
Nonlinear Dyn (2012) 70:1459–1472
DOI 10.1007/s11071-012-0547-3

O R I G I NA L PA P E R

Stochastic fractional optimal control of quasi-integrable
Hamiltonian system with fractional derivative damping

F. Hu · W.Q. Zhu · L.C. Chen

Received: 16 April 2012 / Accepted: 16 July 2012 / Published online: 2 August 2012
© Springer Science+Business Media B.V. 2012

Abstract A stochastic fractional optimal control strat-
egy for quasi-integrable Hamiltonian systems with
fractional derivative damping is proposed. First, equa-
tions of the controlled system are reduced to a set of
partially averaged Itô stochastic differential equations
for the energy processes by applying the stochastic
averaging method for quasi-integrable Hamiltonian
systems and a stochastic fractional optimal control
problem (FOCP) of the partially averaged system for
quasi-integrable Hamiltonian system with fractional
derivative damping is formulated. Then the dynami-
cal programming equation for the ergodic control of
the partially averaged system is established by using
the stochastic dynamical programming principle and
solved to yield the fractional optimal control law. Fi-
nally, an example is given to illustrate the application
and effectiveness of the proposed control design pro-
cedure.
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1 Introduction

Fractional calculus is the generalization of the clas-
sical calculus and it has growing applications in
various fields of science and engineering, e.g., vis-
coelasticity [1–9], biology [10], electronics [11], dif-
fusion [12], signal processing [13], control [14–28].
Applications in mechanics mainly involve fractional
derivative, which is an adequate tool to model the
frequency-dependent damping behavior of many ma-
terials. Preliminary investigation in this field traces
back to the work by Gemant [1], the first to propose
the fractional derivative model of the viscoelastic ma-
terial. Bagley and Torvik [2–4] have shown that frac-
tional derivative models can describe the frequency-
dependent damping behavior of some materials very
well. Koeller [5] has considered a fractional derivative
model to describe creep and relaxation in viscoelas-
tic materials. Makris and Constantinou [6] have pro-
posed a fractional-derivative Maxwell model for vis-
cous dampers and validated their model using experi-
mental results. Coronado et al. [7] have used the frac-
tional derivative to model the frequency-dependent
viscoelastic isolators in the study of a passive isolation
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system. It has been shown that the fractional deriva-
tive model leads to better approximation of dissipated
energy and requires less parameters and its fitting con-
verges quickly. Rossikhin and Shitikova [8, 9] have
provided extensive reviews of applications of frac-
tional calculus in dynamic problems of solid mechan-
ics. Various approaches have been proposed to find
the response of a fractionally damped system, includ-
ing the Laplace transform [3, 4], the Fourier transform
[29–31], numerical methods [32, 33], eigenvector ex-
pansion [34], the averaging method [35, 36], Adomian
decomposition method [37], and variational iteration
method [38]. Padovan and Sawicki [39] have estab-
lished the harmonic solution of periodically excited
nonlinear systems with fractional derivative damping
by employing a diophantine version of the fractional
operational powers and using the energy constrained
Lindstedt–Poincare perturbation procedure.

Actually, dynamic systems, including those con-
taining fractional derivative damping, are often sub-
jected to random loading. It is necessary to study the
stochastic response of fractionally damped materials
and structures. Spanos and Zeldin [40] proposed a
frequency-domain approach for the random vibration
of fractionally damped systems. Agrawal presented
an analytical scheme for stochastic dynamic systems
with fractional derivative damping using the eigen-
vector expansion method and the properties of the
Laplace transforms of convolution integrals [41], and
a general analytical technique for stochastic analysis
of a fractionally damped beam using the normal mode
and Laplace transform techniques [42]. Huang and
Jin [43] studied the response and stability of a SDOF
strongly nonlinear stochastic system with light frac-
tional derivative damping using the stochastic averag-
ing method. Chen and Zhu [44] investigated the first
passage failure of Duffing oscillator with small frac-
tional derivative damping under combined harmonic
and white noise excitations using the stochastic aver-
aging method. Furthermore, an analytical scheme to
determine the statistical behavior of a stochastic sys-
tem including two terms of fractional derivative with
real, arbitrary, fractional orders has been proposed by
Huang et al. [45], who obtained the Green’s functions
based on the Laplace transform and the weighted gen-
eralized Mittag–Leffler function. Recently, Di Paola et
al. [46] computed the stochastic response of a SDOF
structural systems with fractional derivative damp-
ing subjected to stationary and non-stationary inputs

through an appropriate change of variable and a dis-
cretization of the fractional derivative operator.

A FOCP is an optimal control problem in which
the performance index and/or the differential equa-
tions governing the dynamics of the system contain
at least one fractional derivative operator. The pub-
lications on FOCPs are limited compared to those
on the integer order optimal control problems. Frac-
tional order control was first introduced by Tustin et
al. [14] for the position control of massive objects in
the 1950s, and some other researches were fulfilled
around the 1960s by Manabe [15]. Podlubny [16] pro-
posed a generalization of the PID controllers, namely
the PIλDμ controllers, involving an integrator of or-
der λ and differentiator of order μ (where λ and
μ are assumed to be real numbers), and Monje et
al. [17] suggested the tuning rules for PIλDμ con-
trollers. The fractional order [PD] controller as well as
the fractional order [PI] controller have been proposed
[18, 19], and their tuning rules were investigated [20].
Agrawal [21, 22] combined the calculus of variations
and concept of fractional derivatives to develop Euler–
Lagrange equations for the FOCPs and used a vari-
ational virtual work based formulation to develop a
numerical scheme in which the solution was approx-
imated by using some approximating functions over
the entire domain. In [23], a similar approach was used
to formulate a FOCP, and a direct numerical scheme
was proposed to solve the two-point boundary value
problems. Agrawal [24] also presented a quadratic for-
mulation for a class of FOCPs in which the fractional
dynamics were defined in terms of Caputo deriva-
tives. In this formulation, the calculus of variations,
the Lagrange multiplier technique, and the formula
for fractional integration by parts were used to obtain
the Euler–Lagrange equations for the FOCPs. Baleanu
et al. [25] developed a central difference numerical
scheme for the solution of FOCPs. Tricaud et al. [26]
introduced a new formulation for solving a wide class
of fractional optimal control problems using the Ousa-
loup recursive approximation. In [27], a new method
for optimal tuning of fractional controllers was pro-
posed by using genetic algorithms. Jumarie [28] de-
rived a Hamilton–Jacobi equation and a Lagrangian
variational approach for the optimal control of nonran-
dom fractional dynamics with fractional cost function
using the variational calculus of fractional order.

So far, to the authors’ knowledge, no work on the
fractional optimal control of stochastic dynamic sys-
tem with fractional derivative damping is available.
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This subject forms the primary objective of this paper.
The major contribution of this paper is to propose a
fractional optimal control strategy for stochastic quasi-
integrable Hamiltonian systems with fractional deriva-
tive damping. The key idea is to apply the stochas-
tic averaging method to original systems and derive
the fractional optimal control law by establishing and
solving the dynamical programming equation. Finally,
an example is treated for illustration.

2 Formulation of the problem

Consider an n degree-of-freedom (DOF) controlled,
stochastically excited and dissipated quasi-Hamilto-
nian system with fractional derivative damping. The
equations of the system are of the form

Q̇i = ∂H

∂Pi

Ṗi = − ∂H

∂Qi

− εcij (Q,P)D
αj

j (Qj ) + εui

+ ε1/2fik(Q,P)Wk(t)

i, j = 1,2, . . . , n; k = 1,2, . . . ,m

(1)

where Qi and Pi are generalized displacements and
momenta, respectively; ε is a small positive param-
eter; H = H(Q,P) is twice differentiable Hamilto-
nian generally representing total energy of system (1);
εcij (Q,P) are differentiable functions representing
coefficients of fractional dampings; D

αj

j (Qj ) are frac-
tional derivative dampings; εui = εui(Q,P) denote
fractional feedback control forces to be determined;
ε1/2fik(Q,P) are twice differentiable functions rep-
resenting amplitudes of stochastic excitations; both
cij (Q,P) and fik(Q,P) are bounded; Wk(t) are Gaus-
sian white noises in the sense of Stratonovich with cor-
relation functions E[Wk(t)Wl(t + τ)] =
2Dklδ(τ ).

The Hamiltonian system associated with system (1)
is

q̇i = ∂H

∂pi

, ṗi = −∂H

∂qi

, i = 1,2, . . . , n (2)

Assume that system (2) is integrable, i.e., it has n inde-
pendent integrals of the motion H1,H2, . . . ,Hn which
are in involution. Then system (1) is a quasi-integrable
Hamiltonian system.

In order to solve the problem analytically, the fol-
lowing Riemann–Liouville definition for fractional
derivative is adopted:

D
αj

j

(
Qj(t)

)

= 1

Γ (n − αj )

(
d

dt

)n ∫ t

0

Qj(τ)

(t − τ)αj −n+1
dτ

(n − 1) ≤ αj < n (3)

where n is integer and Γ (•) is gamma function, in
the present work, the value of fractional order αj is
restricted to 0∼1, the case most relevant to structural
damping.

Assume that the Hamiltonian H is separable, i.e.,

H =
n∑

i=1

Hi(qi,pi), Hi(qi,pi) = p2
i /2 + Vi(qi)

(4)

where Hi(qi,pi) represent the energies of the ith os-
cillator consisting of the kinetic energies pi

2/2 and the
following potential energies Vi(qi):

Vi(qi) =
∫ qi

0
gi(x) dx (5)

where gi(x) denote linear or nonlinear restoring forces
of the ith oscillator. Then Eq. (2) can be rewritten into
the following form:

q̇i = pi, ṗi = −gi(qi), i = 1,2, . . . , n (6)

System (6) has a family of periodic solutions sur-
rounding the origin of the phase plane (qi,pi ) if
Vi(qi) ≥ 0 is symmetric with respect to qi = 0, and
with minimum at qi = 0. The periodic solution of sys-
tem (6) can be written as [47]

qi(t) = ai cos θi(t)

pi(t) = −aiυi(ai, θi) sin θi(t)

θi(t) = φi(t) + γi

(7)

where

υi(ai, θi) = dφi

dt
=

√
2[Vi(ai) − Vi(ai cos θi)]

ai
2sin2θi

(8)

in which ai is related to Hi as follows:

Vi(ai) = Vi(−ai) = Hi (9)
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cos and sin are the so-called generalized harmonic
functions. ai, υi(ai, θi), and θi are the amplitude, in-
stantaneous frequency, and phase angle, respectively,
of system (6). Expand υi(ai, θi) into a Fourier series
as follows:

υi(ai, θi) = ci
0(ai) +

∞∑

r=1

ci
r (ai) cos rθi (10)

Integrating Eq. (10) with respect to θi from 0 to 2π

leads to the following approximate average frequency:

ωi(ai) = 1

2π

∫ 2π

0
υi(ai, θi) dθi = ci

0(ai) (11)

of the ith oscillator. Thus, in average, ωi(ai) can be
used to approximate υi(ai, θi) and

θi(t) ≈ ωi(ai)t + γi (12)

Since ε is small, the sample motion of system (1) is
periodically random process and can be written as

Qi(t) = Ai cosΘi(t)

Pi(t) = Q̇i(t) = −Aiυi(Ai,Θi) sinΘi(t)

Θi(t) = Φi(t) + Γi(t)

(13)

where

υi(Ai,Θi) = dΦi

dt
=

√
2[Vi(Ai) − Vi(Ai cosΘi)]

Ai
2sin2Θi

= ei
0(Ai) +

∞∑

r=1

ei
r (Ai) cos rΘi (14)

in which Ai,Θi,Φi,Γi are all random processes, Ai

are related to Hi in a similar way as Eq. (9). The av-
erage frequency can be obtained in a way similar to
that in Eq. (11). Treating Eq. (13) as a generalized van
der Pol transformation from Qi,Pi to Ai,Γi yields
the following stochastic differential equation for Ai

and Γi :

dAi

dt
= ε

(
F

(11)
i (A,Θ) + F

(12)
i (A,Θ,u)

)

+ ε1/2G
(1)
ik Wk(t)

dΓi

dt
= ε

(
F

(21)
i (A,Θ) + F

(22)
i (A,Θ,u)

)

+ ε1/2G
(2)
ik Wk(t)

(15)

where A = [A1,A2, . . . ,An]T , Θ = [Θ1,Θ2, . . . ,

Θn]T , u = [u1, u2, . . . , un]T , and

F
(11)
i = Aiυi sinΘi

gi(Ai)
cij (A,Θ)D

αj

j (Aj cosΘj)

F
(21)
i = υi cosΘi

gi(Ai)
cij (A,Θ)D

αj

j (Aj cosΘj)

F
(12)
i = −Aiυi sinΘi

gi(Ai)
ui

F
(22)
i = −υi cosΘi

gi(Ai)
ui

G
(1)
ik = −Aiυi sinΘi

gi(Ai)
fik

G
(2)
ik = −υi cosΘi

gi(Ai)
fik

(16)

According to the stochastic averaging principle
[48–50], in the case that system (2) is nonresonant,
A converges weakly to an n-dimensional diffusion
Markov process as ε → 0 in a time interval 0≤ t ≤ T ,
where T ∼ O(ε−1). This limiting diffusion process
is governed by the following partially averaged Itô
stochastic differential equations:

dAi = [
mi(A) + ε

〈
F

(12)
i (A,Θ,u)

〉
Θ

]
dt

+ σ
(1)
ik (A)dBk(t) (17)

where Bk(t) are standard Wiener processes and

mi(A) = ε

〈
F

(11)
i + Dkl

∂G
(1)
ik

∂Aj

G
(1)
j l

+ Dkl

∂G
(1)
ik

∂Γj

G
(2)
j l

〉

Θ

bij (A) = σ
(1)
ik (A)σ

(1)
jk (A) = ε

〈
2G

(1)
ik DklG

(1)
j l

〉
Θ

(18)

in which 〈•〉Θ represents the averaging with respect
to Θ .

It is seen from Eq. (15) that the time rates of
Ai,Γi are of the order of ε, which means that Ai

and Γi are slowly varying processes. Thus, the fol-
lowing approximate relation can be obtained by using
Eq. (12):
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Θi(t − τ) ≈ Θi(t) − ωi(Ai)τ (19)

By using the approximate relation in Eq. (19) and the

following asymptotic integrals:

∫ t

0

cos(ωτ)

τq
dτ = ω(q−1)

∫ s

0

cos(u)

uq
du

= ω(q−1)

(
Γ (1 − q) sin

(
qπ

2

)

+ sin(s)

sq
+ O

(
s(−q−1)

))

∫ t

0

sin(ωτ)

τq
dτ = ω(q−1)

∫ s

0

sin(u)

uq
du

= ω(q−1)

(
Γ (1 − q) cos

(
qπ

2

)

− cos(s)

sq
+ O

(
s(−q−1)

))

(u = ωτ, s = ωt)

(20)

〈Fi
(11)〉Θ in Eq. (18) can be obtained as follows:

〈
Fi

(11)
〉
Θ

≈ − Aj

gi(Ai)
× 1

2πω
1−αj

j

×
∫ 2π

0

d

dt

[
Aiυi sinΘicij (A,Θ)

]

× [
cosΘj sin(αjπ/2)

+ sinΘj cos(αjπ/2)
]
dΘ (21)

Substituting Eq. (21) into Eq. (18) and completing the

averaging with respect to Θ yield the explicit expres-

sion for mi(A) and bij (A).

Since Ai is related to Hi in a similar way as Eq. (9),

the averaged Itô stochastic differential equations for

Hi can be obtained from Eq. (17) by using the Itô dif-

ferential rule as follows:

dHi = [
m̄i(H) + ε

〈
F̄

(12)
i (H,Θ,u)

〉
Θ

]
dt

+ σ̄
(1)
ik (H)dBk(t)

i, j = 1,2, . . . , n; k = 1,2, . . . ,m (22)

where

m̄i(H) =
[
gi(Ai)mi(A)

+ 1

2

d[gi(Ai)]
dAi

bii(A)

]

Ai=V −1
i (Hi)

F̄
(12)
i (H,Θ,u) = ∂Hi

∂Pi

ui

b̄ij (H) = σ̄
(1)
ik (H)σ̄

(1)
jk (H)

= [
gi(Ai)gj (Aj )bij (A)

]
Ai=V −1

i (Hi)

(23)

Since the control force u is unknown so far, the av-
eraging of term F̄

(12)
i will be completed later. In

the following, Eq. (22) is used to replace system (1)
to design a fractional feedback control law for sys-
tem (1).

It is seen that the dimension of averaged Eq. (22)
is only half of that of original Eq. (1), and the former
equation contains only slowly varying process, while
the later equation contains both rapidly and slowly
varying processes, thus averaged Eq. (22) is much sim-
pler than original Eq. (1).

The objective of control is to minimize the response
of uncontrolled system (1), which can be expressed in
terms of minimizing a performance index. For semi-
infinite time-interval ergodic control, the fractional or-
der performance index is of the form

J = lim
T →∞

1

T

∫ T

0

〈
L

(
H,

(|u|β sign(u)
))〉

Θ
dt (24)

where |u|β sign(u) = (|u1|β sign(u1), |u2|β sign(u2),

. . . , |un|β sign(un))
T ; L(H, (|u|β sign(u))) is cost

function, β is arbitrary positive real number. Equations
(22) and (24) constitute a stochastic optimal control
problem of the partially averaged system for quasi-
integrable Hamiltonian system with fractional deriva-
tive damping.

3 Fractional optimal control

Applying the stochastic dynamical programming prin-
ciple [51] to system (22) with performance index (24),
the following dynamical programming equation can
be established:



1464 F. Hu et al.

min
u

{〈
L

(
H,

(|u|β sign(u)
))〉

Θ

+ ∂V

∂Hi

[
m̄i(H) + ε

〈
F̄

(12)
i (H,Θ,u)

〉
Θ

]

+ 1

2
b̄ij (H)

∂2V

∂Hi∂Hj

}
= γ (25)

where V = V (H) is value function and γ is a constant
representing optimal average cost.

The optimal control law u∗ is determined by mini-
mizing the left-hand side of Eq. (25) with respect to u,
i.e.,
(

∂L

∂ui

+ ε
∂Hi

∂Pi

∂V

∂Hi

)∣∣∣
∣
u=u∗

= 0, i = 1,2, . . . , n (26)

To ensure that the obtained ui
∗ are indeed optimal, the

following sufficient conditions should be satisfied:

∂2L(H, (|u|β sign(u)))

∂ui
2

∣∣∣∣
u=u∗

≥ 0, i = 1,2, . . . , n

(27)

Let function L be of the form

L
(
H,

(|u|β sign(u)
))

= f (H) + ε
(|u|β sign(u)

)T R
(|u|β sign(u)

)
(28)

where f (H) is convex function of H, and R is a posi-
tive definite matrix. Then the fractional order optimal
control forces are

u∗
i = −

(
R−1

ij

2β

∂V

∂Hj

) 1
2β−1

∣∣∣∣
∂Hj

∂Pj

∣∣∣∣

1
2β−1

sign

(
∂Hj

∂Pj

)

(29)

where R−1
ij are the elements of R−1. If R is a diagonal

matrix with positive elements Ri , then Eq. (29) can be
reduced to

u∗
i = −

(
1

2βRi

∂V

∂Hi

) 1
2β−1

∣∣∣∣
∂Hi

∂Pi

∣∣∣∣

1
2β−1

sign

(
∂Hi

∂Pi

)

(30)

It is seen from Eqs. (29) and (30) that an extra pa-
rameter β is added in the fractional order optimal con-
trol, compared with the ordinary integer order control,

thus the proposed fractional order optimal control is
more flexible and gives an opportunity to better adjust
the dynamical properties of a system.

For the case of diagonal R, substituting Eqs. (28)
and (30) into Eq. (25) and completing the averaging
of the terms involving u lead to the following final dy-
namical programming equation:

ε

[
Ri

(
1

2βRi

∂V

∂Hi

) 2β
2β−1 −

(
1

2βRi

) 1
2β−1

(
∂V

∂Hi

) 2β
2β−1

]

×
〈(

∂Hi

∂Pi

) 2β
2β−1

〉

Θ

+ f (H) + m̄i(H)
∂V

∂Hi

+ 1

2
b̄ij (H)

∂2V

∂Hi∂Hj

= γ (31)

The stochastic optimal control force u∗ can be ob-
tained by solving Eq. (31) and then substituting the
resultant ∂V/∂Hi into Eq. (30).

The responses of uncontrolled and controlled quasi-
integrable Hamiltonian systems with fractional deriva-
tive damping can then be predicted by solving the
Fokker–Planck–Kolmogorov (FPK) equations associ-
ated with the fully averaged Itô equation (22) with
u = 0 and u = u∗, respectively.

To evaluate the performance of the proposed con-
trol strategy, the control effectiveness Ki and control
efficiency μi are introduced as follows:

Ki = E[Q2
i ]u − E[Q2

i ]c
E[Q2

i ]u
, μi = Ki

E[u2
i ]/2Dii

i = 1,2, . . . , n (32)

where E[Qi
2]u and E[Qi

2]c denote the mean-square
displacements of the uncontrolled and controlled sys-
tem, respectively; E[ui

2] denote the mean-square con-
trol forces.

4 Example

Consider the stochastic FOCP of two coupled Rayleigh
oscillators with fractional derivative dampings subject
to Gaussian white noise excitations. The equations of
motion of the system are of the form:
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Ẍ1 + (−β ′
10 + β ′

11Ẋ
2
1 + β ′

12Ẋ
2
2

)
Dα1(X1)

+ ω2
1X1 = W1(t) + u1

Ẍ2 + (−β ′
20 + β ′

21Ẋ
2
1 + β ′

22Ẋ
2
2

)
Dα2(X2)

+ ω2
2X2 = W2(t) + u2

(33)

where ωi (i = 1,2) denote the natural frequencies
of the degenerated system; β ′

i0 and β ′
ij (i, j = 1,2)

are small damping coefficients; αi represent the or-
ders of the fractional derivative dampings; Wi(t) are
independent Gaussian white noises in the senses of
Stratonovich with intensities 2Di .

Assume that ω1/ω2 �= r/s, where r and s are prime
integers. Then the Hamiltonian system associated with
system (33) is integrable and nonresonant. Let X1 =
Q1, Ẋ1 = P1, X2 = Q2, Ẋ2 = P2, the Hamiltonian is

H = H1 + H2, Hi = 1

2
P 2

i + 1

2
ω2

i Q
2
i ,

i = 1,2 (34)

By using the procedure of stochastic averaging
given in Sect. 2, the following partially averaged Itô
stochastic differential equation for Hi can be obtained:

dH1 =
[
m̄1(H1,H2) +

〈
u1

∂H1

∂P1

〉

Θ

]
dt

+ σ̄11 dB1(t)

dH2 =
[
m̄2(H1,H2) +

〈
u2

∂H2

∂P2

〉

Θ

]
dt

+ σ̄22 dB2(t)

(35)

where

m̄1(H1,H2)

= 1

ω
1−α1
1

[
β ′

10H1 sin(πα1/2)

− 3β ′
11H

2
1 sin(πα1/2)

2

− β ′
12H1H2 sin(πα1/2)

]
+ D1

m̄2(H1,H2) (36)

= 1

ω
1−α2
2

[
β ′

20H2 sin(πα2/2)

− 3β ′
22H

2
2 sin(πα2/2)

2

− β ′
21H1H2 sin(πα2/2)

]
+ D2

b̄11 = σ̄ 2
11 = 2D1H1, b̄22 = σ̄ 2

22 = 2D2H2

Following the procedure described in the last sec-
tion, the expressions for fractional order optimal con-
trol forces can be obtained, i.e.,

u∗
i = −

(
1

2βRi

∂V

∂Hi

) 1
2β−1 |Pi |

1
2β−1 sign(Pi) (37)

and the final dynamical programming equation is

1

2
b̄11

∂2V

∂H 2
1

+ 1

2
b̄22

∂2V

∂H 2
2

+ m̄1
∂V

∂H1
+ m̄2

∂V

∂H2

+ co1g1(H1,H2) + co2g2(H1,H2)

+ f (H1,H2) = γ

(38)

where

co1 =
[
R1

(
1

2βR1

) 2β
2β−1 −

(
1

2βR1

) 1
2β−1

]

×
(

1

2π

∫ 2π

0

(
2sin2Θ

) β
2β−1 dΘ

)

co2 =
[
R2

(
1

2βR2

) 2β
2β−1 −

(
1

2βR2

) 1
2β−1

]

×
(

1

2π

∫ 2π

0

(
2sin2Θ

) β
2β−1 dΘ

)

g1(H1,H2) =
(

H
1/2
1

∂V

∂H1

)s

g2(H1,H2) =
(

H
1/2
2

∂V

∂H2

)s

, s = 2β

2β − 1

(39)

Assume that V (H1,H2) is of the following form:

V = c1H1 + c2H2 + c3H
2
1 + c5H

2
2 (40)

where ci (i = 1,2,3,5) are functions of H1,H2. Then
gi (H1,H2) (i = 1,2) are converted into the following
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form:

g1(H1,H2) = (
c1H

1/2
1 + 2c3H

3/2
1

)s

= Zs
1 = g′

1(Z1),

Z1 = c1H
1/2
1 + 2c3H

3/2
1

g2(H1,H2) = (
c2H

1/2
2 + 2c5H

3/2
2

)s

= Zs
2 = g′

2(Z2),

Z2 = c2H
1/2
2 + 2c5H

3/2
2

(41)

Expand g′
i (Zi) into the following Taylor series at Z0i ,

the values of which range from Zi -0.05 to Zi+0.05,

g′
i (Zi) =

∞∑

k=0

g′
i
(k)

(Z0i )

k! (Z − Z0i )
k (42)

Since the value of s is between 1 and 2 for the case
β ≥ 1, the first three terms of Eq. (42) are taken. Thus,
gi(H1,H2) can be approximated as follows:

g1(H1,H2) = (s2 − 3s + 2)

2
Zs

01

+ (
2s − s2)Zs−1

01

(
c1H

1/2
1 + 2c3H

3/2
1

)

+ s(s − 1)Zs−2
01

2

× (
c2

1H1 + 4C2
3H 3

1 + 4c1c3H
2
1

)

g2(H1,H2) = (s2 − 3s + 2)

2
Zs

02

+ (
2s − s2)Zs−1

02

(
c2H

1/2
2 + 2c5H

3/2
2

)

+ s(s − 1)Zs−2
02

2

× (
c2

2H2 + 4C2
5H 3

2 + 4c2c5H
2
2

)

(43)

It is seen that in order to satisfy Eq. (38), f (H1,H2)

should be of the following form:

f (H1,H2)

= l0 + l11H1 + l12H2 + l21H
2
1

+ l22H1H2 + l23H
2
2 + l31H

3
1 + l32H

2
1 H2

+ l33H1H
2
2 + l34H

3
2 + f11H

1/2
1

+ f12H
1/2
2 + f21H

3/2
1 + f22H

3/2
2 (44)

where l11, l12, l31, l34 are given, while the other coeffi-
cients are to be determined later.

Substituting Eqs. (43) and (44) into Eq. (38) yields
the coefficients in Eq. (40) and partial coefficients in
Eq. (44) as follows:

c1 = −β10 −
√

β10
2 − 2s(s − 1)Zs−2

01 co1(4D1c3 + l11)

s(s − 1)Zs−2
01 co1

c2 = −β20 −
√

β20
2 − 2s(s − 1)Zs−2

02 co2(4D2c5 + l12)

s(s − 1)Zs−2
02 co2

c3 =
3β11 −

√
9β11

2 − 8s(s − 1)Zs−2
01 co1l31

4s(s − 1)Zs−2
01 co1

c5 =
3β22 −

√
9β22

2 − 8s(s − 1)Zs−2
02 co2l34

4s(s − 1)Zs−2
02 co2

l0 = γ −
(

c1D1 + c2D2 + co1
(s2 − 3s + 2)

2
Zs

01

+ co2
(s2 − 3s + 2)

2
Zs

02

)

l21 = −2c3β10 + c1

2

√
9β11

2 − 8s(s − 1)Zs−2
01 co1l31

l23 = −2c5β20 + c2

2

√
9β22

2 − 8s(s − 1)Zs−2
02 co2l34

l22 = c1β12 + c2β21, l33 = 2c5β21

β10 = β ′
10 sin(πα1/2)

ω
1−α1
1

, β11 = β ′
11 sin(πα1/2)

ω
1−α1
1

β12 = β ′
12 sin(πα1/2)

ω
1−α1
1

, β20 = β ′
20 sin(πα2/2)

ω
1−α2
2

β22 = β ′
22 sin(πα2/2)

ω
1−α2
2

, β21 = β ′
21 sin(πα2/2)

ω
1−α2
2

f11 = −co1
(
2s − s2)Zs−1

01 c1

f12 = −co2
(
2s − s2)Zs−1

02 c2

f21 = −2co1
(
2s − s2)Zs−1

01 c3

f12 = −2co2
(
2s − s2)Zs−1

02 c5

(45)

The uncontrolled and controlled stationary FPK
equations associated with the fully averaged Itô Eq. (35)
are of the following form:
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Fig. 1 (a) Control effectiveness K1 for displacement of the
first DOF, (b) control effectiveness K2 for displacement of the
second DOF, (c) control efficiency μ1 for displacement of the
first DOF, (d) control efficiency μ2 for displacement of the

second DOF, of system (33) versus fractional derivative order
α1 = α2 = α for different β . The parameters are: ω1 = 1.0,
ω2 = √

2, β ′
10 = β ′

20 = 0.02, β ′
11 = β ′

12 = β ′
21 = β ′

22 = 0.05,
D1 = D2 = 0.05, R1 = R2 = 2.0, l11 = l12 = l31 = l34 = 0.5

− ∂

∂Hi

[
m̄ip

u
] + 1

2

∂2

∂Hi
2

[
b̄iip

u
] = 0 (46)

− ∂

∂Hi

[ ¯̄mip
c
] + 1

2

∂2

∂Hi
2

[
b̄iip

c
] = 0 (47)

where pu(H1,H2) and pc(H1,H2) denote the station-
ary probability densities of the uncontrolled and con-
trolled system, respectively, and

¯̄m1(H1,H2) = m̄1(H1,H2) −
(

1

2βR1

) 1
2β−1

×
(

1

2π

∫ 2π

0

(
2sin2Θ

) β
2β−1 dΘ

)

× (
c1H

β

1 + 2c3H
β+1
1

) 1
2β−1

¯̄m2(H1,H2) = m̄2(H1,H2) −
(

1

2βR2

) 1
2β−1

×
(

1

2π

∫ 2π

0

(
2sin2Θ

) β
2β−1 dΘ

)

× (
c2H

β

2 + 2c5H
β+1
2

) 1
2β−1

(48)

The associated boundary conditions are

pu,pc = finite at Hi = 0

pu,pc,
∂pu

∂Hi

,
∂pc

∂Hi

→ 0 as Hi → ∞
i = 1,2

(49)

The FPK Eqs. (46) and (47) with boundary con-
ditions (49) can be solved numerically by using the
combination of finite difference method and succes-
sive over relaxation method. Then the stationary joint
probability density for the displacements and velocity
of uncontrolled and controlled systems are as follows:

pu(Q1,Q2,P1,P2)

= ω1ω2

4π2
pu(H1,H2)|Hi= 1

2 P 2
i + 1

2 ω2
i Q

2
i

pc(Q1,Q2,P1,P2)

= ω1ω2

4π2
pc(H1,H2)|Hi= 1

2 P 2
i + 1

2 ω2
i Q

2
i

(50)
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Fig. 2 (a) Control effectiveness K1 for displacement of the first
DOF, (b) control effectiveness K2 for displacement of the sec-
ond DOF, (c) control efficiency μ1 for displacement of the first
DOF, (d) control efficiency μ2 for displacement of the second

DOF of system (33) versus excitation intensity D1 = D2 = D

for different β . α1 = α2 = 0.5. The other parameters are the
same as Fig. 1

Some numerical results for system (33) are shown
in Figs. 1–4, Fig. 1 represents the control effectiveness
Ki and control efficiency μi (i = 1,2) as functions of
the order of fractional derivative damping α1 = α2 = α

for different values of β , where β = 1.0 denotes the
ordinary integer order control. It is seen that Ki and
μi will first increase and then decrease as α increases,
and the increasing interval is much smaller than the
decreasing interval. The changing rates of Ki and μi

with respect to α will decrease as β increases, while
μ1 in Fig. 1c and μ2 in Fig. 1d are almost constants for
different α values when β gets larger. Thus, both con-
trol effectiveness and control efficiency are robust to
the change of the order of fractional derivative damp-
ing when β is large.

Figures 2a and 2b show that Ki will decreases as D

increases, and it decreases faster for β = 1.0, while it
decreases much slower for larger β , especially when
D is small. It is seen from Figs. 2c and 2d that μi de-
creases faster as D increases for small β , while it will

increases as D increase when β gets larger, and the in-
creasing rate of μi as D increases will also increases
as β gets larger.

Ki and μi as functions of β for different values
of α are shown in Fig. 3. It is seen that Ki will in-
crease while μi will decrease as β increases. When
β is small, the changing rates of Ki and μi with re-
spect to β are much larger than the case of larger β .
Figure 3b shows that the changing rate of K2 with re-
spect to β will increases as α increases, while it is seen
from Fig. 3a that the changing rate of K1 with respect
to β is not very sensitive to the change of α. Thus, as
β increases, the changing rate of control effectiveness
of the oscillator with larger natural frequency depends
more on α compared with that of the oscillator with
small natural frequency. Figures 3c and 3d show that
the changing rates of μi with respect to β are almost
the same for different values of α.

Figure 4 shows that Ki will decreases while μi will
increases as R increases, and the changing rate of Ki
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Fig. 3 (a) Control effectiveness K1 for displacement of the first
DOF, (b) control effectiveness K2 for displacement of the sec-
ond DOF, (c) control efficiency μ1 for displacement of the first
DOF, (d) control efficiency μ2 for displacement of the second

DOF of system (33) versus β for different order of fractional
damping α1 = α2 = α. The other parameters are the same as
Fig. 1

and μi with respect to R will decrease as β increases.
It can be concluded from Fig. 4 that the system will be
more robust to the change of R for a fractional order
control with large value of β .

In summary, as the order of fractional controller in-
creases, control effectiveness will increases while con-
trol efficiency will decreases, and the controlled sys-
tem with fractional order controller will be more ro-
bust to the changes of excitation intensity, fractional
damping order, as well as parameter R in the feedback
controller, compared with the one with integer order
controller. Thus, the performance of fractional order
control is better than that of integer order control, es-
pecially for the fractional order system.

5 Conclusion

In the present paper, a stochastic fractional optimal
control strategy for quasi-integrable Hamiltonian sys-

tem with fractional derivative damping has been pro-
posed based on the stochastic averaging method for
quasi-integrable Hamiltonian systems and stochastic
dynamic programming principle. The partially aver-
aged Itô stochastic differential equations for the con-
trolled system were derived to replace the original
system and the fractional optimal controller designed
by establishing and solving the dynamic program-
ming equation. The proposed control strategy has two-
fold advantages. First, using the stochastic averaging
method reduces the dimension of the controlled sys-
tem, and the simplification of both the controlled sys-
tem and the dynamical programming equation makes
the dynamical programming equation having classi-
cal solution. Second, the proposed fractional control
strategy makes the optimal control more flexible and
robust, especially for fractional order systems. The
proposed procedure has been applied to a two DOF
coupled Rayleigh oscillators with fractional derivative
damping. It has been shown that the proposed control
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Fig. 4 (a) Control effectiveness K1 for displacement of the
first DOF, (b) control effectiveness K2 for displacement of the
second DOF, (c) control efficiency μ1 for displacement of the

first DOF, (d) control efficiency μ2 for displacement of the sec-
ond DOF of system (33) versus R1 = R2 = R for different β .
α1 = α2 = 0.5. The other parameters are the same as Fig. 1

strategy is effective and efficient, and the system will
be more robust to the changes of parameters of system
and controller by taking the fractional order control
than integer order control.
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