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Abstract In this paper, the state estimation problem is
investigated for neural networks with time-varying de-
lays and Markovian jumping parameter based on pas-
sivity theory. The neural networks have a finite num-
ber of modes and the modes may jump from one to
another according to a Markov chain. The main pur-
pose is to estimate the neuron states, through avail-
able output measurements such that for all admissible
time-delays, the dynamics of the estimation error is
globally stable in the mean square and passive from
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the control input to the output error. Based on the new
Lyapunov–Krasovskii functional and passivity theory,
delay-dependent conditions are obtained in terms of
linear matrix inequalities (LMIs). Finally, a numerical
example is provided to demonstrate effectiveness of
the proposed method and results.

Keywords Neural networks · State estimation ·
Delay · Markovian jumping parameter · Passivity

1 Introduction

The problem of delayed neural networks has been fo-
cused on in the last decades due to their potential ap-
plications in various field such as pattern recognition,
static image processing, associative memory and com-
binatorial optimization [1–3]. In such applications, it
is of prime importance to ensure that the designed neu-
ral network is stable. Therefore, the issue on the stabil-
ity analysis of neural networks with time delay has re-
ceived great attention during the past years and a num-
ber of remarkable results have been proposed, see for
example [4–12].

According to the modeling approaches, the neural
networks can be classified into two types, static neural
networks and local field neural networks. The former
uses the neuron states as basic variables in order to
characterize the dynamical evolution rule. In the latter,
the local field states of neurons are taken as basic vari-
ables. In this regard, the work [13, 14] dealt with the
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detailed relationship between static neural networks
and local field neural networks. The Hopfield neural
network is a typical example of the local field neural
network. It has modeled a continuous time-dynamical
neural networks containing n dynamic neural units
(DNUs) by an analog RC (resistance capacitance) net-
work circuit. Further, a time delay was introduced in
the above model by Marcus and Westervelt [15] for
Hopfield neural networks to describe the dynamics
equation

dx(t)

dt
= −Bx(t) + Aσ

(
x(t − τ)

) + J,

where x = [x1, . . . , xn]T , B = diag(b1, . . . , bn) with
bi = 1

RiCi
, the n × n irreducible connection matrix

A = (aij ) in which aij = wij

Ci
, σ(x) = [σ1(x1), . . . ,

σn(xn)]T and J = [J1, . . . , Jn]T with Ji = si
Ci

for
i, j = 1,2, . . . , n. In practical points of view, Hopfield
[16] realized that in hardware implementation, time
delays occur due to finite switching speed of the am-
plifiers. The existence of time delay may take the neu-
ral networks to exhibit complex dynamic behavior and
thus is one of the main sources leading to instability,
oscillation and poor performance [3]. Therefore, the
study of dynamical behavior of neural networks with
time delays is an active research topic and has received
considerable attention in recent years. Some results on
the dynamical behavior have been reported for delayed
neural networks in [17–20].

For the dynamical behavior analysis of delayed
neural networks, there are two types of time-delay
analysis, one is delay-independent approach and the
other is delay-dependent approach. The former does
not include any information on the size of delay while
the latter employs such information. For the delay-
dependent type, much attention has been paid to re-
duce conservatism of stability conditions [18–22].

Generally, a neural network is a highly intercon-
nected network with a large number of neurons. More-
over, in modeling complicated nonlinear systems, the
connections between neurons are vitally important.
However, due to the complexity of high order and
large-scale networks [23] only partial information
about the neuron states of the key nodes is available in
the network output which is not the case in many prac-
tical performances. Thus one often needs to estimate
the neuron states through available measurements and
then utilizes the estimated neuron states to achieve cer-
tain design objectives such as system modeling and

state feedback control, refer to works [24–32] for var-
ious applications. In the recent trends, the state esti-
mation problem has drawn a remarkable research in-
terest and a lot of research issues have emerged [25].
For instance, a recurrent neural network was presented
in [33] to model an unknown nonlinear system, and
the neuron states were utilized to implement a con-
trol law. Recently, the state estimation for static neu-
ral networks with time-varying delay was proposed in
[34, 35]. Therefore, it is of both theoretical and prac-
tical importance to study the state estimation problem
of neural networks.

Markovian jump systems were first introduced by
Krasovskii and Lidskii [36]. This class of systems is
the hybrid systems with two components in the state.
The first one refers to the model which is described by
a continuous-time finite-state Markovian process, and
the second one refers to the state which is represented
by a system of differential equations [37]. On the other
hand, neural networks in real life often have a phe-
nomenon of information latching. It is recognized that
a way of dealing with this information latching prob-
lem is to extract finite-state representations (also called
modes or clusters). Actually, such a neural network
with information latching may have finite modes, and
the modes may switch (or jump) from one to another
at different times, and the switching (or jumping) be-
tween two arbitrarily different mode can be governed
by a continuous-time Markov chain [38]. Therefore,
many significant results on Markovian jump systems
have been reported in the literature [36–43]. Recently,
the authors of [44, 45] have proposed the problem of
state estimation for neural networks with Markovian
jumping parameters. Initially, Ahn [46] has investi-
gated the problem of switched exponential state esti-
mation of neural networks based on passivity theory
by employing an augmented Lyapunov–Krasovskii
functional, Jensen’s equality and LMI framework. In-
spired by this work, in this paper, we have taken into
account the problem of state estimation of neural net-
works with time-varying delay and Markovian jump-
ing parameters based on passivity theory.

Beginning in the early 1970s, the concept of pas-
sivity was studied for state representation of nonlinear
systems allowing for a more geometric interpretation
of notions such as available, stored and dissipated en-
ergy in terms of Lyapunov functions. Thus, the passiv-
ity framework is a promising approach to the stabil-
ity analysis of delayed neural networks. As a powerful
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tool, passivity has played an important role in synchro-
nization [47], fuzzy control [48] and signal processing
[49]. During the recent years, although a number of
research activities have been concerned with the prob-
lem of passivity analysis of neural networks [50–54],
only little attention has been paid to the problem of
state estimation of delayed neural networks by using
passivity theory [46]. This motivates us to carry out
this work.

Based on the above discussions, in this paper, we
propose a new state estimator for neural networks with
time-varying delays and Markovian jumping parame-
ters based on passivity theory. By constructing a new
Lyapunov–Krasovskii functional and employing some
analysis techniques, sufficient conditions for the net-
work are derived in terms of LMIs, which can be easily
calculated by MATLAB LMI control toolbox. A nu-
merical example is given to illustrate the effectiveness
of the proposed method.

Notation Throughout this paper, R
n and R

n×n de-
note, respectively, the n-dimensional Euclidean space
and the set of all n × n real matrices. The super-
script T denotes the transposition and the notation
X ≥ Y (respectively, X > Y ), where X and Y are sym-
metric matrices, means that X − Y is positive semi-
definite (respectively, positive definite). In is the n×n

identity matrix. | · | is the Euclidean norm in R
n.

diag{· · · } stands for a block diagonal matrix. More-
over, let (Ω, F , P ) be a complete probability space
with a filtration {Ft }t≥0 satisfying the usual condi-
tions. That is the filtration contains all P -null sets and
is right continuous. The notation ∗ always denotes the
symmetric block in one symmetric matrix. Sometimes,
arguments of a function or a matrix will be omitted in
the analysis when no confusion can arise.

2 Problem description and preliminaries

Consider the neural network with time-varying delays
described by

ẋ(t) = −Ax(t) + Bg
(
x(t)

)

+ Wg
(
x
(
t − τ(t)

)) + J (t), (1)

y(t) = Cx(t) + Dx
(
t − τ(t)

)
, (2)

where x(t) = [x1(t), x2(t), . . . , xn(t)]T ∈ R
n is the

state vector of the neural networks, y(t) = [y1(t),

y2(t), . . . , ym(t)]T ∈ R
m is the output of the net-

works, A = diag(a1, a2, . . . , an) is a diagonal matrix
with positive entries aı > 0, B = (bıj )n×n and W =
(wıj )n×n denote, respectively, the connection weight
matrix and the delayed connection weight matrix,
g(x(t)) = [g1(x1(t)), g2(x1(t)), . . . , gn(xn(t))]T de-
notes the neuron activation, C, D are known constant
matrices with appropriate dimensions, and J (t) =
[J1(t), J2(t), . . . , Jn(t)]T is an external input vector.

Assumption (A) The neuron activation function g(·)
is bounded and there exist two constant matrices ϕ− =
diag{ϕ−

1 , ϕ−
2 , . . . , ϕ−

n }, ϕ+ = diag{ϕ+
1 , ϕ+

2 , . . . , ϕ+
n },

such that

ϕ−
l ≤ gl(a) − gl(b)

a − b
≤ ϕ+

l , (3)

for all a, b ∈ R, a �= b, l = 1,2, . . . , n.
Also, the time-varying delays τ(t) satisfy

0 ≤ τ(t) ≤ τ̄ , τ̇ (t) ≤ μ,

where τ̄ and μ are constants.

As discussed in the previous section, delayed neu-
ral networks with Markovian jumping parameters are
more appropriate to describe a class of neural net-
works with finite-state representation, where the net-
work dynamics can switch from one to another with
the switch law being a Markov law. In this regard,
we now introduce the Markovian jumping neural net-
works with time-varying delays. Let {r(t), t ≥ 0} be
a right-continuous Markov process on the probabil-
ity space which takes values in the finite space S =
{1,2, . . . ,N} with generator Γ = (γij )(i, j ∈ S) given
by

P
(
r(t + �) = j | r(t) = i

)

=
{

γij	 + o(	), i �= j,

1 + γii	 + o(	), i = j,
(4)

where 	 > 0, lim	t→0(
o(	)
	

) = 0 and γij is transition
rate from mode i to mode j satisfying γij ≥ 0 for i �= j

with γii = −∑N
j=1,j �=i γij , i, j ∈ S.

In this paper, we will focus on the following de-
layed neural networks with Markovian jumping pa-
rameters:

ẋ(t) = −A
(
r(t)

)
x(t) + B

(
r(t)

)
g
(
x(t)

)

+ W
(
r(t)

)
g
(
x
(
t − τ(t)

)) + J
(
r(t), t

)
, (5)
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y(t) = C
(
r(t)

)
x(t) + D

(
r(t)

)
x
(
t − τ(t)

)
. (6)

It should be noted that the Markov process {r(t),
t ≥ 0} takes values in the finite space S = {1,2, . . . ,N}.
For notation simplicity, we denote

A(i) = Ai, B(i) = Bi, W(i) = Wi,

C(i) = Ci, D(i) = Di, J (i) = Ji.

The main objective of this paper is to develop state es-
timator for neural networks with Markovian jumping
parameters (5)–(6) as follows:

˙̂x(t) = −Aix̂(t) + Big
(
x̂(t)

) + Wig
(
x̂
(
t − τ(t)

))

+ Ji(t) + Ki

[
y(t) − ŷ(t)

] − Giu(t), (7)

ŷ(t) = Cix̂(t) + Dix̂
(
t − τ(t)

) − Fiu(t), (8)

where x̂(t) is the estimation of the neuron state, ŷ(t) is
the output vector of the state estimator, u(t) is the con-
trol input vector, Ki is the estimation gain matrix, and
Gi , Fi are known constant matrices.

Define the estimation error e(t) = x(t) − x̂(t) and
the output error ỹ(t) = y(t) − ŷ(t). Then the error-
state system can be expressed by

ė(t) = −(Ai + KiCi)e(t) − KiDie
(
t − τ(t)

)

+ Biϕ(t) + Wiϕ
(
t − τ(t)

)

+ (Gi − KiFi)u(t), (9)

ỹ(t) = Cie(t) + Die
(
t − τ(t)

) + Fiu(t), (10)

where ϕ(t) = g(x(t)) − g(x̂(t)).
From Assumption (A), we easily obtain the follow-

ing inequalities:

[
ϕl(t) − ϕ−

l el(t)
]T [

ϕl(t) − ϕ+
l el(t)

] ≤ 0,

l = 1,2, . . . , n.

The main purpose of this paper is to design a state esti-
mator with Markovian jumping parameter (7)–(8) for
the estimation of the state vector x(t) based on passiv-
ity theory.

Next, the passivity condition for the estimation er-
ror system (9)–(10) is given in the following definition.

Definition 2.1 The estimation error system (9)–(10)
is called passive if it satisfies the following passivity

inequality:

E

{∫ t

0
uT (s)ỹ(s) ds

}
+ β ≥ E

{∫ t

0
Φ

(
e(s)

)
ds

}
,

∀t ≥ 0,

where β is a nonnegative constant and Φ(e(s)) is a
positive semi-definite storage function.

We end this section with the following lemmas,
which are useful in proving the main results.

Lemma 2.2 (Schur complement) Given constant ma-
trices Ω1, Ω2 and Ω3 with appropriate dimensions,
where ΩT

1 = Ω1 and ΩT
2 = Ω2 > 0, then

Ω1 + ΩT
3 Ω−1

2 Ω3 < 0

if and only if
[
Ω1 ΩT

3∗ −Ω2

]
< 0, or

[−Ω2 Ω3

∗ Ω1

]
< 0.

Lemma 2.3 (Jensen inequality) For any n × n con-
stant matrix M > 0, any scalars a and b with a < b

and a vector function x(t) : [a, b] −→ R
n such that

integrations concerned are well defined, then the fol-
lowing inequality holds:

[∫ b

a

x(s) ds

]T

M

[∫ b

a

x(s) ds

]

≤ (b − a)

[∫ b

a

x(s)T Mx(s) ds

]
.

3 Main results

This section is devoted to develop a passivity-based
approach dealing with the state estimation problem for
delayed neural networks with Markovian jumping pa-
rameter. A delay-dependent condition is derived such
that the resulting estimation error system (9) is passive
and asymptotically stable in the mean square.

We shall establish our main results based on LMI
framework. For representation convenience, the fol-
lowing notations are introduced:

Σ1 = diag
{
ϕ−

1 ϕ+
1 , ϕ−

2 ϕ+
2 , . . . , ϕ−

n ϕ+
n

}
,

Σ2 = diag

{
ϕ−

1 + ϕ+
1

2
,
ϕ−

2 + ϕ+
2

2
, . . . ,

ϕ−
n + ϕ+

n

2

}
.
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Theorem 3.1 Assume that there exist matrices
Pi = P T

i > 0, R1 = RT
1 > 0, R2 = RT

2 > 0, Q1 =
QT

1 > 0, Q2, Q3 = QT
3 > 0, U1 = UT

1 > 0, U2 =
UT

2 > 0, S = ST > 0, S1 = ST
1 > 0, any matrices

N1,N2,N3,V ,Xi and diagonal matrices L1 > 0 and
L2 > 0 such that the following LMIs are feasible:
[

Q1 Q2

QT
2 Q3

]

> 0,

[
U2 V

V T U2

]

> 0, (11)

[
Ξ̃i

τ̄√
2
N

∗ −S

]

< 0. (12)

Then, the estimation error system (9)–(10) is passive
from the control input u(t) to the output error ỹ(t) and
the gain matrix of the state estimator (7)–(8) is given
by Ki = P −1

i Xi .
Here,

Ξ̃i = (Ξ̃k,l,i ), k, l = 1,2, . . . ,10

with

Ξ̃1,1,i = −PiAi − XiCi − AT
i Pi − CT

i XT
i

+
N∑

j=1

γijPj + R1 + Q1 − U2

+ τ̄ 2U1 + τ̄
(
N1 + NT

1

) − Σ1L1 + S1,

Ξ̃1,2,i = U2 − V − XiDi, Ξ̃1,3,i = V,

Ξ̃1,4,i = Q2 − AT
i Pi − CT

i XT
i ,

Ξ̃1,6,i = Σ2L1 + PiBi, Ξ̃1,7,i = PiWi,

Ξ̃1,8,i = −1

2
CT

i + PiGi − XiFi,

Ξ̃1,9,i = −N1 + τ̄NT
2 , Ξ̃1,10,i = −N1 + τ̄NT

3 ,

Ξ̃2,2,i = −(1 − μ)R1 − 2U2 + V + V T − Σ1L2,

Ξ̃2,3,i = −V + U2, Ξ̃2,4,i = −DT
i XT

i ,

Ξ̃2,7,i = Σ2L2, Ξ̃2,8,i = −1

2
DT

i ,

Ξ̃3,3,i = −Q1 − U2, Ξ̃3,5,i = −Q2,

Ξ̃4,4,i = Q3 + τ̄ 2U2 + τ̄ 2

2
S − Pi − P T

i ,

Ξ̃4,6,i = PiBi, Ξ̃4,7,i = PiWi,

Ξ̃4,8,i = PiGi − XiFi, Ξ̃5,5,i = −Q3,

Ξ̃6,6,i = R2 − L1, Ξ̃7,7,i = −(1 − μ)R2 − L2,

Ξ̃8,8,i = −Fi, Ξ̃9,9,i = −U1 − N2 − NT
2 ,

Ξ̃9,10,i = −N2 − NT
3 ,

Ξ̃10,10,i = −U1 − N3 − NT
3 ,

N = [
NT

1 0 0 0 0 0 0 0 NT
2 NT

3

]T
.

Proof Consider the Lyapunov–Krasovskii functional
as follows:

V (t, i) = eT (t)Pie(t) +
∫ t

t−τ(t)

eT (s)R1e(s) ds

+
∫ t

t−τ(t)

ϕT (s)R2ϕ(s) ds

+
∫ t

t−τ̄

ηT (s)Qη(s) ds

+ τ̄

∫ 0

−τ̄

∫ t

t+θ

eT (s)U1e(s) ds dθ

+ τ̄

∫ 0

−τ̄

∫ t

t+θ

ėT (s)U2ė(s) ds dθ

+
∫ 0

−τ̄

∫ 0

θ

∫ t

t+λ

ėT (s)Sė(s) ds dλdθ, (13)

where η(t) = [eT (t) ėT (t)]T .
Let L be the weak infinitesimal generator of ran-

dom process {e(t), r(t), t ≥ 0}.
We obtain

LV (t, i)

≤ 2eT (t)Pi ė(t) +
N∑

j=1

γij e
T (t)Pj e(t) + eT (t)R1e(t)

− (1 − μ)eT
(
t − τ(t)

)
R1e

(
t − τ(t)

)

+ ϕT (t)R2ϕ(t)

− (1 − μ)ϕT
(
t − τ(t)

)
R2ϕ

(
t − τ(t)

)

+ ηT (t)Qη(t) − ηT (t − τ̄ )Qη(t − τ̄ )

+ τ̄ 2eT (t)U1e(t) + ėT (t)

(
τ̄ 2U2 + τ̄ 2

2
S

)
ė(t)



1426 S. Lakshmanan et al.

− τ̄

∫ t

t−τ̄

eT (s)U1e(s) ds

− τ̄

∫ t

t−τ̄

ėT (s)U2ė(s) ds

−
∫ 0

−τ̄

∫ t

t+θ

ėT (s)Sė(s) ds dθ. (14)

From Lemma 2.3, we have

−
∫ t

t−τ(t)

eT (s)U1e(s) ds

≤ − 1

τ(t)

[∫ t

t−τ(t)

e(s) ds

]T

U1

[∫ t

t−τ(t)

e(s) ds

]
,

(15)

−
∫ t−τ(t)

t−τ̄

eT (s)U1e(s) ds

≤ − 1

τ̄ − τ(t)

[∫ t−τ(t)

t−τ̄

e(s) ds

]T

U1

×
[∫ t−τ(t)

t−τ̄

e(s) ds

]
. (16)

It is noted that

τ̄

∫ t

t−τ̄

ėT (s)U2ė(s) ds

= τ̄

∫ t

t−τ(t)

ėT (s)U2ė(s) ds

+ τ̄

∫ t−τ(t)

t−τ̄

ėT (s)U2ė(s) ds.

By Lemma 2.3, it follows that

τ̄

∫ t

t−τ̄

ėT (s)U2ė(s) ds

≥ τ̄

τ (t)

[∫ t

t−τ(t)

ė(s) ds

]T

U2

[∫ t

t−τ(t)

ė(s) ds

]

+ τ̄

τ − τ(t)

[∫ t−τ(t)

t−τ̄

ė(s) ds

]T

× U2

[∫ t−τ(t)

t−τ̄

ė(s) ds

]

= τ̄

τ (t)
β1(t)

T U2β1(t) + τ̄

τ − τ(t)
β2(t)

T U2β2(t)

= β1(t)
T U2β1(t) + τ̄ − τ(t)

τ (t)
β1(t)

T U2β1(t)

+ β2(t)
T U2β2(t) + τ(t)

τ̄ − τ(t)
β2(t)

T U2β2(t).

(17)

It is clear from [55, 56] that

⎡

⎣

√
τ̄−τ(t)

τ (t)
β1(t)

−
√

τ(t)
τ̄−τ(t)

β2(t)

⎤

⎦

T [
U2 V

V T U2

]

×
⎡

⎣

√
τ̄−τ(t)

τ (t)
β1(t)

−
√

τ(t)
τ̄−τ(t)

β2(t)

⎤

⎦ ≥ 0, (18)

which implies that

τ̄ − τ(t)

τ (t)
β1(t)

T U2β1(t) + τ(t)

τ̄ − τ(t)
β2(t)

T U2β2(t)

≥ β1(t)
T Vβ2(t) + β2(t)

T V T β1(t). (19)

Then, we get

τ̄

∫ t

t−τ̄

ėT (s)U2ė(s) ds

≥ β1(t)
T U2β1(t) + β2(t)

T U2β2(t)

+ β1(t)
T Vβ2(t) + β2(t)

T V T β1(t)

=
[

β1(t)

β2(t)

]T [
U2 V

V T U2

][
β1(t)

β2(t)

]

. (20)

Note that when τ(t) = 0 or τ(t) = τ̄ , we have
β1(t) = 0 or β2(t) = 0, respectively, and thus (20) still
holds. It is clear that (20) implies

−τ̄

∫ t

t−τ̄

ėT (s)U2ė(s) ds ≤ αT (t)Θα(t), (21)

where

β1(t) =
[∫ t

t−τ(t)

ė(s) ds

]
,

β2(t) =
[∫ t−τ(t)

t−τ̄

ė(s) ds

]
,

α(t) = [
eT (t) eT

(
t − τ(t)

)
eT (t − τ̄ )

]T
,
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Θ =
⎡

⎢
⎣

−U2 U2 − V V

∗ −2U2 + V + V T −V + U2

∗ ∗ −U2

⎤

⎥
⎦ .

For positive diagonal matrices L1 and L2, we get from
Assumption (A) that

[
e(t)

ϕ(t)

]T [
Σ1L1 −Σ2L1

−Σ2L1 L1

][
e(t)

ϕ(t)

]

≤ 0, (22)

[
e(t − τ(t))

ϕ(t − τ(t))

]T [
Σ1L2 −Σ2L2

−Σ2L2 L2

]

×
[

e(t − τ(t))

ϕ(t − τ(t))

]

≤ 0. (23)

The following two zero equations with any matrices
N1,N2, and N3 are chosen:

0 = 2

{
eT (t)N1 +

[∫ t

t−τ(t)

e(s) ds

]T

N2

+
[∫ t−τ(t)

t−τ̄

e(s) ds

]T

N3

}

×
{
τ̄ e(t) −

∫ t

t−τ(t)

e(s) ds −
∫ t−τ(t)

t−τ̄

e(s) ds

−
∫ 0

−τ̄

∫ t

t+θ

ė(s) ds dθ

}
, (24)

0 = 2ėT (t)Pi

[−(Ai + KiCi)e(t) − KiDie
(
t − τ(t)

)

+ Biϕ(t) + Wiϕ
(
t − τ(t)

)

+ (Gi − KiFi)u(t) − ė(t)
]
, (25)

0 = uT (t)
[
ỹ(t) − Cie(t) − Die

(
t − τ(t)

) − Fiu(t)
]
.

(26)

Here, we have

−2ξT (t)N

∫ 0

−τ̄

∫ t

t+θ

ė(s) ds dθ

≤ 1

2
τ̄ 2ξT (t)NS−1NT ξ(t)

+
∫ 0

−τ̄

∫ t

t+θ

ėT (s)Sė(s) ds dθ,

where

ξT (t) = [
eT (t) eT (t − τ(t)) eT (t − τ̄ ) ėT (t)

ėT (t − τ̄ ) ϕT (t) ϕT
(
t − τ(t)

)
uT (t)

(∫ t

t−τ(t)
e(s) ds

)T (∫ t−τ(t)

t−τ̄
e(s) ds

)T ]
.

Using (15)–(21) in (14), subtracting (22)–(23) from
(14) and adding (24)–(26) with (14), we have

LV (t, i) ≤ ξT (t)

{
Ξi + 1

2
τ̄ 2NS−1NT

}
ξ(t)

+ uT (t)ỹ(t), (27)

where

Ξi = (Ξk,l,i ), k, l = 1,2, . . . ,10

with

Ξ1,1,i = −PiAi − PiKiCi − AT
i Pi − CT

i KT
i Pi

+
N∑

j=1

γijPj + R1 + Q1 − U2 + τ̄ 2U1

+ τ̄
(
N1 + NT

1

) − Σ1L1,

Ξ1,2,i = U2 − V − PiKiDi, Ξ1,3,i = V,

Ξ1,4,i = Q2 − AT
i Pi − CT

i KT
i Pi,

Ξ1,6,i = Σ2L1 + PiBi, Ξ1,7,i = PiWi,

Ξ1,8,i = −1

2
CT

i + PiGi − PiKiFi,

Ξ1,9,i = −N1 + τ̄NT
2 , Ξ1,10,i = −N1 + τ̄NT

3 ,

Ξ2,2,i = −(1 − μ)R1 − 2U2 + V + V T − Σ1L2,

Ξ2,3,i = −V + U2, Ξ2,4,i = −DT
i KT

i P T
i ,

Ξ2,7,i = Σ2L2, Ξ2,8,i = −1

2
DT

i ,

Ξ3,3,i = −Q1 − U2, Ξ3,5,i = −Q2,

Ξ4,4,i = Q3 + τ̄ 2U2 + τ̄ 2

2
S − Pi − P T

i ,

Ξ4,6,i = PiBi, Ξ4,7,i = PiWi,
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Ξ4,8,i = PiGi − PiKiFi,

Ξ5,5,i = −Q3, Ξ6,6,i = R2 − L1,

Ξ7,7,i = −(1 − μ)R2 − L2, Ξ8,8,i = −Fi,

Ξ9,9,i = −U1 − N2 − NT
2 ,

Ξ9,10,i = −N2 − NT
3 ,

Ξ10,10,i = −U1 − N3 − NT
3 ,

N = [
NT

1 0 0 0 0 0 0 0 NT
2 NT

3

]T
.

Now,

LV (t, i) ≤ ξT (t)

{
Ξ̌i + 1

2
τ̄ 2NS−1NT

}
ξ(t)

+ uT (t)ỹ(t) − eT (t)S1e(t),

where

Ξ̌i = Ξi + diag{S1,0,0,0,0,0,0,0,0,0}.
If

Ξ̌i + 1

2
τ̄ 2NS−1NT < 0, (28)

then we have

LV (t, i) < uT (t)ỹ(t) − eT (t)S1e(t). (29)

Taking expectation on both sides of (29) and integrat-
ing from 0 to t and then applying Dynkin’s formula,
we have

E
[
V (t)

] − E
[
V (0)

]
< −E

{∫ t

0
eT (s)S1e(s) ds

}

+ E

{∫ t

0
uT (s)ỹ(s) ds

}
.

Let β = E[V (0)]. Since E[V (t)] ≥ 0, we have

E

{∫ t

0
uT (s)ỹ(s) ds

}
+ β

> E

{∫ t

0
eT (s)S1e(s) ds

}
+ E

[
V (t)

]

≥ E

{∫ t

0
eT (s)S1e(s) ds

}
,

which is equivalent to the passivity condition given in
Definition 2.1. This yields the result that the estimation
error system (9)–(10) is passive from the control input
u(t) to the output error ỹ(t) under the state estimator
(7)–(8).

Applying Lemma 2.2, the inequality (28) is equiv-
alent to
[

Ξ̌i
τ̄√
2
N

∗ −S

]

< 0. (30)

Letting Xi = PiKi gives the result that the inequal-
ity (30) is equivalent to the LMI (12). Then the gain

matrix of the state estimator is given by Ki = P −1
i Xi .

Hence the proof is completed. �

Remark 3.2 Switched exponential state estimation of
neural networks based on passivity theory was pro-
posed in [46]. However, the state estimation of neu-
ral networks with time-varying delays and Markovian
jumping parameter has not been considered yet in
the literature. Based on the new Lyapunov–Krasovskii
functional with triple integral terms and some integral
inequalities, a new delay-dependent stability criterion
for state estimator design of the network with time-
varying delays and Markovian jumping parameter is
established for the first time. Further, when the con-
trol input u(t) is zero, then from Theorem 3.1 we can
easily show that the error system (9)–(10) is asymptot-
ically stable in the mean square.

Remark 3.3 The literature for the state estimation
[32, 46] proposed conditions which is only for the con-
stant delays. However, we derived the stability condi-
tions for time-varying delays, it contributes more than
ones in the literature [32, 46]. In addition, it should be
pointed out the traditional assumptions on the bound-
edness and monotonicity have been removed in this
paper.

Remark 3.4 In hardware implementation of neural
networks, stochastic disturbances are inevitable due
to thermal noise in electronic devices. However, the
stochastic disturbance on the state estimation of neu-
ral networks have not yet been considered in the previ-
ous existing literature [29–31]. In future work, we will
design the state estimation of neural networks with
stochastic perturbations to take this realistic problem
into account.
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Now, we will investigate a delay-dependent sta-
bility criterion of the following error system without
Markovian jumping parameter:

ė(t) = −(A + KC)e(t) − KDe
(
t − τ(t)

) + Bϕ(t)

+ Wϕ
(
t − τ(t)

) + (G − KF)u(t), (31)

ỹ(t) = Ce(t) + De
(
t − τ(t)

) + Fu(t). (32)

For system (31) and (32), we have the following result.

Corollary 3.5 Assume that there exist matrices P =
P T > 0, R1 = RT

1 > 0, R2 = RT
2 > 0, Q1 = QT

1 > 0,
Q2, Q3 = QT

3 > 0, U1 = UT
1 > 0, U2 = UT

2 > 0, S =
ST > 0, S1 = ST

1 > 0, any matrices N1,N2,N3,V ,X

and diagonal matrices L1 > 0 and L2 > 0 such that
the following LMIs hold:
[

Q1 Q2

QT
2 Q3

]

> 0,

[
U2 V

V T U2

]

> 0, (33)

[
Ω τ̄√

2
N

∗ −S

]

< 0. (34)

Then the estimation error system (31)–(32) is passive
from the control input u(t) to the output error ỹ(t) and
the gain matrix of the state estimator is given by K =
P −1X.

Here,

Ω = (Ωk,l), k, l = 1,2, . . . ,10

with

Ω1,1 = −PA − XC − AT P − CT XT

+
N∑

j=1

γijPj + R1 + Q1 − U2 + τ̄ 2U1

+ τ̄
(
N1 + NT

1

) − Σ1L1 + S1,

Ω1,2 = U2 − V − XD, Ω1,3 = V,

Ω1,4 = Q2 − AT P − CT XT ,

Ω1,6 = Σ2L1 + PB, Ω1,7 = PW,

Ω1,8 = −1

2
CT + PG − XF,

Ω1,9 = −N1 + τ̄NT
2 , Ω1,10 = −N1 + τ̄NT

3 ,

Ω2,2 = −(1 − μ)R1 − 2U2 + V + V T − Σ1L2,

Ω2,3 = −V + U2, Ω2,4 = −DT XT ,

Ω2,7 = Σ2L2, Ω2,8 = −1

2
DT ,

Ω3,3 = −Q1 − U2, Ω3,5 = −Q2,

Ω4,4 = Q3 + τ̄ 2U2 + τ̄ 2

2
S − P − P T ,

Ω4,6 = PB, Ω4,7 = PW,

Ω4,8 = PG − XF, Ω5,5 = −Q3,

Ω6,6 = R2 − L1, Ω7,7 = −(1 − μ)R2 − L2,

Ω8,8 = −F, Ω9,9 = −U1 − N2 − NT
2 ,

Ω9,10 = −N2 − NT
3 , Ω10,10 = −U1 − N3 − NT

3 ,

N = [
NT

1 0 0 0 0 0 0 0 NT
2 NT

3

]T
.

Proof The remaining proof is similar to that of Theo-
rem 3.1 and is thus omitted. �

When there is no control input, that is, u(t) = 0 for
the neural network (5)–(6) with Markovian jumping
parameters, the corresponding state estimator can be
described as follows:

˙̂x(t) = −Aix̂(t) + Big
(
x̂(t)

) + Wig
(
x̂
(
t − τ(t)

))

+ Ji(t) + Ki

[
y(t) − ŷ(t)

]
, (35)

ŷ(t) = Cix̂(t) + Dix̂
(
t − τ(t)

)
. (36)

Accordingly, we get the following error system for
(35)–(36):

ė(t) = −(Ai + KiCi)e(t) − KiDie
(
t − τ(t)

)

+ Biϕ(t) + Wiϕ
(
t − τ(t)

)
. (37)

Now, the stability results for the above system (37) can
be summarized in the following corollary.

Corollary 3.6 For given scalars τ̄ and μ < ∞, er-
ror dynamics (37) is globally asymptotically stable
in mean square if there exist matrices Pi = P T

i > 0,
R1 = RT

1 > 0, R2 = RT
2 > 0, Q1 = QT

1 > 0, Q2,

Q3 = QT
3 > 0, U1 = UT

1 > 0, U2 = UT
2 > 0, S =
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ST > 0, any matrices N1,N2,N3,V ,Xi and positive
diagonal matrices L1 and L2 such that the following
LMIs hold:
[

Q1 Q2

QT
2 Q3

]

> 0,

[
U2 V

V T U2

]

> 0, (38)

[
Πi

τ̄√
2
N̄

∗ −S

]

< 0, (39)

Πi = (Πk,l,i ), k, l = 1,2, . . . ,9

with

Π1,1,i = −PiAi − XiCi − AT
i Pi − CT

i XT
i

+
N∑

j=1

γijPj + R1 + Q1 − U2 + τ̄ 2U1

+ τ̄
(
N1 + NT

1

) − Σ1L1,

Π1,2,i = U2 − V − XiDi, Π1,3,i = V,

Π1,4,i = Q2 − AT
i Pi − CT

i XT
i ,

Π1,6,i = Σ2L1 + PiBi, Π1,7,i = PiWi,

Π1,8,i = −N1 + τ̄NT
2 , Π1,9,i = −N1 + τ̄NT

3 ,

Π2,2,i = −(1 − μ)R1 − 2U2 + V + V T − Σ1L2,

Π2,3,i = −V + U2, Π2,4,i = −DT
i XT

i ,

Π2,7,i = Σ2L2, Π3,3,i = −Q1 − U2,

Π3,5,i = −Q2,

Π4,4,i = Q3 + τ̄ 2U2 + τ̄ 2

2
S − Pi − P T

i ,

Π4,6,i = PiBi, Π4,7,i = PiWi,

Π5,5,i = −Q3, Π6,6,i = R2 − L1,

Π7,7,i = −(1 − μ)R2 − L2,

Π8,8,i = −U1 − N2 − NT
2 ,

Π8,9,i = −N2 − NT
3 , Π9,9,i = −U1 − N3 − NT

3 ,

N̄ = [
NT

1 0 0 0 0 0 0 NT
2 NT

3

]T

and the other entries of Πi are 0.

Moreover, the gain matrix of state estimator is given
by

Ki = P −1
i Xi.

Proof Taking u(t) = 0 and following the similar ar-
gument as in the proof of Theorem 3.1, we obtain the
following inequality from (27):

LV (t, i) ≤ ξ̃ T (t)

{
Πi + 1

2
τ̄ 2N̄S−1N̄T

}
ξ̃ (t), (40)

where

ξ̃ T (t) = [
eT (t) eT (t − τ(t)) eT (t − τ̄ ) ėT (t)

ėT (t − τ̄ ) ϕT (t) ϕT (t − τ(t))
(∫ t

t−τ(t)
e(s) ds

)T (∫ t−τ(t)

t−τ̄
e(s) ds

)T ]
.

Taking the mathematical expectation on both sides of
(40) and proceeding as in Theorem 3.1, it is concluded
that the error dynamics (37) is globally asymptotically
stable in the mean square. �

Remark 3.7 It is well known that Lyapunov func-
tion theory is the most general and useful approach
for studying stability of various control systems.
However, it can be found that the existing Lya-
punov functional introduced in the available liter-
ature only contains some integral terms such as∫ t

t−τ
eT (s)Qe(s) ds and some double integral terms

such as
∫ 0
−τ

∫ t

t+θ
ėT (s)Zė(s) ds dθ (see for example

[26–31]). In this paper, we considered a new form of
the Lyapunov functional that contains triple integral
term such as

∫ 0
−τ̄

∫ 0
θ

∫ t

t+λ
ėT (s)Sė(s) ds dλdθ which

play an important role in further reduction of conser-
vatism.

Remark 3.8 In this paper, the stability for the error dy-
namics (9)–(10) is derived without any uncertainties.
However, it is easy to extend to the system with both
parameter norm bounded uncertainties and linear frac-
tional uncertainties.

4 Numerical example

In this section, we will give a numerical example
showing the effectiveness of established theoretical re-
sults.
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Consider the following neural networks with Marko-
vian jumping parameters and time-varying delay:

ẋ(t) = −Aix(t) + Big
(
x(t)

)

+ Wig
(
x
(
t − τ(t)

)) + Ji(t),

y(t) = Cix(t) + Dix
(
t − τ(t)

)
,

where

A1 =
[

2.5 0

0 3.5

]

, A2 =
[

2.6 0

0 2.5

]

,

B1 =
[

−0.2 −0.3

0 −0.1

]

, B2 =
[

−0.5 0

−0.5 −0.4

]

,

W1 =
[

−0.5 0

−0.2 0.6

]

, W2 =
[

−0.3 0.2

0 −0.2

]

,

C1 = [−0.4 0.7], C2 = [−0.1 0.3],
D1 = [1 −0.9], D2 = [1.2 −0.3],

G1 =
[

−1

−0.6

]

, G2 =
[

−1

−0.2

]

,

F1 = F2 = 1, Γ =
[

−5 5

6 −6

]

,

J1 =
[

sin(1.8t)

cos2(t)

]

J2 =
[

3 cos2(0.1t)

− sin(t)

]

.

Let the activation function be g(x(t)) = 1
5 [|x(t)+1|−

|x(t) − 1|] and then, Assumption (A) yields φ− =
−0.5I,φ+ = 0.4I . Thus, we get the following param-
eters:

Σ1 = diag{−0.2,−0.2,−0.2},
Σ2 = diag{−0.05,−0.05,−0.05}.

We assume τ = 0.5,μ = 0.3. By using the MAT-
LAB LMI control Toolbox to solve the LMIs in Theo-
rem 3.1, we obtain following feasible solutions matri-
ces

P1 =
[

19.0216 −9.0521

−9.0521 32.5365

]

,

P2 =
[

18.4422 −8.5141

−8.5141 29.1970

]

,

R1 =
[

9.8622 −7.4994

−7.4994 14.3566

]

,

R2 =
[

11.8071 −3.7621

−3.7621 27.8625

]

,

Q1 =
[

19.3912 −11.8141

−11.8141 29.0550

]

,

Q2 =
[

7.7778 −4.6196

−7.1301 13.8770

]

,

Q3 =
[

5.1088 −3.6353

−3.6353 7.6785

]

,

U1 =
[

14.6901 −2.9257

−2.9257 9.4602

]

,

U2 =
[

21.6909 −9.0987

−9.0987 8.1917

]

,

S =
[

7.0731 −1.7185

−1.7185 4.3133

]

,

S1 =
[

1.8102 −0.5199

−0.5199 0.8928

]

,

X1 =
[

−13.4993

−10.1480

]

, X2 =
[

−15.5238

2.2098

]

,

L1 = diag{28.4888,38.7656},
L2 = diag{14.8484,12.3921}
and the corresponding filter gain matrix as follows:

K1 = P −1
1 X1 =

[
−0.9891

−0.5871

]

,

K2 = P −1
2 X2 =

[
−0.9323

−0.1962

]

.

This implies that the error system (9)–(10) with the
above given parameters is passive in the sense of Def-
inition 2.1. The responses of error dynamics (9)–(10)
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Fig. 1 State trajectories

which converges to zero with the gain K can be seen
from Fig. 1 when u(t) = 0.

5 Conclusions

In this paper, the state estimation problem is addressed
for neural networks with time-varying delays, and
Markovian jumping parameter based on passivity the-
ory. By the proposed method, it has been shown that
the estimation error system is asymptotically stable in
the mean square and passive from the control input to
the output error. The gain matrix of the proposed state
estimator has been determined by solving the LMI
problem. Based on some integral inequalities and a
new Lyapunov–Krasovskii functional containing triple
integral terms, new delay-dependent stability criteria
for designing a state estimator of the considered neu-
ral networks have been established in terms of LMIs.
The effectiveness of the proposed criteria is demon-
strated through a numerical example with simulation
results. We would like to point out that it is possible
to extend our main results to more general complex
dynamical network with mixed time delays and ran-
domly occurring uncertainties by using a delay par-

titioning approach and the corresponding results will
appear in the near future.
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