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Abstract In this paper, we focus on the synchro-
nization between integer-order chaotic systems and
a class of fractional-order chaotic system using the
stability theory of fractional-order systems. A new
fuzzy sliding mode method is proposed to accom-
plish this end for different initial conditions and num-
ber of dimensions. Furthermore, three examples are
presented to illustrate the effectiveness of the pro-
posed scheme, which are the synchronization between
a fractional-order Lü chaotic system and an integer-
order Liu chaotic system, the synchronization be-
tween a fractional-order hyperchaotic system based
on Chen’s system and an integer-order hyperchaotic
system based upon the Lorenz system, and the syn-
chronization between a fractional-order hyperchaotic
system based on Chen’s system, and an integer-order
Liu chaotic system. Finally, numerical results are pre-
sented and are in agreement with theoretical analy-
sis.
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1 Introduction

Fractional calculus is a much older classical mathe-
matical notion with the same 300-year history as inte-
ger calculus. In recent years, it has found application in
many areas of physics [1] and engineering [2]. At the
same time, control and synchronization of fractional-
order chaotic systems have made great contributions.
Some papers discuss the synchronization of general
fractional-order chaotic systems [3–5], while others
consider special classes of fractional-order chaotic
systems [6–8].

Chaos synchronization is the concept of closeness
of the frequencies between different periodic oscilla-
tions generated by two chaotic systems, which is fist
proposed by Pecora and Carroll [9]. And it is widely
explored in a various field’s chemical, ecological, and
physical system [10–12]. Chaos synchronization is a
very active topic in nonlinear science and has been ex-
tensively studied in the past decades. Therefore, vari-
ous synchronization scheme such as sliding mode con-
trol [13–16], linear feedback control [17, 18], adaptive
control theory [19, 20], back-stepping control [21], ac-
tive control [22–24], fuzzy control [25, 26], and fuzzy
sliding mode control [27] have been successfully ap-
plied to chaos synchronization.
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However, there are few previous papers consid-
ering synchronization between integer-order chaotic
systems and fractional-order chaotic systems with dif-
ferent structure and dimensions [28, 29]. Obviously,
it is more difficult to achieve synchronization be-
tween integer-order chaotic systems and fractional-
order chaotic systems. On the other hand, it is more
interesting and more valuable for the application of
fractional-order nonlinear systems.

Motivated by the above discussion, fuzzy sliding
mode control is utilized here to realize the synchro-
nization between integer-order chaotic systems and a
class of fractional-order chaotic system because its ro-
bustness and stability. There are three advantages of
our approach. First, based on fuzzy theory and sliding
mode control (SMC), a new method for chaos syn-
chronization between integer-order chaotic systems
and a class of fractional-order chaotic system is pre-
sented. Second, the performance of the system in the
sense of removing chattering is improved with the
utilization of fuzzy logic. Last, two chaotic systems
are synchronized with different structure and dimen-
sion.

The rest of the paper is outlined as follows. Sec-
tion 2 introduces the integer-order chaotic systems and
a class of fractional-order chaotic systems. Section 3
proposes a compensation controller and vector con-
troller based on fuzzy sliding mode control theory.
Furthermore, the controller design scheme and the sta-
bility analysis of the closed loop system are included
in this section. Section 4 provides results of numeri-
cal simulations, and Sect. 5 gives brief comments and
conclusions.

2 System description

Consider the n-dimensional, integer-order chaotic
drive system

ddx

dtd
= f (x) (1)

where x ∈ Rn,f : Rn → Rn are differentiable func-
tions.

Then consider the n-dimensional, fractional-order
chaotic response system
⎧
⎪⎪⎨

⎪⎪⎩

dqyi

dtq
= a(yj − yi)

dqy

dtq
= g(y)

(2)

where y ∈ Rn, g : Rn−1 → Rn−1 are differentiable
functions. The dimensions q = (q1, q2, . . . , qn)

T (0 <

qi < 1) may be equal or not, and the response system
(2) is an integer-order system if qi = 1 (i ∈ [1, n]). The
constant a is positive.

3 Problem formulation and control design

System (1) represents the drive system, and the con-
troller u(t) ∈ Rn is added into the response system (2)
according to

dqy

dtq
= g(y) + u(t) (3)

We define the synchronization errors as e = y − x.
The aim is to choose suitable control signals u(t) ∈ Rn

such that the states of the master and response systems
are synchronized (i.e., limt→∞ ‖e‖ = 0, where ‖ · ‖ is
the Euclidean norm).

Now let the controller u(t) be

u(t) = u1(t) + u2(t) (4)

where u2(t) ∈ Rn−1 is a vector control function that
will be designed later. The u1(t) ∈ Rn is a compensa-
tion controller, and u1 = dqx

dtq
− g(x). Using Eq. (4),

the response system (3) can be rewritten as

dqe

dtq
= g(y) + dqx

dtq
− g(x) + u2 − dqx

dtq

= g(y) − g(x) + u2 (5)

To control the chaotic systems easily, the modified
compensation controller u1 can be represented as

u1 = dqx

dtq
− g(y − e) (6)

and the modified error dynamics (5) can be repre-
sented as

dqe

dtq
= h(e, y) + u2 (7)

where h(e, y) = g(y) − g(e − y).
Two steps are required to design a sliding mode

controller. First, we construct a sliding surface that
represents a desired system dynamic. Then we develop
a switching control law such that a sliding mode exists
on every point of the sliding surface, and any states
outside the surface are driven to reach the surface in a
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finite time [30]. As a choice for the sliding surface, we
take
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

sj = ej + d−q

dt−q
(k1ej + aei)

sr = er + d−q

dt−q
kper

. . .

(8)

where r ∈ [1, n], r /∈ (i, j), and k1, kp(p ∈ [2, n − 1])
is a positive constant vector. For the sliding mode
method, the sliding surface and its derivative must sat-
isfy

s(t) = 0, ṡ(t) = 0 (9)

Consider

ṡ(t) = D1−q
(
Dqs(t)

) = 0 ⇒ Dqs(t) = 0 (10)

from which it follows that
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dq

dtq
sj = dq

dtq
ej + (k1ej + aei) = 0

dq

dtq
sr = dq

dtq
er + kper = 0

. . .

(11)

and
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dq

dtq
ei = a(ej − ei)

dq

dtq
ej = −(k1ej + aei)

dq

dtq
er = −kper

. . .

(12)

In accordance with active control design procedure,
the nonlinear part of the error dynamics is eliminated
by the following choice of the input vector:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dqyi

dtq
= a(yj − yi) + u1i

dqyj

dtq
= g(y) + u1j + u2j

dqy

dtq
= g(y) + u1r + u2r

. . .

(13)

⎧
⎪⎨

⎪⎩

u2j = −hj (e, y) − (k1ej + aei) + kf uf l(j)

u2r = −hr(e, y) − kper + kf uf l(r)

. . .

(14)

where kf is the normalization factor of the output vari-
able, and uf l is the output of the fuzzy logic, which is
determined by the normalized s and ṡ.

In the above vector, a fuzzy inference engine is used
for reaching phase instead of sign function. One ma-
jor feature of fuzzy logic is its ability to express the
amount of ambiguity in human thinking. The fuzzy
control rules can be represented as the mapping of the
input linguistic variables s and ṡ to the output linguis-
tic variable uf l as follows:

uf l = FL(s, ṡ) = [uf l(1), uf l(2), . . . , uf l(6)]T

= [
FL(s1, ṡ1),FL(s2, ṡ2), . . . ,FL(sn, ṡn)

]T (15)

The membership function of input linguistic for
each set of variables si and ṡi , and the membership
functions of the output linguistic variable uf l(i) (i =
1,2, . . . ,6), are shown in Fig. 1, respectively. Here,
uf l(i) is denoted as:

uf l(i) = FL(si , ṡi ) (16)

As usual, the dynamical behavior of a FLC scheme
is governed by a set of linguistic rules derived from
expert knowledge. By referencing these rules, the in-
ference mechanism of the FLC is able to instruct an
appropriate fuzzy control action in response to any
change in the input signal. Suppose the rules of fuzzy
controller are based on SMC, and then it is called the
FSMC [31].

As is described above, our proposed FLC has two
inputs and one output. These are s, ṡ, and the control
signal, respectively. Linguistic variables which imply
inputs and output have been classified as [32]: NB,
NM, NS, ZE, PS, PM, PB. As is shown in Fig. 1, inputs
are all normalized in the interval of [−3,3] and output
is normalized in the interval of [−1,1], all with equal
span. The linguistic labels used to describe the fuzzy
sets were “Negative Big” (NB), “Negative Medium”
(NM), “Negative Small” (NS), “Zero” (ZE), “Positive
Small” (PS), “Positive Medium” (PM) and “Positive
Big” (PB). It is possible to assign a set of decision
rules as shown in Table 1. These rules contain the in-
put/output relationships that define the control strat-
egy. Each control input has seven fuzzy sets so that
there are at most 49 fuzzy rules.

According to function (2) and control (6) and (14),
the error is given by

dqe

dtq
= Ae + kf uf l (17)

Theorem Consider the error function (14). The error
between response system (3) and drive system (1) can
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Fig. 1 The membership
function for inputs s, ṡ, and
output uf l

Table 1 Rule base of FSMC

uf l S

PB PM PS ZE NS NM NB

Ṡ PB NB NB NB NB NM NS ZE

PM NB NV NB NM NS ZE PS

PS NB NM NS ZE PS PM PB

ZE NB NM NS ZE PS PM PB

NS NM NS ZE PS PM PB PB

NM NS ZE PS PM PB PB PB

NB ZE PS PM PB PB PB PB

be determined if and only if | arg(λi)| > qπ/2 is sat-
isfied for all eigenvalues λi of matrix A. Besides, this
error system is stable if and only if | arg(λi)| ≥ qπ/2
is satisfied for all eigenvalues λi of matrix A and
those critical eigenvalues which satisfies the condition
| arg(λi)| = qπ/2, have geometric multiplicity one.

Proof According to functions (2), (6), (14), and (17),
A is given by the matrix

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−a a 0 · · · 0 · · · 0
−a −k1 0 · · · 0 · · · 0
0 0 −k2 · · · 0 · · · 0
...

...
... 0 · · · 0

0 0 0 0 −kr · · · 0
...

...
...

...
...

...

0 0 0 0 0 · · · −kn−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(18)

whose eigenvalues are
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

λi = −1

2

(
a + k1 +

√

−3a2 − 2ak1 − k2
1

)

λj = −1

2

(
a + k1 −

√

−3a2 − 2ak1 − k2
1

)

λr = −kr

. . .

(19)

Thus, all eigenvalues of matrix A satisfy Re(λ) <

0, which implies | argλ| > π
2 >

qπ
2 . According to the

stability theory of fractional-order systems [33–35],
the equilibrium point e = 0 in function (17) is asymp-
totically stable:

lim
t→+∞ e = lim

t→+∞(y − x) = 0 (20)
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Fig. 2 Chaotic attractors of integer-order Liu chaotic system and fractional-order Lü chaotic system

Remark 1 If chaotic orders in drive system (10) meet
αi = 1, like the system ẋ = Ax + f (x), then the syn-
chronization between a fractional-order system and an
integer-order system can be achieved using the con-
troller (4).

Remark 2 Most system parameters change stochasti-
cally within a certain range. As we can see, the fuzzy
logic output (16), which vary with system parameters,
that is, when the system parameter change, the con-
troller (4) changes in certain regular way as well. Es-
pecially for the system with stochastic parameters, the
controller is extremely effective.

4 Numerical simulation

This section of the paper presents three illustrative
examples to verify and demonstrate the effectiveness
of the proposed control scheme. In Case I, a three-
dimensional integer-order system is synchronized with
a fractional-order system having a different struc-
ture. In Case II, a four-dimensional integer-order sys-
tem is synchronized with a fractional-order system.
In Case III, a three-dimensional integer-order system
is synchronized with a four-dimensional fractional-
order system. The numerical simulation results were
carried out in MATLAB using the Caputo version
and a predictor-corrector algorithm with a fixed step
size of 0.01, which is the generalization of Adams–
Bashforth–Moulton one.

Case I Synchronization between a fractional-order
Lü chaotic system and an integer-order Lü chaotic sys-
tem.

The integer-order Liu chaotic system [36] is de-
scribed by

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dxd

dt
= a(yd − xd)

dyd

dt
= bxd − kxdzd

dzd

dt
= −czd + hx2

d

(21)

The Liu system exhibits chaotic behavior for the
parameters (a, b, c, k,h) = (10,40,2.5,1,4) with ini-
tial conditions [xd, yd, zd ]T = [10,0,30]T and a
chaotic attractor as shown in Fig. 2(a).

The fractional-order Lü chaotic system [37, 38] is

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dqr1xr

dtqr1
= a(yr − xr)

dqr2yr

dtqr2
= −xrzr + cyr

dqr3zr

dtqr3
= xryr − bzr

(22)

and exhibits chaotic behavior for qr1 = qr2 = qr3 =
0.90 and (a, b, c) = (35,3,28) with initial conditions
[xr , yr , zr ]T = [0,3,9]T and a chaotic attractor as
shown in Fig. 2(b).

Here, the controller parameters K1 = K2 = 10 and
kf = 1 are chosen, and the eigenvalues (λ1, λ2, λ3) =
(−22.5 + 32.6917i,−22.5 − 32.6917i,−10) are lo-
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Fig. 3 Synchronization
errors between
integer-order Liu chaotic
system and fractional-order
Lü chaotic system
(e1 = xr − xd ,
e2 = yr − yd , e3 = zr − zd )

cated in the stable region. As described above, we can

obtain the controller u(t) for the response system (6)

and (14) as follows:

i. Compensation controller

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

u11 = 10(yd − xd) − 35
[
(yr − e2) − (xr − e1)

]

u12 = 40xd − xdzd + (xr − e1)(zr − e3)

− 28(yr − e2)

u13 = −2.5zd + 4x2
d − (xr − e1)(yr − e2)

+ 3(zr − e3)

(23)

ii. Vector controller
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u22 = −(xr − e1)(zr − e3) + 28(yr − e2)

+ xrzr − 28yr − (k1e2 + ae1)

+ kf uf l(1)

u23 = (xr − e1)(yr − e2) − 3(zr − e3)

− xryr + 3zr − k2e3 + kf uf l(2)

(24)

The synchronization errors are shown in Fig. 3,
which demonstrates that the proposed method is suc-
cessful in synchronizing the two systems.

Case II Synchronization between a fractional-order
hyperchaotic system based on Chen’s system and an
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Fig. 4 Chaotic attractors of integer-order hyperchaotic based upon Lorena system and fractional-order hyperchaotic system based
upon Chen system

integer-order hyperchaotic system based on the Lorenz
system.

The integer-order hyper-chaotic system based on
the Lorenz system [39] is given by
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dxd

dt
= a(yd − xd)

dyd

dt
= bxd + yd − xdzd − wd

dzd

dt
= xdyd − czd

dw

dt
= kydzd

(25)

This system exhibits chaotic behavior for the pa-
rameters (a, b, c, k) = (10,28,8/3,0.03) with initial

conditions [xd, yd, zd,wd ]T = [5,15,2,20]T and a

chaotic attractor as shown in Fig. 4(a).

The fractional-order hyperchaotic system based on

Chen’s system [40] is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dqr1xd

dtqr1
= a(yr − xr)

dy
qr2
d

dtqr2
= dxr − xrzr + cyr − wr

dqr3zd

dtqr3
= xryr − bzr

dqr4w

dtqr4
= xr + k

(26)
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This system exhibits chaos for qr1 = qr2 = qr3 = 0.90
and (a, b, c, d, k) = (36,3,28,−16,0.5) with ini-
tial conditions [xr , yr , zr ,wr ]T = [0,1,9,7]T and a
chaotic attractor as shown in Fig. 4(b).

The controller parameters K1 = K2 = K3 = 10 and
kf = 1 are chosen, and the eigenvalues (λ1, λ2, λ3,

λ4) = (−23 + 33.5708i,−23 − 33.5708i,−10,−10)

are located in the stable region. As before, we can ob-
tain the controller u(t) for the response system (6) and
(14) as follows:

i. Compensation controller
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u11 = 10(yd − xd) − 36
[
(yr − e2) − (xr − e1)

]

u12 = 28xd + yd − xdzd − wd + 16(xr − e1)

+ (xr − e1)(zr − e3) − 28(yr − e2)

+ (wr − e4)

u13 = xdyd − 8

3
zd − (xr − e1)(yr − e2)

+ 3(zr − e3)

u14 = 0.03ydzd − (xr − e1) − 0.5

(27)

ii. Vector controller
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u22 = −16(xr − e1) − (xr − e1)(zr − e3)

+ 28(yr − e2) − (wr − e4)

+ 16xr + xrzr − 28yr + wr

− (k1e2 + ae1) + kf uf l(1)

u23 = (xr − e1)(yr − e2) − 3(zr − e3)

− xryr + 3zr − k2e3 + kf uf l(2)

u24 = (xr − e1) − xr − k3e4 + kf uf l(3)

(28)

The synchronization errors are shown in Fig. 5,
which demonstrates that the proposed method is suc-
cessful in synchronizing the two systems.

Case III Synchronization between a fractional-order
hyperchaotic system based on Chen’s system and an
integer-order Liu chaotic system.

The Liu chaotic system [36] is described by
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dxd

dt
= a(yd − xd)

dyd

dt
= bxd − kxdzd

dzd

dt
= −czd + hx2

d

(29)

and exhibits chaotic behavior for the parameters
(a, b, c, k,h) = (10,40,2.5,1,4) with initial condi-

tions [xd, yd, zd ]T = [5,10,15]T and a chaotic attrac-
tor as shown in Fig. 6(a).

The fractional-order hyperchaotic system based on
Chen’s system [40] is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dqr1xd

dtqr1
= a(yr − xr)

dy
qr2
d

dtqr2
= dxr − xrzr + cyr − wr

dqr3zd

dtqr3
= xryr − bzr

dqr4w

dtqr4
= xr + k

(30)

and exhibits chaotic behavior for qr1 = qr2 = qr3 =
0.90 and (a, b, c, d, k) = (36,3,28,−16,0.5) with
initial conditions [xr , yr , zr ,wr ]T = [0,3,9,17]T and
a chaotic attractor as shown in Fig. 6(b).

The controller parameters K1 = K2 = K3 = 7,
kf = 1 are chosen, and the eigenvalues are located in
the stable region. As mentioned above, we can obtain
the controller u(t) for the response system (6) and (14)
as follows:

i. Compensation controller

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u11 = 10(yd − xd) − 36
[
(yr − e2) − (xr − e1)

]

u12 = 40xd − xdzd + 16(xr − e1)

+ (xr − e1)(zr − e3) − 28(yr − e2)

u13 = −2.5zd + 4x2
d − (xr − e1)(yr − e2)

+ 3(zr − e3)

u14 = −(xr − e1) − 0.5

(31)

ii. Vector controller
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u22 = −16(xr − e1) − (xr − e1)(zr − e3)

+ 28(yr − e2) + 16xr + xrzr

− 28yr + wr − (k1e2 + ae1) + kf uf l(1)

u23 = (xr − e1)(yr − e2) − 3(zr − e3)

− xryr + 3zr − k2e3 + kf uf l(2)

u24 = (xr − e1) − xr − k3e4

+kf uf l(3)

(32)

The synchronization errors are shown in Fig. 7,
which demonstrates that the proposed method is suc-
cessful in synchronizing the two systems.
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Fig. 5 Synchronization
errors between
integer-order hyperchaotic
based upon Lorena system
and fractional-order
hyperchaotic system based
upon Chen system
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Fig. 6 Chaotic attractors of integer-order Liu chaotic system and fractional-order hyperchaotic system based upon Chen system

5 Conclusions and discussion

In this paper, the synchronization between fractional-
order chaotic systems and integer-order chaotic sys-
tems was achieved based on fuzzy sliding mode con-
trol. The proposed synchronization approach is the-
oretically rigorous and pervasive. Furthermore, three
typical examples were shown: (1) the synchroniza-
tion between different three-dimensional chaotic sys-
tems, (2) between different four-dimensional chaotic
systems, and (3) between a three-dimensional chaotic
system and a four-dimensional chaotic system. Nu-
merical results illustrated the effectiveness of the pro-
posed scheme. These theoretical and numerical results

provide a bridge between integer-order chaotic system
and fractional-order chaotic systems and lend theoret-
ical support for fractional-order chaotic systems.

More and better methods for the synchronization
between integer-order chaotic systems and fractional-
order chaotic systems should be studied. Moreover,
this knowledge should be applied in engineering to
fields such as communications, and its circuit design
will be a subject of our future work.
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Fig. 7 Synchronization
errors between
integer-order Liu chaotic
system and fractional-order
hyperchaotic system based
upon Chen system
(e1 = xr − xd ,
e2 = yr − yd , e3 = zr − zd ,
e4 = wr − wd )
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