
Nonlinear Dyn (2012) 70:1535–1548
DOI 10.1007/s11071-012-0554-4

O R I G I NA L PA P E R

Non-linear free periodic vibrations of variable stiffness
composite laminated plates

Pedro Ribeiro

Received: 17 February 2012 / Accepted: 24 July 2012 / Published online: 28 August 2012
© Springer Science+Business Media B.V. 2012

Abstract Steady-state free vibrations, with large am-
plitude displacements, of variable stiffness composite
laminated plates (VSCL) are analysed. The intentions
of this research are: (1) to find out how the natural fre-
quencies and (mode) shapes evolve with the displace-
ment amplitude in this new type of laminated com-
posite material; (2) to describe modal interactions in
VSCL due to energy interchanges under the coupling
induced by non-linearity; (3) to compare the VSCL
with traditional, constant stiffness, laminated plates.
The VSCL of interest here have curvilinear fibres and
the numerical analysis carried out is based on a re-
cently developed p-version finite element with hier-
archic basis functions. The element follows first-order
shear deformation theory and considers Von Kármán’s
non-linear terms. The time domain equations of mo-
tion are first reduced using the linear modes of vibra-
tion and then transformed to the frequency domain via
the harmonic balance method. These frequency do-
main equations are solved by an arc-length continu-
ation method.
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1 Introduction

Tow-placement technology is nowadays able to place
fibres along curved fibre paths [1, 2]. In this fashion,
laminated composite plates with a stiffness that varies
in space can be built. Although there are other ways of
varying the stiffness of laminated plates [2], we will
only consider here variable stiffness composite lam-
inates (VSCL) where variations of the fibre orienta-
tion along a lamina are used to change the stiffness.
This recent type of material is obviously interesting
in applications like aerospace engineering, where the
panels may experience vibrations with large amplitude
displacements, hence geometrically non-linear.

Possibly the first publications on VSCL are those
of Hyer and Lee [3] and of Gürdal and Olmedo [4],
who were concerned with buckling and in-plane re-
sponse. Gürdal and co-workers published a number of
other works on this type of material [5–10], address-
ing buckling, failure and optimization. In [11], the lin-
ear modes of vibration of VSCL were investigated by
a third-order shear deformation theory. Forced oscil-
lations of VSCL were analyzed in the time domain
in [12]. The former references reveal that VSCL plates
can indeed show better characteristics than traditional
laminates, expand the design space, and deserve atten-
tion.

The knowledge of the modes of vibration allows
one to better understand and preview the dynamic be-
haviour of a system. In a linear and conservative sys-
tem, the mode of vibration is determined by a natural
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frequency and a mode shape, neither of which changes
with the vibration amplitude. This harmonic motion
with a constant shape degenerates in a periodic mo-
tion with variable shape if one takes into account the
effect of geometrical non-linearity [13–16]. Hence, in
conservative, geometrically non-linear and continuous
systems, free oscillations can be found that are pe-
riodic and tend to the linear modes as the displace-
ment amplitude decreases. The natural frequency of
the original linear system evolves to become the fun-
damental frequency of the periodic oscillations and
the original “linear mode shape” becomes a shape that
changes with the vibration amplitude.

There is an absence of research on non-linear free
vibrations of VSCL plates, and this works endeav-
ours to investigate these vibrations. It is here under-
stood that the study of periodic, free non-linear oscil-
lations of conservative VSCL plates is a natural ex-
tension of the study of modes of vibration in a con-
servative, linear VSCL plate. Moreover, we consider
that the new, amplitude dependent, shapes, fundamen-
tal frequencies, and their harmonics define “non-linear
modes of vibration” or modes of vibration of the non-
linear structure.

To investigate large amplitude, periodic, free vibra-
tions of conservative variable stiffness laminates a re-
cently developed p-version finite element with hierar-
chic basis functions, based on first-order-shear defor-
mation theory is presented. We opted for the p-version
FEM, not only because of past positive experiences
with p-version elements, but also because it fits rather
adequately with the curvilinear fibres of the VSCL of
interest here. The p-version finite element ordinary

differential equations of motion are used to obtain a
condensed model, based on a set of linear modes of vi-
bration. The condensed model is then transformed to
the frequency domain by the harmonic balance method
and a continuation method is employed to solve the
frequency domain equations.

2 Formulation

2.1 Equations of motion in the time domain

Following first-order shear deformation theory (FSDT)
[14–18], the displacement components in the x, y, and

z directions—which are respectively represented by u,
v, and w are given by

u(x, y, z, t) = u0(x, y, t) + zφ0
y(x, y, t),

v(x, y, z, t) = v0(x, y, t) − zφ0
x(x, y, t),

w(x, y, z, t) = w0(x, y, t),

(1)

where u0, v0, and w0 are the values of u, v, and w at
the reference surface, and φ0

x and φ0
y are the indepen-

dent rotations about the x and y axis of lines normal
to the middle surface. The origin of the Cartesian co-
ordinate system of reference is at the centre of the un-
deformed plate; axis x and y define the plate’s middle
reference plane. It is noted that, in order to simplify the
notation, the dependence of functions on their argu-
ments will be omitted whenever deemed convenient.

In a particular finite element, the middle plane dis-
placement components are written as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u0(ξ, η, t)

v0(ξ, η, t)

w0(ξ, η, t)

φ0
x(ξ, η, t)

φ0
y(ξ, η, t)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

=

⎡

⎢
⎢
⎢
⎢
⎣

Nu(ξ, η)T 0 0 0 0
0 Nv(ξ, η)T 0 0 0
0 0 Nw(ξ, η)T 0 0
0 0 0 Nφx (ξ, η)T 0
0 0 0 0 Nφy (ξ, η)T

⎤

⎥
⎥
⎥
⎥
⎦

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

qu(t)

qv(t)

qw(t)

qφx (t)

qφy(t)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(2)

where ξ and η represent local coordinates. One p-

element only will be used in the applications and,

therefore, the following relations hold between local

and global coordinates

x = aξ/2, y = bη/2 (3)

with a representing the plate length and b the plate
width. Vectors Ni (ξ, η) contain the displacement
shape functions and vectors qi (t) the generalized dis-
placements (with i = u,v,w,φx , and φy ). The dis-
placement basis functions here used to form vectors
Ni (ξ, η) were employed before to analyse traditional
isotropic and laminated plates and shells, for example
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Fig. 1 Representation of
layer with curved fibres

in [14–17, 19], and [20]. The number of membrane,
or in-plane, shape functions for each membrane dis-
placement component is p2

i , the number of transverse
displacement shape functions is p2

o and the number
of shape functions employed for each component of
rotation is p2

θ .
Using a Von Kármán [21, 22] non-linear strain-

displacement relation, one has:

⎧
⎨

⎩

εx

εy

γxy

⎫
⎬

⎭
=

⎡

⎣
1 0 0 −z 0 0
0 1 0 0 −z 0
0 0 1 0 0 −z

⎤

⎦

×
({

εm
0 + εnl

εb
0

})

(4)

εm
0 =

⎧
⎨

⎩

u0
,x

v0
,y

u0
,y + v0

,x

⎫
⎬

⎭
, εb

0 =
⎧
⎨

⎩

−θ0
y,x

θ0
x,y

−θ0
y,y + θ0

x,x

⎫
⎬

⎭
,

εnl =
⎧
⎨

⎩

(w0
,x)

2/2
(w0

,y)
2/2

w0
,xw

0
,y

⎫
⎬

⎭

(5)

where εx, εy are the membrane strain components in
the x and y directions and γxy the membrane shear
strain. Partial derivation is represented by a comma.

The transverse shear strains are given by

{
γzx

γyz

}

=
{

w0
,x + φ0

y

w0
,y − φ0

x

}

(6)

In the VSCL under analysis here, the common relation
between stresses and strains [18, 23, 24] also holds:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

σ1

σ2

τ23

τ13

τ12

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(k)

=

⎡

⎢
⎢
⎢
⎢
⎣

Q11 Q12 0 0 0
Q21 Q22 0 0 0

0 0 Q44 0 0
0 0 0 Q55 0
0 0 0 0 Q66

⎤

⎥
⎥
⎥
⎥
⎦

(k)

×

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ε1

ε2

γ23

γ13

γ12

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(k)

(7)

with 1, 2, and 3 representing the directions of the prin-
cipal material axes x1, x2 , and x3. Due to the fibre
curvature, the directions of axis x1 and x2 vary in each
lamina.

In this study, the orientation of fibres in lamina k is
defined, as in [4], by

θk(x) = 2(T k
1 − T k

0 )

a
|x| + T k

0 (8)

T k
0 gives the angle between the fibre and the x axis

at x = 0, and T k
1 gives this angle at the panel ends

(x = ±a/2). A layer with curvilinear fibres is repre-
sented in Fig. 1. Due to the curvature of the fibres, the

transformed reduced stiffnesses Q
k

ij are not constant
in each lamina (contrary to traditional composite lam-
inates); instead they are can be defined as follows:

Q
k

11

(
θk(x)

) = U1 + U2 cos
(
2θk(x)

)

+ U3 cos
(
4θk(x)

)
,

Q
k

12

(
θk(x)

) = U4 − U3 cos
(
4θk(x)

)
,

Q
k

22

(
θk(x)

) = U1 − U2 cos
(
2θk(x)

)

+ U3 cos
(
4θk(x)

)
, (9)
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Q
k

16

(
θk(x)

) = 1

2
U2 sin

(
2θk(x)

) + U3 sin
(
4θk(x)

)
,

Q
k

26

(
θk(x)

) = 1

2
U2 sin

(
2θk(x)

) − U3 sin
(
4θk(x)

)
,

Q
k

66

(
θk(x)

) = U5 − U3 cos
(
4θk(x)

)
,

Q
k

44

(
θk(x)

) = U6 + U7 cos
(
2θk(x)

)
,

Q
k

45

(
θk(x)

) = −U7 sin
(
2θk(x)

)
,

Q
k

55

(
θk(x)

) = U6 − U7 cos
(
2θk(x)

)

with constants Ui obeying the following relations:

U1 = 1

8
(3Q11 + 3Q22 + 2Q12 + 4Q66),

U2 = 1

2
(Q11 − Q22),

U3 = 1

8
(Q11 + Q22 − 2Q12 − 4Q66),

U4 = 1

8
(Q11 + Q22 + 6Q12 − 4Q66), (10)

U5 = 1

8
(Q11 + Q22 − 2Q12 + 4Q66),

U6 = 1

2
(Q44 + Q55),

U7 = 1

2
(Q44 − Q55)

The transformed stress-strain relations now read:
⎧
⎨

⎩

σx(x, y, t)

σy(x, y, t)

τxy(x, y, t)

⎫
⎬

⎭

(k)

=
⎡

⎢
⎣

Q11(θ
k(x)) Q12(θ

k(x)) Q16(θ
k(x))

Q12(θ
k(x)) Q22(θ

k(x)) Q26(θ
k(x))

Q16(θ
k(x)) Q26(θ

k(x)) Q66(θ
k(x))

⎤

⎥
⎦

(k)

×
⎧
⎨

⎩

εx(x, y, t)

εy(x, y, t)

γxy(x, y, t)

⎫
⎬

⎭

(k)

{
τyz(x, y, t)

τzx(x, y, t)

}(k)

=
[

Q44(θ
k(x)) Q45(θ

k(x))

Q45(θ
k(x)) Q55(θ

k(x))

](k)

×
{

γyz(x, y, t)

γzx(x, y, t)

}(k)

(11)

The equations of motion, in the time domain, can be
obtained by the virtual work principle and have the
following form:

⎡

⎢
⎢
⎢
⎢
⎣

M11
u 0 0 0 0

0 M22
v 0 0 0

0 0 M33
w 0 0

0 0 0 M44
Rx 0

0 0 0 0 M55
Ry

⎤

⎥
⎥
⎥
⎥
⎦

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

q̈u(t)

q̈v(t)

q̈w(t)

q̈θx (t)

q̈θy(t)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

K11
Luu K12

Luv 0 0 0

K21
Lvu K22

Lvv 0 0 0

0 0 K33
Lγ K34

Lγ K35
Lγ

0 0 K43
Lγ K44

Lb + K44
Lγ K45

Lb + K45
Lγ

0 0 K53
Lγ K54

Lb + K54
Lγ K55

Lb + K55
Lγ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

×

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

qu(t)

qv(t)

qw(t)

qθx (t)

qθy(t)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 K13
NL2(qw(t)) 0 0

0 0 K23
NL2(qw(t)) 0 0

K31
NL3(qw(t)) K32

NL3(qw(t)) K33
NL4(qw(t)) 0 0

0 0 0 0 0
0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

qu(t)

qv(t)

qw(t)

qθx (t)

qθy (t)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0
0
0
0
0

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(12)

In the former equation, superscripts 1–5 indicate the

position of each sub-matrix. The mass matrix is con-
stituted by sub-matrices Mii

k , with k = u,v,w,Rx or
Ry , standing, respectively, for membrane in the direc-
tion of x, membrane in the direction of y, transverse,
rotational about axis x, and rotational about y. The

constant stiffness matrix is constituted by sub-matrices
of the type Kij

Lk , where k = uu,uv,vu,vv,γ ,b; with

γ standing for shear and b for bending. Matrices of
type Kij

NL2(qw(t)) and Kij
NL3(qw(t)) depend linearly

on the transverse generalized coordinates qw(t) and

matrix K33
NL4(qw(t)) depends quadratically on these
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coordinates. The equations of motion have quadratic
and cubic non-linear terms, and clearly the system is
autonomous.

2.2 Model reduction

In periodic oscillations and in the conditions of the nu-
merical tests that will be here carried out, the mem-
brane inertia can usually be neglected [25]. This al-
lows one to obtain the generalised membrane displace-
ments qu(t) and qv(t) from the generalised transverse
displacements qw(t), simply using the upper part of
Eq. (12). Adding to the fact that a smaller system of
equations is obtained in this way, the elimination of

the membrane displacements from the main equations
of motion is particularly important because the present
investigation is in the frequency domain. In fact, it
is advisable to use higher harmonics for membrane
displacements than for transverse displacements, be-
cause for every cycle in the transverse displacements
there are two cycles in the membrane ones. Neglecting
the membrane inertia allows us to automatically take
into account the higher frequency content of the mem-
brane displacements, via the quadratic terms in the
transverse displacement (by relations as cos2(ωt) =
(cos(2ωt) + 1)/2).

The following condensed equations of motion are
hence obtained:

⎡

⎣
M33

w 0 0
0 M44

Rx 0
0 0 M55

Ry

⎤

⎦

⎧
⎨

⎩

q̈w(t)

q̈θx (t)

q̈θy(t)

⎫
⎬

⎭
+

⎡

⎢
⎢
⎣

K33
Lγ

K34
Lγ

K35
Lγ

K43
Lγ

K44
Lb + K44

Lγ
K45

Lb + K45
Lγ

K53
Lγ

K54
Lb + K54

Lγ
K55

Lb + K55
Lγ

⎤

⎥
⎥
⎦

⎧
⎨

⎩

qw(t)

qθx (t)

qθy(t)

⎫
⎬

⎭

×
⎡

⎣
Kredux

NL (qw(t)) 0 0
0 0 0
0 0 0

⎤

⎦

⎧
⎨

⎩

qw(t)

qθx(t)

qθy(t)

⎫
⎬

⎭
=

⎧
⎨

⎩

0
0
0

⎫
⎬

⎭
(13)

with

Kredux
NL

(
qw(t)

)

= KNL4
(
qw(t)

)33 − [
K31

NL3(qw(t)) K32
NL3(qw(t))

]

×
[

K11
Luu K12

Luv

K21
Lvu K22

Lvv

][
K13

NL2(qw(t))

K23
NL2(qw(t))

]

(14)

As we will see, the method employed to solve the
equations of motion requires a Jacobian matrix. This
may be approximately computed numerically, but it is
here opted to develop it analytically by using symbolic
manipulator Maple [26]. The Jacobian matrix is then
saved in a file and used by a FORTRAN code. There-
fore, this matrix cannot be too large and it was de-
cided to further reduce the equations of motion (13)
by modal reduction, using a subset of the linear mode
shapes as a basis.

To the latter end, the linear modes of vibration are
computed and matrix Φn×m, whose columns are vec-
tors that represent the first m linear mode shapes, is

established. The modal coordinates qm obey the fol-
lowing relation:
⎧
⎨

⎩

qw(t)

qθx (t)

qθy (t)

⎫
⎬

⎭
∼= Φn×mqm(t) (15)

An error is expected from using replacement (15) be-
cause we will not take all modes into account. It was
verified that this error is negligible in a few numerical
tests, by carrying out computations using the modal
condensed model and the full model. Hence, the sub-
sequent analysis based on the modal reduced models
is in general accurate. However, when higher modes
are brought to the oscillations, we can expect precision
to be lost; in these cases, and at least, the data pro-
vides qualitative information. The procedure adopted
to choose the number of modes to use in (15) will be
explained afterwards.

Pre-multiplying equations of motion (13) by matrix
Φn×m transposed and using relation (15), one arrives
at a reduced set of equations of motion, which will
here be represented by

Mq̈m(t) + K�qm(t) + Kn�

(
qm(t)

)
qm(t) = 0 (16)
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M, K� and Kn� are the mass, the constant, or “lin-
ear”, stiffness and the “non-linear” stiffness matrices
that result from the modal condensation. These matri-
ces are square, with m rows and columns.

2.3 Transformation into the frequency domain and
solution

The harmonic balance method is now applied in or-
der to obtain a set of algebraic equations which de-
pend on the fundamental frequency of vibration and
on the coefficients of each harmonic. Since undamped
periodic motions are of interest and travelling waves
(waves that appear in axisymmetric structures, like cir-
cular plates ([27, 28]) are not expected, sine terms are
not included in the Fourier expansion.

Because the non-linear terms of the condensed
equations of motion (16) are of cubic type, it would
be expected that the constant term, here denoted by
wc0 and the even harmonics only play a role in the
case of symmetry breaking bifurcations [29]. Never-
theless, a few numerical tests were carried out with a
series that included all harmonics (odd and even) until
harmonic k. This series had the form

qm(t) ∼= 1

2
wc0 +

k∑

i=1

wci cos(iωt) (17)

with wci representing the coefficients of each har-
monic and k the number of harmonics. Inserting the
truncated Fourier series (17) into Eqs. (16) and ap-
plying the harmonic balance method, one obtains a
set of algebraic equations where the unknowns are the
fundamental frequency of vibration, ω, and the coef-
ficients of each harmonic. The numerical experiments
carried out using Eq. (17) indicated that in the solu-
tions of interest in this work, the constant term and the
even harmonics do not intervene. Therefore, the fol-
lowing series was preferred:

qm(t) ∼=
2k−1∑

i=1

wci cos(iωt) (18)

and only data obtained with odd harmonics is shown
in this paper.

With k = 3 and adopting solution (18), the fre-
quency domain equations of motion become

⎛

⎝−ω2

⎡

⎣
M 0 0
0 9M 0
0 0 25M

⎤

⎦ +
⎡

⎣
K� 0 0
0 K� 0
0 0 K�

⎤

⎦

⎞

⎠

×
⎧
⎨

⎩

wc1

wc3

wc5

⎫
⎬

⎭
+

⎧
⎨

⎩

Fc1

Fc3

Fc5

⎫
⎬

⎭
=

⎧
⎨

⎩

0
0
0

⎫
⎬

⎭
(19)

The non-linear terms, Fci , in the coefficients of the
harmonics are defined by Eq. (20)

Fci = 2

T

∫ T

0
Kn�qm(t) cos(iωt)dt. (20)

with relation (18) holding.
The frequency domain equations of motion are best

solved with a continuation method. The method here
used is a Newton–Raphson procedure with the dis-
tance between two points of the backbone curve em-
ployed as the governing parameter [16, 30]. The fact
that there are two loops—one for prediction and an-
other for correction—makes the method more com-
putationally reliable then simpler alternatives and the
arc-length parameterization allows passing turning
points.

3 Numerical tests—variation of natural
frequencies and vibration shapes

3.1 Constant stiffness laminate—validation

With the purpose of validating the present model
and the computational code developed, and due to
the absence of data on free non-linear oscillations of
VSCL, comparisons were carried out on constant stiff-
ness laminates. In particular, a laminated plate with
the following properties was analysed: h = 0.001 m,
a = 0.480 m, b = 0.320 m, ρ = 1540 kg/m3,
E11 = 120.5 × 109 N/m2, E22 = 9.63 × 109 N/m2,
G12 = 3.58 × 109 N/m2, G13 = 3.58 × 109 N/m2,
G23 = 3.58 × 109 N/m2, and ν12 = 0.32. These ge-
ometry and material properties will be repeatedly em-
ployed in this paper. The constant stiffness composite
laminated plate (CSCL) has eight layers with fibres
oriented as (90,−45,45,0)sym. The boundaries are al-
ways clamped in the numerical tests.

The fundamental frequencies of vibration com-
puted in this work were compared with values from
[19, 20], where a p-version finite element based upon
classical (thin) plate theory, with 5 out-of-plane and
5 in-plane shape functions, and a one term harmonic
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Table 1 Frequency ratios (ω/ω�l ) as function of first harmonic
amplitude at point ξ = η = 0. CSCL plate

W1(0,0)
h

HFEM and
LUM
[19, 20]

Present,
3 harmonics
pi = 12, pθ = 9,
po = 7

Present,
3 harmonics
pi = 13, pθ = 10,
po = 8

0.2 1.0058 1.0055 1.0055

0.6 1.0516 1.0493 1.0494

1.0 1.1382 1.1343 1.1352

1.2 1.1941 1.1947 1.1973

balance procedure, was employed. To obtain the re-
duced models of the present approach, diverse num-
bers of shape functions were employed, as were differ-
ent numbers of modes in the modal reduction. In ad-
dition, models with either 2 or 3 odd harmonics were
used. The present results, with two and three harmon-
ics and diverse numbers of shape functions, were in
good agreement with the ones of [19, 20]. As an ex-
ample, Table 1 shows the non-dimensional, non-linear
fundamental frequency of vibration as a function of
the amplitude of the first harmonic, W1(ξ, η), com-
puted with reduced models that used 11 modes and
different numbers of shape functions.

Table 1 indicates that the importance of the higher
harmonics is small in the first main branch of solutions
and for the amplitudes attained in [19, 20].

In the linear regime, the natural frequencies of
VSCL computed with the present first order shear de-
formation model agreed quite well with frequencies
published in [11] where a third-order shear deforma-
tion model was applied.

3.2 Variable stiffness composite laminates

3.2.1 VSCL properties

Now the free vibrations of VSCL are explored. The
plates considered still have eight layers, are symmet-
ric about their midplane, have the geometric prop-
erties of the CSCL plate of Sect. 3.1, and the ma-
terial constituents are the same. The fibre orienta-
tions of the first VSCL plate (VSCL1) are defined by:
[〈45|0〉, 〈−45|0〉, 〈90|90〉, 〈90|90〉]sym. This has the
peculiarity that, in the four clamped boundaries, lay-
ers with fibres perpendicular to the boundaries exist. In
the second VSCL plate (VSCL2), T1 (which is the fi-
bre inclination at x = ±a/2) is in all layers equal to the

inclination of the respective layers on the CSCL plate,
i.e. T1 takes values (90,−45,45,0)sym. On the other
hand, T0, only has the orientation of the CSCL in four
layers, where the fibre orientation does not vary; in the
other four layers, there is a change on the fibre orien-
tation. Specifically, the fibres of VSCL2 are oriented
as follows: [〈90|90〉, 〈45| − 45〉, 〈−45|45〉, 〈0|0〉]sym.
In this VSCL, crossings between fibres occur at 90
degrees at the panel ends and at x = 0.

Most of the following analysis is focused on
VSCL1 and VSCL2, presented in the above paragraph;
however, results on a few additional VSCL are also
presented, in order to better see how the curved fibres
may change (or not) the degree of hardening spring.
Obviously, there is an enormous range of possible fi-
bre variations. To limit the analysis space and with the
goal of establishing a relation between these additional
VSCL plates (VSCL3–VSCL6), two restrictions are
imposed on the fibre variation: (1) all plates have the
same fibre inclinations at x = ±a/2 in the respective
layers, i.e. the values of T k

1 are the same, and these are
the angles of the CSCL of Sect. 3.1; (2) T k

0 changes
according to a single parameter θ and when θ is 45◦
we fall exactly on the CSCL adopted as a reference
here. Therefore, it is imposed that the fibres of the
variable stiffness composite laminates VSCLi , i = 3–
6, are oriented as [〈(θ + 45) | 90〉, 〈−θ | −45〉, 〈θ |
45〉, 〈(θ −45) | 0〉]sym, with θ , respectively, taking val-
ues [0◦,22.5◦,67.5◦,90◦] for plates VSCL3–VSCL6,
in this order.

3.2.2 Modal reduced models

In this sub-section, the procedure employed to select
the number of modes and the number of shape func-
tions is described.

The first twelve linear vibration frequencies of
VSCL1 and VSCL2 are given in Table 2. The mode
shapes computed in the linear regime with pi =
12,pθ = 9,po = 7 (model 1) and pi = pθ = po = 15
(model 2) were compared as well, although the pic-
tures are not shown here. The mode shapes that result
from the two models are the same, with the exception
of the shape of mode number 9 of VSCL1, and of the
shapes of modes 9, 11, and 12 of VSCL2, where there
is some, but not large, difference.

We will be interested in analysing what happens
with the first mode of vibration as the vibration ampli-
tude increases, and note that in VSCL1, the first linear
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Table 2 Linear natural frequencies of VSCL plates

Mode VSCL1 VSCL2

pi = 12,
pθ = 9,
po = 7

pi = pθ =
po = 15

pi = 12,
pθ = 9,
po = 7

pi = pθ =
po = 15

1 410.610 410.597 481.093 481.077

2 723.207 722.835 648.465 648.244

3 911.678 911.611 954.334 951.206

4 1152.44 1151.49 1255.52 1255.40

5 1237.59 1233.76 1368.55 1367.89

6 1653.01 1652.86 1457.44 1433.81

7 1659.95 1657.54 1608.45 1608.04

8 1857.04 1851.49 2001.53 1979.52

9 1968.69 1910.81 2112.09 2062.79

10 2296.82 2282.30 2427.02 2426.63

11 2454.98 2441.14 2498.77 2492.26

12 2629.55 2614.78 2606.02 2552.22

natural frequency (ω�1) multiplied by 3 is about half
the 11th linear natural frequency. This means that the
non-linear fundamental vibration frequency (ωn�1) can
range almost until 2ω�1 if only the first and third har-
monics are considered and if 11 modes are used in the
modal model. With such model it should be possible
to correctly detect 1:3 internal resonances [31]. With
an 11 modes model, but if the 5th harmonic is also of
interest, then the non-linear fundamental vibration fre-
quency (ωn�1) can go from ω�1 to almost 1.3ω�1.

In what VSCL2 is concerned, the first linear natu-
ral frequency (ω�1) multiplied by 3 is about 1.7 times
smaller than the 11th linear natural frequency. This
means that the non-linear fundamental vibration fre-
quency (ωn�1) can range to slightly above 1.7ω�1 if
only the first and third harmonics are important in the
analysis and if 11 modes are used in the reduced modal
model. Still with the 11 modes model and if the 5th

harmonic is of interest, then the non-linear fundamen-
tal vibration frequency (ωn�1) should only go from ω�1

to about 1.04ω�1.
Weighting the computational restrictions and the

accuracy, it was decided to employ, for all plates,
modal models with 11 modes, based on the pi = 12,
pθ = 9, po = 7 p-version finite element. This model is
not error free, but the convergence studies carried out
indicate that it will generally provide accurate enough
information on the vibration behaviour of the diverse
VSCL plates. All the following results were computed

Fig. 2 Amplitudes of first harmonic at (ξ, η) = (0,0) of:
— CSCL, ♦ VSCL1, + VSCL2, ◦ VSCL3, � VSCL4,
× VSCL5, � VSCL6

with a frequency domain model that contains the first,
the third, and the fifth harmonics.

3.2.3 Variation of natural frequencies and mode
shapes with the vibration amplitude

It is here understood that a “main branch” of solutions
is a branch that corresponds to a set of steady-state
free vibrations, which includes one solution with near
zero vibration amplitude, with one harmonic only, and
either occurring at a linear natural frequency or at a
linear natural frequency divided by an integer. It re-
sults that the modes of vibrations in the linear regime
are contained in main branches. All analysis in this pa-
per starts on the particular main branch that contains
as a solution the first linear mode associated with the
first harmonic, a branch that will be designated as “first
main branch”.

Figure 2 shows amplitudes of the first harmon-
ics of the CSCL and diverse VSCL. Only solutions
on the first main branch—in effect, solutions which
were computed by starting the continuation proce-
dure at the first linear mode of vibration and not
following bifurcations—are shown. As expected in
these conditions, all plates—either constant or variable
stiffness—show hardening.

One verifies that the degree of hardening is es-
sentially the same in the constant stiffness laminate
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Table 3 Fundamental frequencies (rad/s) in the linear regime of
plates [〈(θ + 45) | 90〉, 〈−θ | −45〉, 〈θ | 45〉, 〈(θ − 45) | 0〉]sym

VSCL3
(θ = 0◦)

VSCL4
(θ = 22.5◦)

CSCL
(θ = 45◦)

VSCL5
(θ = 67.5◦)

VSCL6
(θ = 90◦)

393.867 463.446 511.088 516.878 496.503

(CSCL) and in plate VSCL2 until the transverse dis-
placement amplitude reaches approximately the plate
thickness. These two plates are rather similar, differing
solely in T0 (fibre orientation at x = 0) in four of their
eight layers. However, at larger amplitudes, the nat-
ural frequency of the CSCL increases more with the
first harmonic amplitude than the natural frequency of
VSCL2.

The backbone curve of VSCL4 is somewhat close
to VSCL2, but with less hardening. The remaining
VSCL plates (1, 3, 5, and 6) experience more hard-
ening than the constant stiffness laminate.

To complement the non-dimensional comparison of
Fig. 2, the fundamental vibration frequencies in the
linear regime of the plates that have the same values
of T k

1 are given in Table 3 (hence the frequencies of
VSCL1 and VSCL2, which were given in Sect. 3.2.2,
are not on Table 3). The frequencies are in rad/s. It
is remarkable that plates in the same materials, with
the same geometric properties and with the same fibre
orientation at boundaries x = ±a/2 show so different
fundamental frequencies in the linear regime: the vari-
ation, in percentage terms and using the lowest value
as a reference, is 31 %.

Now we address in more detail plate VSCL1. In
Fig. 3, one can see the amplitudes of vibration of
the first, third, and fifth harmonics, as a function of
the non-dimensional, non-linear, fundamental vibra-
tion frequency of the plate. One verifies that several
steady state solutions exist for the same fundamen-
tal vibration frequency. The ensuing analysis of the
shapes associated with those solutions will lead us to
a better understanding of the evolution of the “natu-
ral modes of vibration”—the latter designation is em-
ployed with the meaning explained in Sect. 1 of this
text—and their interaction on this non-linear system.

Concerning the solutions already shown in Fig. 2
(set of solutions that defines what was called the “first
main branch”) of plate VSCL1, it is verified that the
shapes of the first harmonic are similar to the mode
shape of the first linear mode of vibration: there is only

a small change in these shapes with the vibration am-
plitude. The shapes of the higher harmonics change
more as the natural frequency of vibration increases,
but these harmonics are indeed small in this set of so-
lutions and have a minor influence on the actual shape
of the plate. Hence, in this “main branch” of the vari-
able stiffness plate, the evolution with the amplitude of
the shape assumed during a vibration period is similar
to the one that is found in constant stiffness composite
laminated plates [15, 19, 20, 31].

Let us now proceed to another set of solutions, per-
taining to what is designated in Fig. 3 as “secondary
branch 1”. This branch of solutions bifurcates from the
so-called “first main branch”, because of the interac-
tion between the first and higher vibration modes, and
mainly involves the first and the third harmonic (which
grows at the bifurcation point, as shown in Fig. 3(b)).
An example of the outcome of this modal interaction
in the non-linear regime can be seen in Fig. 4, which
shows the shapes assumed by the variable stiffness
plate at different instant along half a cycle, when the
frequency of the first harmonic is ω = 1.024ω�1. The
shape at t/T = π is symmetric, about plane z = 0, to
the shape at t/T = 0. The shapes that are not shown
are symmetric to the ones at t/T = π/9, t/T = 2π/9
and so on, until the oscillation cycle is completed. Still
related with this solution, in Fig. 5, one can see time
and phase plots at three points of VSCL1. The large
importance of the third harmonic is obvious in these
plots.

The secondary branch that is here designated as
“second secondary branch”, is also the result of inter-
action between the first and higher order modes. This
turn, the 5th harmonic becomes dominant as one pro-
ceeds along the secondary branch (see Fig. 3(c), where
the sudden growth of the 5th harmonic is clear) until
the plate totally leaves the first mode, and vibrates in
its 9th mode and at the fifth harmonic.

Figure 6 compares the first harmonic of VSCL2

with the first harmonic of the constant stiffness plate
CSCL. The computations were started at the first lin-
ear mode of vibration and bifurcating branches were
followed, leading to several solutions for the same fun-
damental frequency. As already seen in Fig. 2, in the
main branch of both plates the more important har-
monic is, by far, the first. In this branch and in the
frequency range portrayed, the difference in the hard-
ening degrees experienced by the two plates is minor.
But there is a marked difference in the additional so-
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Fig. 3 Amplitudes at
(ξ, η) = (0,0) of harmonics
of VSCL1: (a) first
harmonic, (b) second
harmonic, (c) third
harmonic

lutions which occur under modal interactions and as-
sociated bifurcations. The latter interactions are due
to the non-linearity and involve higher harmonics and
higher modes; since the higher modes of VSCL2 differ
from the ones of the CSCL, the dynamics of the two
plates can become very different from each other at
large amplitude vibrations. It is reminded that the fibre
orientation at the boundaries x = ±a are the same in
the two plates; the different behaviour in the non-linear
regime results solely from the fact that four layers (i.e.,
a half of the layers) of the variable stiffness plate have
curved fibres. A large number of branches were found
in VSCL2 and these were included in Fig. 6 in order to
show the rich dynamics that can occur. However, be-
cause these solutions involve higher order modes and
higher harmonics, their numerical accuracy may not
be guaranteed by the reduced order model employed.

4 Conclusions

A reduced order model for free, periodic vibrations
of variable stiffness composite plates was introduced.
The model was applied with success in validation
tests, where results were compared with published
data. Our conclusion is that it is rather safe to use the
reduced model to analyze low order modes, and that
it can provide useful information in the presence of
higher modes. Then an investigation on the non-linear,
periodic, free vibrations of one constant and of several
variable stiffness plates was carried out. The constitu-
tive materials of all plates are the same, and all plates
have the same geometry, dimensions, and number of
layers. This allowed us to understand how curvilinear
fibres alone can affect the evolution of the modes of
vibration with the vibration amplitude.
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Fig. 4 Shapes of VSCL1 plate along half vibration cycle of solution on the first secondary branch at frequency ω/ω�1 = 1.024
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Fig. 5 Time (a) and phase (b) plots of solution on the first secondary branch of VSCL1 at frequency ω/ω�1 = 1.024. The original
coordinates of the point are: — (x, y, z) = (0,0,0), ◦ (x, y, z) = (a/4, b/4,0), � (x, y, z) = (a/4,−b/4,0)

Fig. 6 Amplitude of first
harmonic at (ξ, η) = (0,0)

of CSCL, �, and of
VSCL2, +

It was verified that even small changes in the way
the fibres are oriented along the layers can lead to
changes not only in the linear modes, but also in the
degree of hardening spring effect. In one of the numer-
ical tests, a constant stiffness laminate (CSCL) and a
variable stiffness laminate designated as VSCL2 were
compared; the only distinction between these plates is
that the fibres have different orientation at x = 0 (mid-

dle length) in half of the layers. The first linear natu-
ral frequency of the two plates differs less than 6 %
and the rate of hardening with the vibration amplitude
is very similar until about the plates’ thickness. But
the way, the first harmonic amplitude increases when
it exceeds the plate thickness is visibly different in the
two plates. In a set of tests that complements the for-
mer, the fibres of several plates had the same orienta-
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tion when x = 0, but changed in different degrees until
the plate borders x = ±a/2 (plates CSCL and VSCLi ,
i = 3–6). Here, a variation of 31 % was found in the
fundamental frequency in the linear regime, and differ-
ent hardening degrees occurred in the diverse plates.
Finally, another variable stiffness plate was the one
where the hardening effect was stronger. This plate,
designated as VSCL1, had the same constitutive mate-
rials and dimensions as the other plates; its distinctive
characteristic is that in the four clamped boundaries
fibres perpendicular to the boundary exist.

Secondary branches that result from modal inter-
actions were followed in the reference constant stiff-
ness and in two variable stiffness laminated plates. It
was found that apparently small design changes, like
slightly changing the fibre orientation in the plate do-
main and not changing the orientation at the bound-
aries, can lead to very different dynamic behaviours in
the non-linear regime. One can, for example, avoid or
(if one so wishes) promote modal interactions.
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