖x − cj‖2

2σ 2
j

)
, (15)

where σj is the width of the j th Gaussian function.
It is worthy to point out that the transfer func-

tion for the radial basis neurons are unnecessarily of
Gaussian type as expressed in Eq. (15). Functions of
other types whose values depend only on the distance
rj = ‖x − cj‖ from certain centers cj , e.g., Multi-

quadratics (φj =
√

ε2 + r2
j for some ε > 0), Inverse

multiquadratics (φj = (ε2 + r2
j )− 1

2 for some ε > 0),

Inverse quadratics (φj = (ε2 + r2
j )−1 for some ε > 0),

etc., can also be implemented in principle for the ap-
proximation of any continuous function on a compact
interval [16]. Among them, the inverse multiquadratic
function, the inverse quadratic function, and the Gaus-
sian function share a common property: the nonlinear-
ity φj → 0 as rj → ∞. By contrast, the multiquadratic
function becomes unbounded along with rj → ∞.
Theoretical investigation and practical results suggest
that the choice of the radial basis function φj is not
crucial to the performance of the RBF network [21].

To appropriately choose the parameters of the net-
work, the centers of the RBF network cj can be de-
termined using the K-means clustering method, while
the width σj can be fixed by employing the K-nearest
neighbors heuristic typically. Briefly speaking, the aim
of the K-means algorithm is to partition a collection of
n-dimensional vectors xj , j = 1, . . . , n, into l groups
Gi, i = 1, . . . , l, and find a cluster center in each group
such that a cost function of dissimilarity measure is
minimized [23, 24]. The K-nearest neighbors algo-
rithm is used to vary the widths in order to achieve
a certain amount of response overlap between the hid-
den nodes [23]. For the output layer, the linear weights
wj can be found by following the steps of gradient de-
scent with momentum algorithm as addressed below:

Step 1: Find the error E(k) = 1
2 (y(k)− ŷ(k))T(y(k)−

ŷ(k)) at step k, where ŷ(k) denotes the RBF output
at step k and y(k) represents the output of the actual
system associated with the input data x(k) at step k

known as the clustering sample.

Step 2: Change the connection weights in the follow-
ing way:

wj(k + 1) = wj(k) + μ
(
y(k) − ŷ(k)

)
φj (k)

+ η
(
wj(k) − wj(k − 1)

)
. (16)

Step 3: If the error becomes lower than a predeter-
mined value, stop training. Otherwise, replace k by
k + 1 and go back to step 1.

Here, μ is the learning rate and η is the momentum
constant introduced to prevent the network from being
trapped in a local minimum. These two parameters are
both positive constants suggested being limited to the
range (0,1) [16].
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Once the RBF network is developed for an un-
known multiple-input single-output (MISO) system,
the system Jacobian matrices can be obtained from the
structure information of the network. Specifically, at
step k, one entry of the Jacobian matrix, located at the
nth column can be written in the following form:

Jn(k) = ∂y(k)

∂xn(k)
≈ ∂ŷ(k)

∂xn(k)

=
l∑

j=1

wjφj

cjn − xn(k)

σ 2
j

. (17)

Given the series of neural model Jacobian matrices at
different time instances, computing Lyapunov expo-
nents based on a time series, reduces to the problem of
calculating exponents from an explicit mathematical
expression, which is a substitute for the reconstructed
mapping featuring the same dynamics as the system
under study.

4 Case studies

To demonstrate the validity of the presented method,
three distinguished examples were investigated in this
section. All the data were generated by the computer
simulations under the MATLAB environment, and the
actual system Lyapunov exponents were calculated
from mathematical models of the dynamic systems,
provided that the numerical artifact was under con-
trol. Notice that the best number of the hidden units
depends in a complex way on the numbers of input

and output data, the noise level of the data points, the
complexity of the function to be approximated, the
type of hidden unit transfer function, the training al-
gorithm, etc. [25]; in our paper, the numbers of hidden
nodes when training the RBF models for all three cases
were selected based on the trial-and-error following no
specific rules. Furthermore, the numbers of clustering
samples for tuning the neural models of three cases
were selected respectively according to the length of
the collected useful observations, which to be specific,
were proportional to the total number of the corre-
sponding data series in this work. Some remarks are
provided as well at the end of this section.

4.1 Case study I: the Hénon map

The Hénon map:
{

xn+1 = 1 − 1.4x2
n + yn

yn+1 = 0.3xn

(18)

is a widely used example for studying strange attrac-
tors, which is selected in this paper as one of our case
studies since of which the full set of Lyapunov expo-
nents has been well investigated. Here, a time series
including 400 data along the x direction was gener-
ated first with the initial condition setting to (0.0,0.0).
To avoid transients, the first 200 observations were dis-
carded, thus the number of observations used in esti-
mating the exponents was only 200 along with setting
Tlag = 1, dE = 2. Figure 4(A) displays the dynam-
ics of the Hénon map in the original phase space and

Fig. 4 The trajectory of the Hénon map in (A) the original phase space; (B) a 2-dimensional embedding space
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Fig. 4(B) shows the one in a 2-dimensional embedding
space, where xnew denotes the first component of the
reconstructed vector and ynew is corresponding to the
second component analogously. It can be seen from
Fig. 4(B) that the chaotic geometric structure of the
Hénon map in Fig. 4(A) is retrieved in the embedding
space.

To derive the sequence of Jacobian matrices of the
reconstructed attractor shown in Fig. 4(B), an RBF
network summarized in Table 1, was tuned for approx-
imating the nonlinear regression mapping g in Eq. (12)
first. Lyapunov exponents were then estimated based
upon the structure information of the tuned network.
Figure 5 shows the evolution of the estimated Lya-
punov exponents of the Hénon map, of which the
converged constants are 0.409 and −1.612, respec-
tively, as listed in Table 2, with respect to the stan-
dards 0.408 and −1.620 derived from the mathemati-
cal model. To make a comparison, the numerical re-
sults estimated from the linear and nonlinear map-
ping methods, the Gencay and Dechert’s method pro-
posed in [12] are also provided in Table 2. It can be

Table 1 Structure of the RBF network for estimating the re-
gression Eq. (12) for the Hénon map

Number of hidden nodes 20

Number of inputs, outputs 2, 1

Number of clustering samples 120

Mean-squared error after training 1.76e-8

seen from the percentage errors shown in the table
that, for the positive exponent, the newly proposed
method in this paper can generate the most accurate
estimate compared with the other three methods that
is 0.24 % vs. 116.18 %, 9.58 %, and 0.74 %. Re-

Table 2 Lyapunov exponents (LEs) and their percentage errors
for the Hénon map in 2-dimensional embedding space

Method 1st LE
(λ�

1 = 0.408)
2nd LE
(λ�

2 = −1.620)

λ1 Err. %a λ2 Err. %

LMb 0.882 116.18 % −0.865 46.60 %

NMc 0.447 9.58 % −1.509 6.81 %

GDd 0.405 0.74 % −1.625 0.31 %

SWe 0.409 0.24 % −1.612 0.49 %

aThe percentage error is calculated with respect to the results
are obtained through the mathematical model, which are listed
as λ�

i , i = 1,2
bFor brevity, LM denotes the traditional time-series-based
method using Linear Mapping. Results are derived using 50,000
data with setting Tlag = 3. The embedding dimension dE = 3,
generating a spurious exponent λspurious = −0.017
cNM denotes the time-series-based method using Nonlinear
Mapping proposed by Brown et al. [9]. The number of the obser-
vations is 11,000. Tlag = 1, dE = 2, and the order of the Taylor
expansion is selected as 2
dGD denotes the method proposed by Gencay and Dechert [12]
eSW denotes the newly proposed method in this paper. Parame-
ters used in GD and SW are the same: The number of the obser-
vations is only 200 with Tlag = 1, dE = 2

Fig. 5 Evolution of
Lyapunov exponents in the
2-dimensional embedding
phase space
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Table 3 Lyapunov exponents (LEs) and their percentage errors for the Hénon map in a 2-dimensional embedding space with different
measurement noise levels

Noise % SNR (dB) Methoda 1st LE (λ�
1 = 0.408) 2nd LE (λ�

2 = −1.620)

λ1 (σλ1 ) Err. % λ2 (σλ2 ) Err. %

0.01 80 GD 0.3899 (0.0573) 4.44 % −1.7251 (0.6114) 6.49 %

SW 0.4108 (0.0013) 0.69 % −1.6118 (0.2249) 0.51 %

0.05 66 GD 0.3612 (0.0633) 11.47 % −1.7961 (0.6114) 10.87 %

SW 0.4111 (0.0035) 0.75 % −1.6155 (0.2258) 0.28 %

0.1 60 GD 0.3591 (0.0909) 11.99 % −2.2514 (0.5369) 38.98 %

SW 0.4097 (0.0049) 0.42 % −1.6148 (0.2262) 0.32 %

aThe notations in this column are similar as those in Table 2. GD denotes the method proposed by Gencay and Dechert in [12], and
SW denotes the new method proposed in this paper

garding to the negative exponent, although the accu-
racy in terms of percentage error using our method
is at the weak position compared with the Gencay
and Dechert’s method (0.49 % vs. 0.31 %), it is still
within the acceptable level (far below 15 %), let alone
winning in the competition with the linear (46.60 %)
and the nonlinear mapping (6.81 % ) methods. More-
over, the newly proposed method overwhelms the lin-
ear and nonlinear mapping methods not only in terms
of accuracy, but also in the way of the length of ob-
servations used for estimating (200 vs. 50,000 and
11,000).

To investigate the robustness of our method to the
measurement noise, Gaussian white noise was added
to the data set and the noise level was increased grad-
ually. Table 3 presents the estimated Lyapunov expo-
nents under different noise levels using the newly pro-
posed method, along with the corresponding results
derived from Gencay and Dechert’s method for com-
parison. Parameters used for estimating are the same
as those in Table 2, i.e., N = 200, Tlag = 1, dE = 2.
Each entry in Table 3 is an average of 100 simula-
tions and σλi

denotes the standard deviation of the
corresponding λi . Compared with the results reported
in [12], the estimated Lyapunov exponents using the
newly proposed method achieve much higher accu-
racy. The smallest gap occurs when the noise level
is set to 0.01 %, where the algorithm performance in
terms of percentage error is 6.49 % vs. 0.51 % for the
negative exponent; when the noise level is increased to
0.1 %, the gap is enlarged to 38.98 % vs. 0.32 %. Since
no details of the network approximating the Hénon
map was provided in [12], we infer that the disadvan-
tage of Gencay and Dechert’s method shown in Table 3

may probably come from the overfitting of the trained
network in the noisy environment.

4.2 Case study II: Lorenz system

The Lorenz system
⎧
⎨

⎩

ẋ = σ(y − x)

ẏ = rx − y − xz

ż = −bz + xy

(19)

is selected as another case study to demonstrate the
efficacy of the newly proposed method applied to
chaotic systems. The system parameters are taken
from [15] as σ = 16, r = 45.92, and b = 4.0. Employ-
ing the fourth-order Runge–Kutta method, a time se-
ries including 1000 data along the x direction was gen-
erated first with a sampling rate �t = 0.01 s, and the
initial condition was (10.0,1.0,0.0). Again the first
200 observations were discarded to avoid transients.
Thus, with setting Tlag = 6�t = 0.06 s, dE = 3, the
number of observations used in estimating the expo-
nents is only 132, indicating that the total useful length
of the observations in terms of time is 131 × Tlag =
7.86 s. The original chaotic attractor of the Lorenz sys-
tem is displayed in Fig. 6(A), while Fig. 6(B) shows
the reconstructed one in a 3-dimensional embedding
space. Similar as the legend labeled in the recon-
structed Hénon map, xnew in Fig. 6(B) denotes the
first component of the reconstructed vector, ynew and
znew are corresponding to the second and third com-
ponents of the reconstructed vector in the delay coor-
dinates, respectively. The chaotic geometric structure
of the Lorenz attractor in Fig. 6(A) is restored in the
embedding space as shown in Fig. 6(B)



1698 Y. Sun, C.Q. Wu

Fig. 6 The trajectory of the Lorenz system in (A) the original phase space; (B) a 3-dimensional embedding space

Fig. 7 Evolution of
Lyapunov exponents in the
3-dimensional embedding
phase space

Table 4 Structure of the RBF network for estimating the re-
gression Eq. (12) for the Lorenz system

Number of hidden nodes 50

Number of inputs, outputs 3, 1

Number of clustering samples 79

Mean-squared error after training 1.366e-5

Table 4 lists the summary of the RBF network tuned
for approximating the nonlinear regression mapping g

in Eq. (12). As an approximation of the reconstructed
attractor in the 3-dimensional embedding space, the
structure information of the network was extracted

for deriving the sequence of Jacobian matrices. The
estimated Lyapunov exponents of the Lorenz system
evolved to constant numbers as shown in Fig. 7, of
which the numerical values and their percentage er-
rors with respect to those exponents estimated from
the mathematical model are listed in Table 5, where the
results of the traditional time-series-based method us-
ing linear mapping and the nonlinear mapping method
proposed by Brown et al. [9] are also provided for
comparison.

It can be seen from Table 5 that, for the positive ex-
ponent, although the nonlinear mapping method can
achieve the highest level of accuracy in terms of per-
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Table 5 Lyapunov exponents (LEs) and their percentage errors for the Lorenz system in 3-dimensional embedding space

Method 1st LE (λ�
1 = 1.50) 2nd LE (λ�

2 = 0.0) 3rd LE (λ�
3 = −22.50)

λ1 Err. % λ2 Err. % λ3 Err. %

LMa 1.4151 5.67 % −0.1198 n/a −8.2033 63.54 %

NMb 1.4719 1.87 % −0.5244 n/a −13.1957 41.35 %

SWc 1.5686 4.57 % −0.5660 n/a −20.7693 7.69 %

aLM denotes the traditional time-series-based method using Linear Mapping
bNM denotes the time-series-based method using 2nd-order Nonlinear Mapping proposed by Brown et al. [9]. Parameters used in the
LM and NM methods are same: both the numbers of the observations are 20,000 with �t = 0.001 s, Tlag = 4, and the results are
reported in Yang and Wu’s work [10]
cSW denotes the newly proposed method in this paper

Table 6 Lyapunov exponents (LEs) and their percentage errors for the Lorenz system in a 3-dimensional embedding space with
different measurement noise levels

Noise % SNR (dB) 1st LE (λ�
1 = 1.50) 2nd LE (λ�

2 = 0.0) 3rd LE (λ�
3 = −22.50)

λ1 (σλ1 ) Err. % λ2 (σλ2 ) Err. % λ3 (σλ3 ) Err. %

Ia 1.0 40 1.4760 (0.158) 1.60 % −0.4762 (0.301) n/a −20.6343 (2.912) 8.29 %

5.0 26 1.4030 (0.292) 6.46 % −0.2886 (0.459) n/a −20.5106 (2.960) 8.84 %

10.0 20 1.6230 (0.401) 8.20 % −0.4489 (0.577) n/a −20.5218 (3.156) 8.79 %

IIb 0.01 80 1.5453 (0.306) 3.02 % −0.3316 (0.607) n/a −22.3765 (4.571) 0.55 %

0.05 66 1.6466 (0.308) 9.77 % −0.3281 (0.615) n/a −22.3997 (4.712) 0.45 %

0.1 60 1.5538 (0.296) 3.59 % −0.4189 (0.581) n/a −22.4899 (4.659) 0.04 %

1 40 1.6350 (0.116) 9.00 % −0.5365 (0.772) n/a −18.6447 (2.581) 17.13 %

aThe reconstructed map in circumstance I are estimated using noise-free data, the noisy observations are only used for computing the
exponents
bIn circumstance II, the noisy observations are used for estimating the embedded map first, then computing the exponents

centage error (1.87 %) among the listed three methods,
the numerical accuracy of the newly proposed method
in this paper is still preferable in terms of percentage
error (4.57 %) compared with the one of the linear
mapping method (5.67 %). For the negative exponent,
the numerical accuracy using the new method hits the
highest level as the percentage errors of three methods
turn out to be 7.69 % (new method) vs. 63.54 % (linear
mapping) and 41.35 % (nonlinear mapping), and the
sum of the exponents spectrum using three different
methods are correspondingly −19.77 (new method)
vs. −6.91 (linear mapping), −12.23 (nonlinear map-
ping), showing that the newly proposed method can
approximate the averaged convergence rate for the hy-
pervolume in the state space best associated with the
standard rate −21.00.

For counteracting the effect of the measurement
noise on the numerical accuracy of estimated Lya-
punov exponents, Table 6 provides the average val-
ues of the estimated Lyapunov exponents of 100 es-
timations, along with the percentage errors using the
newly proposed method for the Lorenz system under-
going different noise levels. Same as Table 4, σλi

de-
notes the standard deviation of the corresponding λi .
The numerical results were carried out under two cir-
cumstances as shown in Table 6: The noisy data only
got involved for computing Lyapunov exponents in the
first circumstance, provided that the RBF model was
derived from noise-free data; while in the second cir-
cumstance both the neural model and Lyapunov ex-
ponents were estimated using the noisy observations.
As shown in circumstance I, since the structure in-
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Fig. 8 (A) the simplified
biped model, (B) the free
body diagram of the
two-link inverted
pendulum, and (C) the free
body diagram of the
foot-link

formation of the embedded map estimated from the
noise-free data is at hand, the percentage errors of all
nonzero exponents are below 9 % even the noise level
is increased to 10 % (i.e., 8.20 % for the positive ex-
ponent and 8.79 % for the negative one). However,
once the available structure information is also esti-
mated from the contaminated observations, as shown
in circumstance II, the numerical accuracy of the es-
timated Lyapunov exponents can only be maintained
at a high level in terms of the percentage error lower
than 10 % within a very limited range of noise level
(less than 0.1 %). When the noise level is increased
to 1 %, the percentage error of the negative exponent
exceeds 15 %, achieving 17.13 %. Thus, a conclusion
can be driven from Table 6 that the RBF model ap-
proximating the embedded attractors plays a dominant
role for estimating Lyapunov exponents reliably.

4.3 Case study III: the biped balance system

Figure 8(A) shows a standing biped robot, which is
simplified as a two-link inverted pendulum system rep-
resenting the leg and the torso, respectively, with an
additional rigid foot-link. The joints 1 and 2 can be
considered as the ankle and hip joints, and the foot-
link provides a base of support (BOS) on the ground.
The free body diagrams of the two-link inverted pen-
dulum and the foot-link are respectively shown in
Fig. 8(B) and (C). The biped is assumed to move in
the sagittal plane and the foot-link is required to be
stationary but not fixed on the ground, which imposes
constraints between the foot-link and the ground. The
control torques are applied at both joints to main-
tain the biped at the upright posture, minimize an
energy consumption related index, and to satisfy the
constraints during standing. All the model parameters

Table 7 Biped model parameters

Symbols Parameters Nominal values

m1 mass of the link 1a 48.720 [kg]

m2 mass of the link 2b 28.960 [kg]

mf mass of the foot link 2.320 [kg]

l1 length of the link 1 0.998 [m]

l2 length of the link 2 0.712 [m]

lc1 location of mass center
of the link 1

0.499 [m]

lc2 location of mass center
of the link 2

0.356 [m]

I1 inertia of the link 1c 4.044 [kg m2]

I2 inertia of the link 2d 1.223 [kg m2]

Lf length of the foot link 0.270 [m]

La horizontal distance between
the ankle and the heel

0.050 [m]

Lb ankle height 0.070 [m]

Lc horizontal distance between
the mass center of the foot
and the ankle

0.085 [m]

g gravitational acceleration 9.8 [m/s2]

μ friction constant 0.5

xCOP location of the center of
pressure (COP)

am1 denotes the sum of the shank mass and the thigh mass in
both legs
bm2 is the torso mass, which is excluding the arm mass and the
head mass
cThe reference of I1 is the center of mass of the link 1
dThe reference of I2 is the center of mass of the link 2

were taken from [13] and their values are shown in
Table 7.

According to the Euler–Lagrangian equation, the
dynamics of the controlled biped can be formulated
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in the following forms:

τ = D(θ)θ̈ + C(θ , θ̇)θ̇ + G(θ), (20)

Fgx = m1ax1 + m2ax2, (21)

Fgy = m1ay1 + m2ay2 + (m1 + m2 + mf )g, (22)

where τ = [τ1, τ2]T are control torques applied at the
corresponding joints, respectively, θ = [θ1, θ2]T are
the two joint angles (clockwise as “+”), θ̇ = [θ̇1, θ̇2]T

and θ̈ = [θ̈1, θ̈2]T. Fgx and Fgy are the horizontal and
vertical ground reaction forces. The matrices D(θ),
C(θ , θ̇), G(θ) and parameters ax1, ax2, ay1, ay2 can
be expressed as follows:

D(θ) =
[

α + β cos θ2 δ + β
2 cos θ2

δ + β
2 cos θ2 δ

]

;

C(θ , θ̇) =
[−β

2 θ̇2 sin θ2 −β
2 (θ̇1 + θ̇2) sin θ2

−β
2 θ̇2 sin θ2 0

]

;

G(θ) =
[−(m1lc1 + m2l1)g sin θ1 − m2lc2g sin(θ1 + θ2)

−m2lc2g sin(θ1 + θ2)

]

;

α = m1l
2
c1 + m2l

2
1 + m2l

2
c2 + I1 + I2;

β = 2m2l1lc2; δ = m2l
2
c2 + I2;

ax1 = −lc1 sin θ1θ̇
2
1 + lc1 cos θ1θ̈1;

ax2 = −l1 sin θ1θ̇
2
1 + l1 cos θ1θ̈1

− lc2 sin(θ1 + θ2)(θ̇1 + θ̇2)
2

+ lc2 cos(θ1 + θ2)(θ̈1 + θ̈2);
ay1 = −lc1 cos θ1θ̇

2
1 − lc1 sin θ1θ̈1;

ay2 = −l1 cos θ1θ̇
2
1 − l1 sin θ1θ̈1

− lc2 cos(θ1 + θ2)(θ̇1 + θ̇2)
2

− lc2 sin(θ1 + θ2)(θ̈1 + θ̈2).

Since the foot link is assumed to be still, but not
fixed on the ground, there is a set of constraints im-
posed on the system. The gravity constraint Fgy > 0
guarantees the biped’s foot will not lift from the
ground; the friction constraint |Fgx | ≤ μFgy ensures
the biped’s foot will not slide on the ground; and the
center of pressure (COP) constraint 0 ≤ xCOP ≤ Lf

along with xCOP = La − LbFgx+τ1−Lcmf g

Fgy
ensures the

COP will always reside within the BOS, i.e., there is
no rolling of the foot-link about either the toe or the
heel. These constraints jointly determine the bounds
on the control torques, which change with the states

of the system [18]. However, owing to the high non-
linearity of this three-link biped model, the analytical
expression of the control bounds cannot be obtained
in terms of θ , θ̇ and θ̈ . Thus, here we only monitor
the evolutions of Fgx , Fgy and the location of pressure
center xCOP. The control torques and the simulation
will be terminated if any of these three constraints is
violated.

Defining q = [q1, q2, q3, q4]T = [θ1, θ2, θ̇1, θ̇2]T

and D as the determinant of the matrix D(θ), the mo-
tion equation of the biped balance system then be-
comes:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q̇1 = q3,

q̇2 = q4,

q̇3 =
(

δτ1 −
(

δ + β

2
cosq2

)
τ2

+ β

2
sinq2

(
δq4(q3 + q4) − β

2
q3q4 cosq2

)

+
(

δ(m1lc1 + m2l1) sinq1

− β

2
m2lc2 cosq2 sin(q1 + q2)

)
g

)
/D,

q̇4 =
(

−
(

δ + β

2
cosq2

)
τ1 + (α + β cosq2)τ2

+ β

2
(sinq2)q4

×
(

q3(α − 2δ) − q4

(
δ + β

2
cosq2

))

+
((

α − δ + β

2
cosq2

)
m2lc2 sin(q1 + q2)

−
(

δ + β

2
cosq2

)

× (m1lc1 + m2l1) sinq1

)
g

)
/D.

(23)

To stabilize the standing biped at the minimum en-
ergy cost, a classical state feedback control law via
linear-quadratic regulator (LQR) algorithm is adopted.
It has been established that for a controllable lin-
ear time-invariant system, described by ẋ = Ax +
Bu with a quadratic cost function defined as J =
1
2

∫ ∞
0 (xTQx + uTRu) dt , a feedback control law

u = −Fx may force the closed-loop system to be sta-
ble at minimum cost, where the gain matrix F can
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Fig. 9 Evolution of
(A) the system states, and
(B) the control torques

Fig. 10 Evolution of
(A) Fgy , (B) Fgx , and
(C) xCOP

be calculated by solving the algebraic Riccati equa-
tion [26]. For obtaining the LQR parameters, system
(23) was linearized first via Taylor’s first-order ex-
pansion about the equilibrium point, which is spec-
ified as the upright position of the link 1 and 2
(q = [0,0,0,0]T). The system initial condition was
given by q = [−0.05 rad,0.03 rad,0.05 rad/s,
−0.03 rad/s]T. Figure 9(A) and (B) show the evolu-
tion of the system states and control torques, respec-

tively, indicating that the biped can be successfully
driven close to the upright posture within 2.5 seconds
subject to the proposed controller. Yet a close-up view
of the states trajectories is provided in Fig. 9(A), from
which one can see that rather than exactly reached to
the equilibrium, the biped evolved to the upright po-
sition asymptotically. Meanwhile, time history versus
Fgy , Fgx are displayed in Fig. 10(A) and (B), respec-
tively. The positive vertical ground reaction force Fgy
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implies the support foot was always in contact with
the ground. And the horizontal ground reaction force
Fgx can be observed residing within the bounds of
the static friction ([−μFgy,μFgy]) represented by two
straight dashed lines, which suggests the foot-link did
not slip. Additionally, the location of the COP staying
within the contact surface between the foot-link and
the ground is displayed in Fig. 10(C).

Due to the complexity of the forced biped system,
the concept of Lyapunov exponents was employed to
carry out the stability analysis. The estimated Lya-
punov exponents from the mathematical model were
used as a reference for comparison. With setting the
numerical integration time step h = 0.001 s, a time
series including 100,000 data points along the coor-
dinate of q1 was generated first from the mathemati-
cal model, among which 1,426 observations were used
to reconstruct the attractor in a 4-dimensional embed-
ding phase space with setting Tlag = 70, equivalently
in terms of time, Tlag = 70 × 0.001 = 0.07 s.

Table 8 Structure of the RBF network for estimating the re-
gression Eq. (12) for the biped balance system

Number of hidden nodes 20

Number of inputs, outputs 4, 1

Number of clustering samples 855

Mean-squared error after training 2.32e-17

To derive the Jacobian matrices described by
Eq. (13) at different time instances, an RBF network
summarized in Table 8 was then constructed for the
estimation of the regression mapping g presented in
Eq. (12), based on which the Lyapunov exponents of
the reconstructed attractor can be easily estimated fol-
lowing the model-based algorithm. Figure 11 shows
the evolution of Lyapunov exponents of the recon-
structed attractor. It can be seen that all Lyapunov
exponents remain negative and converge to constants
after around 30 s, indicating that the biped balance sys-
tem is exponentially stable about its equilibrium (i.e.,
the upright posture). The property of the exponents re-
maining negative suggests that the nearby trajectories
converge monotonically, which is an important condi-
tion for system stability. Otherwise, the stability of the
systems cannot be guaranteed even though the aver-
aged exponents are negative [27].

Table 9 lists the numerical values of all four neg-
ative estimates and their relative errors with respect
to the ones computed from the mathematical model,
where the low relative errors demonstrate that the pro-
posed method is effective for the estimation of Lya-
punov exponents. Moreover, a comparison between
the results derived from the same time series but dif-
ferent methods, i.e., the traditional time-series-based
method using linear mapping and the newly proposed
method in this paper, can be observed in Table 9,
where the estimated Lyapunov exponents after 99.75 s

Fig. 11 Evolution of
Lyapunov exponents (LEs)
in the 4-dimensional
embedding phase space of
the biped balance system
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Table 9 Lyapunov exponents (LEs) and their relative errors for the biped balance system

Tlag 1st LE (λ�
1 = −2.8699) 2nd LE (λ�

2 = −2.9933) 3rd LE (λ�
3 = −7.1580) 4th LE (λ�

4 = −7.5334)

LMa

(Err. %)
SWb

(Err. %)
LM
(Err. %)

SW
(Err. %)

LM
(Err. %)

SW
(Err. %)

LM
(Err. %)

SW
(Err. %)

50 −1.1347
(60.46 %)

−2.5386
(11.55 %)

−1.2925
(56.82 %)

−2.6523
(11.39 %)

−1.8149
(74.65 %)

−9.0130
(25.92 %)

−3.5221
(53.25 %)

−9.0146
(19.66 %)

60 −1.1824
(58.80 %)

−2.7681
(3.55 %)

−1.3820
(53.83 %)

−2.8366
(5.23 %)

−2.0049
(71.99 %)

−6.6833
(6.63 %)

−3.6426
(51.65 %)

−6.6880
(11.22 %)

70 −1.2533
(56.33 %)

−2.8040
(2.30 %)

−1.4032
(53.12 %)

−2.8885
(3.50 %)

−2.7691
(61.32 %)

−6.8241
(4.66 %)

−3.9241
(47.91 %)

−6.8301
(9.34 %)

80 −1.0355
(63.92 %)

−2.7335
(4.75 %)

−1.3177
(55.98 %)

−2.8181
(5.85 %)

−2.9559
(58.70 %)

−6.5946
(7.87 %)

−4.2919
(43.03 %)

−6.6003
(12.39 %)

90 −1.2295
(57.16 %)

−2.7501
(4.18 %)

−1.4139
(52.76 %)

−2.8204
(5.78 %)

−2.0387
(71.52 %)

−6.5976
(7.83 %)

−4.6871
(37.78 %)

−6.6055
(12.32 %)

100 −1.1065
(61.44 %)

−2.8106
(2.07 %)

−1.2150
(59.41 %)

−2.8923
(3.37 %)

−1.9856
(72.26 %)

−5.9517
(16.85 %)

−3.4353
(54.40 %)

−5.9546
(20.96 %)

aFor brevity, LM denotes the traditional time-series-based method using Linear Mapping, and the corresponding numerical results are
derived from a 9-dimensional embedding space
bSW denotes the newly proposed method in this paper, and the corresponding numerical results are estimated from an approximated
4-dimensional embedding space

(1425 × Tlag) and the corresponding relative errors
with different Tlag are provided. We did not estimate
the exponents using nonlinear mapping method since
our biped system is a 4-dimensional system, for which
using the higher-order Taylor expansion would intro-
duce complicated mathematical derivation. It can be
found that using the proposed method, the numerical
values of Lyapunov exponents estimated from an ap-
proximated 4-dimensional embedding space are much
more accurate, compared with those derived directly
from a reconstructed space with even a higher embed-
ding dimension (dE = 2 × 4 + 1). To be specific, the
smallest percentage error regarding to the largest Lya-
punov exponent using the traditional linear mapping
method turns out to be 56.33 % when Tlag is set to 70,
which is nearly 25 times the number as compared with
the corresponding result derived from the new method
(2.30 %). Even the difference between the percentage
errors following two methods reaches the lowest level
when Tlag is equal to 50, the result based on the lin-
ear mapping method, 60.46 %, is still more than 5
times the one derived from the new method, which
is 11.55 % only. This difference becomes smaller al-
though with respect to the remaining three exponents
(e.g., for the fourth exponent with Tlag is 50, the com-
petition between the percentage errors from two meth-
ods is 53.25 % vs. 19.66 %), the gap is still striking.

In addition, within the range of Tlag from 60 to 90, the
accuracy of the estimated Lyapunov exponents are not
sensitive to Tlag as the percentage errors of four differ-
ent sets are below 15 %. All these findings demon-
strate that the newly proposed method can estimate
Lyapunov exponents much more reliably compared
with the traditional time-series-based method using
linear mapping.

It has been documented that in estimating Lya-
punov exponents based on a time series, some parame-
ters for the phase space reconstruction have significant
effects on the accuracy of the estimated Lyapunov ex-
ponents. In our method, such parameters include the
value of the time lag (Tlag), and the embedding dimen-
sion (dE). These two parameters determine the num-
ber of the data points to be used in the analysis. Re-
garding the time lag (Tlag), Taken’s results [19] indi-
cate that the choice of Tlag is arbitrary. However, in
practice, if Tlag is quite small, the components of the
successive vectors to be plotted are almost identical;
while if Tlag is very large, then there is only very lit-
tle correlation between the components of the vectors,
and the trajectories on the attractor appear to wan-
der all around the phase space, leaving the structure
hard to be detected [28]. Methods have been devel-
oped for determining Tlag [15, 29, 30]. In this case, it
is found that Tlag = 70 is a good approximation of the
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Table 10 Lyapunov exponents (LEs) and their percentage errors for the biped balance system in a 4-dimensional embedding space
with different measurement noise levels

Noise % SNR
(dB)

1st LE
(λ�

1 = −2.8699)
2nd LE
(λ�

2 = −2.9933)
3rd LE
(λ�

3 = −7.1580)
4th LE
(λ�

4 = −7.5334)

λ1
(σλ1 )

Err. % λ2
(σλ2 )

Err. % λ3
(σλ3 )

Err. % λ4
(σλ4 )

Err. %

Ia 1.0 40 −2.8040
(9.0e-4)

2.30 % −2.8886
(0.4025)

3.50 % −6.8241
(0.9508)

4.66 % −6.8301
(0.9517)

9.34 %

5.0 26 −2.8042
(0.0054)

2.29 % −2.8884
(0.4025)

3.50 % −6.8241
(0.9508)

4.66 % −6.8301
(0.9517)

9.34 %

10.0 20 −2.8031
(0.0084)

2.33 % −2.8894
(0.4027)

3.47 % −6.8242
(0.9508)

4.66 % −6.8301
(0.9517)

9.34 %

IIb 0.01 80 −2.8075
(0.0503)

2.17 % −3.0093
(1.7388)

0.54 % −8.3617
(4.8282)

16.82 % −8.3598
(4.8272)

10.97 %

0.05 66 −2.6851
(0.0343)

6.44 % −2.7476
(1.5864)

8.21 % −5.8805
(3.3964)

17.85 % −5.8814
(3.3970)

21.93 %

0.1 60 −2.8412
(0.0572)

1.00 % −3.0021
(1.7343)

0.29 % −5.6196
(3.2516)

21.49 % −5.6240
(3.2541)

25.35 %

aThe reconstructed map in circumstance I are estimated using noise-free data; the noisy observations are only used for computing the
exponents
bIn circumstance II, the noisy observations are used for estimating the embedded map first, then computing the exponents

reconstruction delay where the autocorrelation func-
tion drops to 1 − 1

3e
of its initial value.

On the other hand, Taken’s theorem stated that in
order to preserve the dynamical properties of the orig-
inal attractor, theoretically the embedding dimension
should satisfy dE ≥ 2n + 1, where n is the dimen-
sionality of the system to be investigated. In Yang
and Wu’s works [10], it has been demonstrated that
for the biped system, the embedding dimension of n

is large enough to guarantee the accuracy of the esti-
mated Lyapunov exponents when the nonlinear map-
ping is introduced. For the cases of unknown system
dimensions, various dE have to be used, which leads
to spurious exponents. Identifying true Lyapunov ex-
ponents from spurious ones is not within the scope of
this paper, which actually can be referred to in[12].

To validate the findings about the noise robustness
of our new method derived from the test on the Lorenz
system, Table 10 shows the estimated Lyapunov expo-
nents and their percentage errors for the biped balance
system with different measurement noise levels using
the proposed method. Tlag is set to 70 and the embed-
ding dimension is 4. Each entry in Table 10 is an av-
erage of 100 simulations and σλi

denotes the standard
deviation of the corresponding λi . The results listed in
this table are also obtained under two different circum-

stances. In circumstance I, the noisy data are used only
for calculating the exponents, based upon the approx-
imated Jacobian matrices, which are derived from an
RBF model trained with a noisy-free data sequence.
In circumstance II, even the Jacobian matrices are de-
rived from the RBF network tuned by noisy data. It
can be observed that the results are very robust to the
noise in circumstance I as the percentage errors of all
exponents are below 10 % (specifically, 9.34 % is the
biggest error) even the noise level is increased to 10 %
with the standard deviation of all exponents being very
small (σλ4 = 0.9517 is the largest value). From cir-
cumstance II, one can find that the percentage errors
of the estimated Lyapunov exponents, especially those
of the last two exponents, grow up obviously along
with the increment of noise levels, which are limited
within 1 %. To be specific, when the SNR is set to
60 dB (0.1 % noise level), both the percentage errors
for the third and fourth exponents exceed 20 %, turn-
ing to be 21.49 % and 25.35 %, respectively. The cause
of this degraded accuracy may be inferred as the noisy
data are employed for approximating the embedded at-
tractor, leading to the sequence of the approximated
Jacobian matrices being contaminated. In one word,
the findings from Table 10 indicate again that the RBF
model plays a crucial role for estimating Lyapunov ex-
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ponents. If the structure information of the RBF model
can be derived accurately, the sensitivity of our method
is very low to a noisy time series. To put it another way,
noise control is critical to the numerical accuracy of
the estimated Lyapunov exponents even for our newly
proposed method, especially in the procedure of ap-
proximating the reconstructed dynamics based on the
RBF model.

Remark 1 The three dynamic systems studied in this
paper are quite different. Both the Hénon map and
the Lorenz system have strange attractors, while the
actuated biped model features an exponentially sta-
ble equilibrium point. It has been demonstrated that
in spite of the noise involved in the time series, for
all the above dynamic systems, the proposed method
works well in terms of achieving highly accurate es-
timates of the entire spectra of the system Lyapunov
exponents. Notice that the forced biped was regulated
by a state feedback controller; all three dynamic sys-
tems are autonomous systems. However, the proposed
method can also be applied to those nonautonomous
systems which can be represented by a set of ordinary
differential equations with finite dimensions. For such
a system in the form of Eq. (1), by treating t as an
additional state with ṫ = 1, calculating Lyapunov ex-
ponents can be reduced to the problem of computing
exponents for an autonomous system at the expense of
increasing the dimension by only one [31].

Remark 2 It should be clarified here that the data seg-
ment representing the system transient section dis-
carded in the Hénon and the Lorenz examples were
counted in the biped case. However, if one estimates
the Lyapunov exponents for the controlled biped fol-
lowing the same procedure, i.e., discard the data col-
lected from the transient period, the same convergent
exponents would be obtained. Indeed, the invariance
property of Lyapunov exponents to the initial condi-
tions warrants that within the same basin of attraction,
the numerical values of the exponents estimated from
different initial conditions should be identical. This
characteristic of Lyapunov exponents can be perceived
from the computational viewpoint: The effects of the
data points selected from the transient period are re-
moved due to the averaging process.

Remark 3 From Figs. 9 and 11, one may notice that
while the actuated biped moved to the position close to

the upright one after around 2.5 seconds, the Lyapunov
exponents did not converge to their final values until
about 20 seconds. Thus, it is important to distinguish
these two time scales. Basically, the transient period in
terms of settling time of the system states, and the con-
vergent period of the Lyapunov exponents are different
in concept, and both can be selected by the researchers
based on different design principles. In our work, an
exponent is considered to achieve the converged con-
stant if the change in the numerical values of the ex-
ponent between two subsequent steps is within 10−4.
To the best of our knowledge, there is no quantita-
tive relationship between the transient period for the
system states and the convergent period for the expo-
nents, since the former is determined by the system
dynamics and the initial conditions, while the latter
is determined by the system dynamics in terms of the
right-hand side of the state space model, and its deriva-
tives with respect to the states in the tangent space of
the states. On the other hand, the Lyapunov exponents
quantify the time-averaged behaviors of nearby orbits
in the state space; they are not local quantities in either
the spatial or the temporal sense [2]. Thus, one cannot
determine the adequate data length required for esti-
mating Lyapunov exponents merely from the transient
period of the system states; and although important,
finding the determination rule for the data length is be-
yond the scope of this paper.

5 Conclusion

A method of reliably estimating Lyapunov exponents
using a scalar time series has been developed in this
work, which is composed of two key components: re-
construction of the system attractor in an embedding
phase space, and approximation of the reconstructed
attractor through tuning an RBF network. The pro-
posed method not only inherits the advantages of the
earlier RBF-based method in that (1) no mathemat-
ical models are required, (2) derivation of Jacobian
matrices based on the RBF network is quite straight-
forward, and (3) all Lyapunov exponents can be esti-
mated reliably, but also features other two attractive
points. First, instead of recording the time history for
all system states in advance, only a scalar time series is
required. Second, as compared with the existing meth-
ods, our proposed method is more robust to the noise,
and is particularly effective when the RBF network is
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trained with noisy-free or slightly contaminated data.
The validity of this new proposed method has been
demonstrated via three case studies: the Hénon map-
ping, the classical Lorenz system, and a standing biped
balance system. For Cases I and II, not only the pos-
itive exponent, but also nonpositive exponents are ex-
hibited in the spectrum; for Case III, all the Lyapunov
exponents are negative. The high numerical accuracy
of the estimated Lyapunov exponents from the noisy
observations using the newly proposed method can
be guaranteed for both the chaotic and the exponen-
tially stable systems in most cases except that when
the structure information of the reconstructed attractor
are corrupted seriously. For this circumstance, even re-
constructing the attractors in the embedding space and
revealing the original dynamics becomes challenging.
From this viewpoint, exploring the effects of the time
series with additive noise on training the RBF network
and approximating the embedded attractor, is highly
desirable.

Moreover, the method presented in this work only
dealt with additive measurement noise of Gaussian
white type, apart from which, however, various noise
models with different spectral characteristics, and the
dynamical noise generated within a system itself, are
common in many dynamic systems. Investigating the
effects of these noise types is another one of our fu-
ture works, as well as the determination rule of how
much data one needs for obtaining the accurate esti-
mates subject to different noise levels.
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