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Abstract This paper is concerned with the stabiliza-
tion control for the offshore steel jacket platforms sub-
ject to wave-induced force. Two state feedback stabi-
lization control schemes are proposed to reduce the vi-
bration amplitudes of the systems. One scheme is that
for the systems without actuator time-delay, a state
feedback controller is designed. Compared with the
nonlinear controller, both the control force and the
vibration amplitudes of the systems under the state
feedback controller are much reduced; and compared
with the dynamic output feedback controller and the
integral sliding mode controller, the required control
force under the state feedback controller are signifi-
cantly reduced. The other scheme is that based on the
integral inequality approach, a delay-dependent state
feedback controller, which can be solved by using the
cone complementarity algorithm, is developed to con-
trol the systems with actuator time-delays. Compared
with the state feedback controller, the delay-dependent
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state feedback controller is less conservative with ac-
tuator time-delays. In addition, it is capable of improv-
ing the control performance of the offshore platforms
significantly, which are illustrated by simulation re-
sults.

Keywords Control delay · Offshore structures ·
Vibration control · Stabilization

1 Introduction

The steel jacket type platforms are the most com-
mon kind of offshore structures, which play an import
role in the oil exploration and drilling operations. The
offshore platforms generally involve sophistication of
the superstructure in the deep water. The flexibility
and complexity of the structure generally induces self-
excited nonlinear hydrodynamic force in addition to
the nonlinear response, which makes them very vul-
nerable and unsafe [1–3]. To decrease the vibration
of the offshore platforms and thereby guarantee their
safety, more and more researchers have engaged in
the efforts to the implementation of varieties of con-
trol schemes. As one of the effective methods, passive
control are often used to enhance the safety by using
excessive construction materials to increase the stiff-
ness of the offshore structures [4, 5].

However, due to the huge cost and the limited per-
formance, active control schemes have been aroused
extensive concern in recent decades. For instance, the
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optimal-control-based schemes have been applied to
improve the performance of the jacket platforms by us-
ing an active mass damper [6–8]. For an offshore steel
jacket platforms with an active tuned mass damper
(TMD) mechanism, the multi-loop feedback design
method [2], the nonlinear control scheme, and the ro-
bust state feedback control scheme [3] have been de-
veloped to reduce the internal oscillation amplitudes
of the offshore platforms. More recently, the dynamic
output feedback control scheme [9] and the integral
sliding mode control methods [10, 11] have been pre-
sented to improve the performance of the offshore
platforms. It is indicated that the aforementioned ac-
tive control schemes are effective ways to deal with
the vibration problem of offshore platforms subject to
the nonlinear wave force.

Time-delay phenomenon is one of important issues
in various engineering systems. It is very common and
may cause poor performance and even instability of
the systems. The stability analysis and controller syn-
thesis methods for time-delay systems have always
been one of the hot topics in the fields of control the-
ory and engineering applications [13–16]. In the active
control of the offshore platforms, time-delays may ap-
pear in the control channel where it is taken by the
actuator to build up the active control force. In the re-
ported works about vibration control of offshore plat-
forms, the designing schemes of active controllers are
based on an implicit assumption that there are no time-
delays in control inputs [2, 3, 9–11]. However, be-
cause of the physical limitations, the time-delays are
unavoidable. To avoid the unfavorable effects on the
performance of the offshore platforms, the actuator
time-delays should be considered.

In this paper, we tend to investigate the effects of
actuator time-delays on the stabilization control for
the offshore platform, and propose a delay-dependent
state feedback stabilization control scheme to reduce
the vibration amplitudes of the offshore platform.
First, for the offshore platform without actuator timed-
delay, a state feedback controller is designed. Then a
delay-dependent state feedback controller, which can
be solved by using the cone complementarity algo-
rithm, is designed to stabilize the offshore platform in
the presence of actuator time-delays. Simulation re-
sults are given to illustrate the effectiveness and ad-
vantage of the proposed control schemes. In addition,
the allowable upper bound of the actuator time-delays
of the offshore platform is investigated.

The rest of this paper is organized as follows. Sec-
tion 2 presents a mathematical model of an offshore
steel jacket platform with actuator time-delay. A state
feedback controller is proposed in Sect. 3 to stabilize
the offshore platform without actuator time-delay. The
main results on the designing of the delay-dependent
state feedback controller and the algorithm are given
in Sect. 4. Section 5 gives some simulation results and
Sect. 6 concludes our findings.

Throughout this paper, all the matrices are real ma-
trices. The superscripts “−1” and “T” mean the in-
verse and transpose of a matrix, respectively; P >

0 (P ≥ 0) means that the matrix P is a real symmet-
ric and positive definite (semidefinite) matrix; I is the
identity matrix of appropriate dimensions. For sim-
plicity, the symmetric term in a symmetric matrix is
denoted by ∗, e.g.,

[
X Y
∗ Z

] = [
X Y

YT Z

]
.

2 Dynamic model of an offshore platform with
actuator time-delay

Consider an offshore steel jacket platform with an
active tuned mass damper (TMD) shown in Fig. 1
[1–3]. Taking actuator time-delays into consideration,
the motion equation of the first two modes of vibration
with the coupled TMD can be expressed as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z̈1(t) = − 2ξ1ω1ż1(t) − ω2
1z1(t) + φ1KT zT (t)

+ φ1CT żT (t) − φ1KT

[
φ1z1(t) + φ2z2(t)

]

− φ1CT

[
φ1ż1(t) + φ2ż2(t)

] − φ1u(t − τ)

+ f1
(
z1(t), z2(t), t

) + f2
(
z1(t), z2(t), t

)

z̈2(t) = − 2ξ2ω2ż2(t) − ω2
2z2(t) + φ2KT zT (t)

+ φ2CT żT (t) − φ2KT

[
φ1z1(t) + φ2z2(t)

]

− φ2CT

[
φ1ż1(t) + φ2ż2(t)

] − φ2u(t − τ)

+ f3
(
z1(t), z2(t), t

) + f4
(
z1(t), z2(t), t

)

z̈T (t) = − 2ξT ωT żT (t) − ω2
T zT (t) + 2ξT ωT φ1ż1(t)

+ 2ξT ωT φ2ż2(t) + ω2
T

[
φ1z1(t) + φ2z2(t)

]

+ 1

mT

u(t − τ)

(1)
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Fig. 1 Steel jacket structure with an active TMD [3]

where z1(t) and z2(t) are the generalized coordinates
of vibration modes 1 and 2, respectively; ω1 and ω2

are the natural frequencies of the first two modes of
vibration, respectively; ξ1 and ξ2 are the damping ra-
tios in the first two modes of vibration, respectively;
φ1 and φ2 are the first and second mode shapes vec-
tors, respectively; CT , mT , and KT are the damping,
the mass and the stiffness of the TMD, respectively;
zT is the horizontal displacement of the TMD; ωT is
the natural frequency of the TMD; ξT is the damping
ratio of the TMD; u is the control action of the system;
τ ≥ 0 is the actuator time-delay; f1, f2, f3, and f4 are
nonlinear self-excited force terms.

Remark 1 If we take into account of the actuator time-
delays in system (3), i.e., τ = 0, then the dynamic
model (1) reduces to the model in [2] and [3].

Let

x1 = z1, x2 = ż1, x3 = z2,

(2)
x4 = ż2, x5 = ȳ, x6 = żT

and denote x = [x1 x2 x3 x4 x5 x6 ]T . Then the system
(1) can be rewritten as

ẋ(t) = Ax(t) + Bu(t − τ) + Df (x, t) (3)

where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0 1 0

−ω2
1 − KT φ2

1 −2ξ1ω1 − CT φ2
1 −KT φ1φ2

0 0 0

−KT φ1φ2 −CT φ1φ2 −ω2
2 − KT φ2

2

0 0 0

ω2
T

φ1 2ξT ωT φ1 ω2
T

φ2
0 0 0

−CT φ1φ2 φ1KT φ1CT

1 0 0

−2ξ2ω2 − CT φ2
2 φ2KT φ2CT

0 0 1

2ξT ωT φ2 −ω2
T −2ξT ωT

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎥
⎦

B =

⎡

⎢⎢⎢⎢⎢⎢
⎣

0
−φ1

0
−φ2

0
1

mT

⎤

⎥⎥⎥⎥⎥⎥
⎦

, D =

⎡

⎢⎢⎢⎢⎢⎢
⎣

0 0
1 0
0 0
0 1
0 0
0 0

⎤

⎥⎥⎥⎥⎥⎥
⎦

(4)

and the nonlinear self-excited wave force f (x, t) is of
the form as

f (x, t) =
[

f1(x1, x3, t) + f2(x1, x3, t)

f3(x1, x3, t) + f4(x1, x3, t)

]
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which is uniformly bounded and satisfies the following
constraint [2, 3]:
∥∥f (x, t)

∥∥ ≤ μ
∥∥x(t)

∥∥ (5)

with μ a positive scalar.
The objective of this paper is to design a state feed-

back control law

u(t) = Kx(t) (6)

to stabilize the offshore platform (3) and thereby im-
prove the control performance of the offshore plat-
form, where K is a 1 × 6 real matrix to be determined.

To obtain the main results, the following lemma is
needed.

Lemma 1 ([13]) For any constant matrix R ∈ R
n×n,

R = RT > 0, a scalar h > 0 and a vector-valued func-
tion ẋ : [t − h, t] → R

n such that the following inte-
gration is well defined, then

−h

∫ t

t−h

ẋT (s)Rẋ(s) ds

≤
[

x(t)

x(t − h)

]T [−R R

∗ −R

][
x(t)

x(t − h)

]
(7)

3 Design of a state feedback controller

For the ideal case, i.e., τ = 0, a state feedback con-
troller of the form (6) is designed first to stabilize the
offshore platform in this section. A sufficient condi-
tion for the existence of the state feedback controller
is stated as the following proposition.

Proposition 1 For a given scalar μ > 0, the system
(3) with τ = 0 is stabilizable via the control law (6) if
there exist a 6 × 6 matrix P̄ > 0 and a 1 × 6 matrix K̄

such that
⎡

⎣
AP̄ + P̄AT + BK̄ + K̄T BT D μP̄

∗ −I 0
∗ ∗ −I

⎤

⎦ < 0 (8)

If the linear matrix inequality (8) is feasible, then the
gain matrix K in (6) is given by K = K̄P̄ −1.

Proof Substituting (6) into (3) with τ = 0, one yields

ẋ(t) = (A + BK)x(t) + Df (x, t) (9)

Let

V1(x) = xT (t)P x(t) (10)

be a candidate Lyapunov function for system (9),
where P > 0 is a 6 × 6 matrix to be determined. Tak-
ing the derivative along the system trajectory, noting
that (5) and setting α(t) = [xT (t) f T (x, t)]T , it can
be verified that

V̇1(x) ≤ αT (t)Ψ αT (t) (11)

where

Ψ =
[
PA + AT P + PBK + KT BT P + μ2I PD

∗ −I

]

(12)

By Schur complement, it is straightforward to show
that if the linear matrix inequality (8) holds, then we
have Ψ < 0, which guarantees that V̇1(x) < 0 for any
x(t) �= 0. This completes the proof. �

4 Design of a delay-dependent state feedback
controller

In this section, a delay-dependent state feedback con-
troller is presented for the offshore platform with ac-
tuator timed-delays. Based on the integral inequality
method [13], a sufficient condition for the existence of
the control law (6) is given first; then an approximation
approach is proposed to solve the gain matrix K .

4.1 Existence of a delay-dependent state feedback
controller

The following proposition presents the sufficient con-
ditions for the existence of a delay-dependent state
feedback controller.

Proposition 2 For given scalars μ > 0 and τ > 0, the
system (3) is stabilizable via the control law (6) if there
exist 6 × 6 matrices P̄ > 0, Q̄ > 0, R̄ > 0, and a 1 × 6
matrix K̄ such that
⎡

⎢⎢⎢⎢
⎣

Λ BK̄ + R̄ D τP̄AT μP̄

∗ −Q̄ − R̄ 0 τK̄T BT 0
∗ ∗ −I τDT 0
∗ ∗ ∗ −P̄ R̄−1P̄ 0
∗ ∗ ∗ ∗ −I

⎤

⎥⎥⎥⎥
⎦

< 0 (13)
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where

Λ = AP̄ + P̄AT + Q̄ − R̄

And if the matrix inequality (13) is feasible, then the
gain matrix K is given by K = K̄P̄ −1.

Proof From (3) and (6), one yields the closed-loop
system as

ẋ(t) = Ax(t) + BKx(t − τ) + Df (x, t) (14)

Choose a Lyapunov–Krasovskii functional as

V (xt ) = V1 + V2 + V3 (15)

where V1 is defined in (10) and

V2 =
∫ t

t−τ

xT (s)Qx(s) ds, (16)

V3 =τ

∫ 0

−τ

ds

∫ t

t+s

ẋT (θ)Rẋ(θ) dθ (17)

with xt = x(t + s), s ∈ [−τ,0], Q > 0 and R > 0 are
6 × 6 matrices to be determined.

Taking the derivative of V (xt ) with respect to t

along the trajectory of (14) gives

V̇ (xt ) =xT (t)
(
PA + AT P + Q

)
x(t)

+ 2xT (t)BKτx(t − τ) + 2xT (t)PDf (x, t)

− xT (t − τ)Qx(t − τ) − f T (x, t)f (x, t)

+ τ 2ẋT (t)Rẋ(t) − τ

∫ t

t−τ

ẋT (s)Rẋ(s) ds

(18)

Applying Lemma 1 to the integral term in (18), we
obtain

−τ

∫ t

t−τ

ẋT (s)Rẋ(s) ds

≤
[

x(t)

x(t − τ)

]T [−R R

∗ −R

][
x(t)

x(t − τ)

]
(19)

Letting η(t) = [xT (t) xT (t −τ)f T (x, t)]T and not-
ing that (5), it follows from (18) and (19) that

V̇ (xt ) ≤ ηT (t)
(
Ξ + τ 2Γ T RΓ

)
η(t) (20)

where

Ξ =
⎡

⎣
PA + AT P + Q − R + μ2I PBK + R PD

∗ −Q − R 0
∗ ∗ −I

⎤

⎦

Γ = [A BK D]
In order to guarantee V̇ (xt ) < 0 for any x(t) �= 0,

we require that

Ξ + τ 2Γ T RΓ < 0 (21)

By applying Schur complement, matrix inequality
(21) is equivalent to

⎡

⎢⎢⎢⎢
⎣

Υ PBK + R PD τAT R μI

∗ −Q − R 0 τKT BT R 0
∗ ∗ −I τDT R 0
∗ ∗ ∗ −R 0
∗ ∗ ∗ ∗ −I

⎤

⎥⎥⎥⎥
⎦

< 0 (22)

where

Υ = PA + AT P + Q − R

Pre- and post-multiplying the left-hand side of (22) by
diag{P −1,P −1, I,R−1, I } and its transpose, respec-
tively, and setting

P̄ = P −1, K̄ = KP −1,

Q̄ = P −1QP −1, R̄ = P −1RP −1

we arrive at the condition (13). �

4.2 Numerical algorithm

It is clear that the condition (13) is a nonlinear ma-
trix inequality. In order to derive the controller gain K̄

from the matrix inequality (13), we introduce a new
matrix S > 0 such that

S ≤ P̄ R̄−1P̄ (23)

which is equivalent to
[
S−1 P̄ −1

∗ R̄−1

]
≥ 0 (24)

Let

S̄ = S−1, L̄ = P̄ −1, M̄ = R̄−1 (25)

Then we have the following proposition.



1598 B.-L. Zhang et al.

Proposition 3 The nonlinear matrix inequality (13)
holds if the following conditions are satisfied:

⎡

⎢⎢⎢⎢
⎣

Λ BK̄ + R̄ D τP̄AT μP̄

∗ −Q̄ − R̄ 0 τK̄T BT 0
∗ ∗ −I τDT 0
∗ ∗ ∗ −S 0
∗ ∗ ∗ ∗ −I

⎤

⎥⎥⎥⎥
⎦

< 0 (26)

[
S̄ L̄

∗ M̄

]
≥ 0 (27)

S̄S = I, L̄P̄ = I, M̄R̄ = I (28)

The problem formulated by the conditions (26)–
(28) is a nonconvex feasibility problem. Based on the
cone complementary algorithm [12], the nonconvex
feasibility problem can be converted into the follow-
ing nonlinear minimization problem subject to a set of
linear matrix inequalities:

Minimize Tr(S̄S + L̄P̄ + M̄R̄) (29)

Subject to (26), (27) and
[
S̄ I

∗ S

]
≥ 0,

[
L̄ I

∗ P̄

]
≥ 0, (30)

[
M̄ I

∗ R̄

]
≥ 0

By numerically solving the nonlinear minimization
problem (29), we can obtain the gain matrix K of the
delay-dependent state feedback controller (6).

5 Simulation results

In this section, the effects of actuator time-delays on
the stabilization control for the offshore platform are
investigated first. Then a delay-dependent state feed-
back controller is designed to improve the perfor-
mance of the offshore platform with actuator time-
delays.

5.1 Parameters of the offshore platform

In Fig. 1, the parameters of the offshore platform and
the wave force are given as follows, which are from
[1–3]. The data of the waves are H = 12.19 m, h =
76.2 m and λ = 182.88 m. The TMD parameters are
ωT = 1.818 revolutions per second (rps), ξT = 0.15,

KT = 155.15, mT = 469.483 kg, and CT = 256. The
density of steel is 7730.7 kg/m3, the density of wa-
ter is ρω = 1025.6 kg/m3, the weight of the concrete
deck is 6672300 N, and Uow = 0.122 m/s. The natu-
ral frequencies of the first two modes of vibration are
assumed to be ω1 = 1.818 rps and ω2 = 10.8683 rps,
respectively. The structural damping in each mode is
supposed to be 0.5 %. The first and second mode shape
vectors are φ1 = −0.003445 and φ2 = 0.00344628,
respectively. Based on the settings, matrices A and B

can be obtained as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A =

⎡

⎢⎢⎢
⎢⎢⎢
⎣

0 1 0
−3.3235 −0.0212 0.0184

0 0 0
0.0184 0.0030 −118.1385

0 0 0
−0.0114 −0.0019 0.0114

0 0 0
0.0030 −5.3449 −0.8819

1 0 0
−0.1118 5.3465 0.8822

0 0 1
0.0019 −3.3051 −0.5454

⎤

⎥⎥⎥⎥⎥⎥
⎦

B = [
0 0.003445 0 −0.00344628 0 0.00213

]T

Let μ = 0.8, the wave frequency be 1.8 rps. The non-
linear self-excited wave force f (x, t) can be computed
as Appendix A in [2].

5.2 Effects of actuator time-delays on the
performance of the offshore platform

In this subsection, for the case of that the actuator
time-delays are not considered, a state feedback con-
troller is first designed via Proposition 1, and the os-
cillation amplitudes of the three floors and the control
force required under the obtained state feedback con-
troller are compared with the ones under the nonlinear
controller [3], the dynamic output feedback controller
[9] and the integral sliding mode controller [10], re-
spectively. Then, under the state feedback controller,
the effects of the actuator time-delays on the perfor-
mance of the offshore platform are investigated.

First, for comparison purposes, the performance
of the offshore platform without control is presented.
When no controller is used to the offshore platform, it
can be computed that the oscillation amplitudes of the
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Fig. 2 Response of the first floor of the system under the SFC
and τ = 0

first, second and third floors of the offshore platform
are 1.3738 m, 1.4489 m, and 1.5634 m peak to peak,
respectively.

Second, for the case of that the actuator time-delay
τ = 0 in system (3), we design a state feedback con-
troller to reduce the vibration amplitudes of the off-
shore platform. For this, by Proposition 1, the gain ma-
trix of a state feedback controller (SFC) is obtained as

K = [−12218 1066 44527 1782 −4894 −11949
]

When the obtained SFC is applied to the offshore
platform (3) with τ = 0, it can be computed that the
controlled vibration amplitudes of the first, second,
and third floors of the offshore platform are reduced
from 1.3738 m, 1.4489 m, and 1.5634 m to 0.2226 m,
0.2434 m, and 0.2590 m peak to peak, respectively,
and the range of the required control force is about
5.73 × 104 N. The displacement responses of the first,
second, and third floors are presented in Figs. 2, 3, 4,
respectively, and the response of the control force is
given by Fig. 5. It shows that the SFC can able to re-
duce the vibration amplitudes of the three floors of the
offshore platform to about 17 % of those when no ac-
tive controller is used.

On the other hand, under the other stabilization
controllers, i.e., the nonlinear controller (NLC) [3], the
dynamic output feedback controller (DOFC) [9], and
the integral sliding mode controller (ISMC) [10], the
vibration amplitudes of the three floors of the offshore
platform and the control force are listed in Table 1 and
compared with the ones under the SFC. From this ta-
ble, one can see clearly that:

Fig. 3 Response of the second floor of the system under the
SFC and τ = 0

Fig. 4 Response of the third floor of the system under the SFC
and τ = 0

– the vibration amplitudes of the three floors of the
offshore platform under the SFC are smaller than
those under the NLC and the DOFC. Furthermore,
the required control force by the SFC is significantly
reduced. In fact, the control force required by the
SFC is reduced to about 28.7 % and 14.3 % of the
ones under the NLC and the DOFC, respectively;

– under the SFC and the ISMC, the controlled oscilla-
tion amplitudes of the three floors are almost in the
same level, while the control force required by the
SFC is much less than that by the ISMC.

The simulation results show that for the ideal situ-
ation, i.e., the actuator time-delay of the offshore plat-
form is considered as zero; the designed SFC is effec-
tive to attenuate the vibration amplitudes of the off-
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Table 1 The ranges of the control force (N) and the vibra-
tion amplitudes (m) of the three floors of the offshore platform
with τ = 0 under the different stabilization controllers, where
ur stands for the range of the control force

Controllers Floor 1 Floor 2 Floor 3 ur (105)

NLC [3] 0.3050 0.3050 0.3050 2.000

DOFC [9] 0.2329 0.2543 0.2705 4.000

ISMC [10] 0.2192 0.2301 0.2383 2.157

SFC 0.2226 0.2434 0.2590 0.573

Fig. 5 Response of the control force of the system under the
SFC and τ = 0

shore platform, and the controlled performance of the
offshore platform under the SFC is better than those
under the NLC, the DOFC, and the ISMC. Moreover,
the control force required by the SFC is less than the
ones by other aforesaid controllers.

Third, we aim to investigate the effects of actuator
time-delays on the control performance of the system.
When the SFC is used to control the system with actu-
ator time-delays, it can be obtained that for the cases of
0 < τ ≤ 0.045, the ranges of the vibration amplitudes
of the three floors of the offshore platform are almost
in the same level as those in the case of τ = 0, while
the control force becomes increasingly large, which
can be observed from Table 2 and Figs. 6, 7, 8, 9,
where the actuator time-delay τ = 0.045 s. It shows
that as τ ≤ 0.045 s, though the required control force
becomes larger over the time-delays, the SFC is still
effective to attenuate the vibration of the offshore plat-
form. However, if the value of time-delay τ increases
to 0.046 s, it can be found from Fig. 10 that under the

Table 2 The ranges ur of the control force (N) required by the
SFC for the different values of time-delay τ (s)

τ 0.020 0.026 0.030 0.040 0.042 0.045

ur (104) 5.726 5.728 5.731 5.739 5.747 7.754

Fig. 6 Response of the first floor of the system under the SFC
and τ = 0.045 s

Fig. 7 Response of the second floor of the system under the
SFC and τ = 0.045 s

SFC, the range of the vibration amplitude of the first
floor suddenly increases to about 3.7 m peak to peak.
In this case, the obtained SFC is no longer effective.

The simulation results show that ignoring the actu-
ator time-delays of the system, the obtained controller
is too conservative, and the allowable upper bound of
time-delay is too small; on the other hand, the required
control force will become larger and larger as actuator
time-delay increases gradually.



Stabilization control for offshore steel jacket platforms 1601

Fig. 8 Response of the third floor of the system under the SFC
and τ = 0.045 s

Fig. 9 Response of the control force required by the SFC and
τ = 0.045 s

5.3 Performance of the offshore platform under the
delay-dependent state feedback controller

In this subsection, a delay-dependent state feedback
controller (DDSFC) is designed to stabilize the off-
shore platform, and the controlled vibration ampli-
tudes of the offshore platform and the allowable max-
imum actuator time-delay are presented.

Let actuator time-delay τ = 0.08. By Proposi-
tions 2 and 3, solving numerically the nonlinear mini-
mization problem (29), one can obtain the gain matrix
of the DDSFC as

K = [−1526.1 − 304.3 − 283.5

1714.3 579.7 − 1360.9]

Fig. 10 Response of the first floor of the system under the SFC
and τ = 0.046 s

Fig. 11 Response of the first floor of the system under the
DDSFC and τ = 0.08 s

Under the DDSFC, the response curves of the three
floors of the offshore platform and the control force
are shown in Figs. 11, 12, 13, 14, respectively. It can
be computed that the maximum oscillation amplitudes
of the first, second, and third floors of the offshore
platform are 0.2244 m, 0.2462 m, and 0.2634 m peak
to peak, respectively, the range of the control force is
5.8106 × 104 N. It shows that as the actuator time-
delay τ > 0.045, here τ = 0.08, the DDSFC is still
valid, and it is able to reduce the vibration amplitudes
of the offshore platform to about 16 % of those when
no controller is applied.

Now we turn to investigate the allowable maximum
actuator time-delay. When the DDSFC is applied to
the offshore platform, the ranges of the vibration am-
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Fig. 12 Response of the second floor of the system under the
DDSFC and τ = 0.08 s

Fig. 13 Response of the third floor of the system under the
DDSFC and τ = 0.08 s

plitudes of the three floors and the control force re-
quired for different actuator time-delays are listed in
Table 3. It can be seen from this table that when time-
delay τ ≤ 0.105 s, the offshore platform can work in a
safe environment. As time-delay increases to 0.106 s,
the DDSFC is still effective to stabilize the system;
however, the range of the control force increases to
about 1.5 × 106 N, which shows that the required con-
trol force becomes large suddenly. And as τ = 0.107 s,
the vibration amplitudes of the three floors suddenly
increase to 0.9074 m. Figure 15 presents the response
curve of the first floor of the offshore platform as the
DDSFC applied to the system with τ = 0.107 s. In this
situation, the obtained DDSFC will no longer work.

Fig. 14 Response of the control force required by the DDSFC
and τ = 0.08 s

Table 3 The ranges ur of the control force (N) and the vibra-
tion amplitudes (m) of the three floors of the system under the
DDSFC for different values of time-delay τ (s)

τ Floor 1 Floor 2 Floor 3 ur (104)

0.010 0.2243 0.2461 0.2630 6.0071

0.016 0.2243 0.2461 0.2631 5.9766

0.028 0.2242 0.2460 0.2631 5.9173

0.040 0.2244 0.2462 0.2633 5.8792

0.046 0.2243 0.2461 0.2632 5.8343

0.070 0.2244 0.2462 0.2634 5.7982

0.080 0.2242 0.2460 0.2632 5.8106

0.100 0.2244 0.2462 0.2633 6.0046

0.105 0.2243 0.2461 0.2633 6.3356

From Tables 2 and 3, we can clearly see that un-
der the DDSFC, the allowable upper bound of the ac-
tuator delay is 0.105 s, which is far greater than the
one under the SFC. It indicates that the DDSFC is less
conservative than the SFC, and the former is more ef-
fective than the latter to reduce the unfavorable effects
of the actuator time-delays on stabilization control for
the performance of the offshore platform.

6 Conclusions

In this paper, we have developed the problem of stabi-
lization control of the offshore platform. We have pro-
posed the state feedback control scheme and the delay-
dependent state feedback control scheme for the off-
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Fig. 15 Response of the first floor of the system under the
DDSFC and τ = 0.107 s

shore platform without and with actuator time-delay,
respectively. It is found from the simulation results
that the designed delay-dependent state feedback con-
troller is less conservative than the state feedback con-
troller. Moreover, it can effectively improve the con-
trol performances of the offshore platform.
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